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ABSTRACT

In this paper, we propose a novel image classification frame-
work based on patch matching. More precisely, we adapt
the Hamming Embedding technique, first introduced for im-
age search to improve the bag-of-words representation. This
matching technique allows the fast comparison of descriptors
based on their binary signatures, which refines the matching
rule based on visual words and thereby limits the quantiza-
tion error. Then, in order to allow the use of efficient and
suitable linear kernel-based SVM classification, we propose
a mapping method to cast the scores output by the Ham-
ming Embedding matching technique into a proper similar-
ity space. Comparative experiments of our proposed ap-
proach and other existing encoding methods on two chal-
lenging datasets PASCAL VOC 2007 and Caltech-256, re-
port the interest of the proposed scheme, which outperforms
all methods based on patch matching and even provide com-
petitive results compared with the state-of-the-art coding
techniques.

Categories and Subject Descriptors

1.4.10 [Image Processing and Computer Vision]: Im-
age Representation; H.3.3 [Information Storage and Re-
trieval]: Information Search and Retrieval

General Terms
Algorithms, Experimentation, Measurement, Performance

Keywords
Similarity-based learning, Hamming Embedding, evaluation,
image classification

1. INTRODUCTION

Image classification is a challenging problem and the key
technology for many existing and potential mining appli-
cations. It has attracted a large interest from the Multi-
media and Computer Vision communities in the past few
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decades, due to the ever increasing digital image data gen-
erated around the world. It is defined as the task of assign-
ing one or multiple labels corresponding to the presence of
a category in the image.

Recently, machine learning tools have been widely used to
classify images into semantic categories. Local features com-
bined with the bag-of-visual-words representation of images
demonstrate decent performance on classification tasks [28].
The idea is to characterize an image with the number of
occurrences of each visual word [22]. However, it is gen-
erally admitted that this setup is sub-optimal, as the dis-
criminative power of the local descriptors is considerably
reduced due to the coarse quantization [3] operated by the
use of a pre-defined visual vocabulary. To address this prob-
lem, several encodings have been proposed such as locality-
constrained linear [25], super vector [16, 29], kernel code-
book [24], and the Fisher Kernel [20, 21]. These coding
schemes are compared by Chatfield et al. [5] on the popu-
lar PASCAL’07 and Caltech-101 benchmarks. Considering
dense SIFT sampling, which are shown to outperform inter-
est points for classification, they use a linear classifier for
better efficiency and confirm that these new coding schemes
indeed achieve better classification accuracy than the spa-
tial histogram of visual-words baseline. The superiority of
the improved Fisher Kernel [21] is evidenced among all these
schemes.

Another way to limit the quantization error introduced by
the use of visual words instead of full descriptors consists
in adopting a matching approach [3, 23]. These schemes
require the use of full raw descriptors, which is not feasible
when considering large learning sets such as those considered
in large image databases like ImageNet [6]. Moreover, to our
knowledge these methods have not been shown to exhibit a
classification accuracy as good as those reported with the
aforementioned new coding schemes.

Besides, in the context of image search, some solutions have
been proposed to dramatically improve the matching qual-
ity while keeping a decent efficiency and memory usage. In
particular, improved accuracy is achieved by incorporating
additional information, jointly with the descriptors, directly
in the inverted file. This idea was first explored by Jégou
et al. [13] for image search, where a richer descriptor repre-
sentation is obtained by using binary codes in addition to
visual words and weak geometrical consistency. In our work,



we will mainly focus on the interest of the complementary
information provided by the binary vectors, using the so-
called Hamming Embedding method [15, 14]. The idea was
recently pushed further by Jain et al. [12], who show that
a vector-to-binary code comparison improves the Hamming
Embedding baseline by limiting the approximation made on
the query, leading to state-of-the-art results for the image
search problem.

In this paper, in the spirit of recent works that have shown
the interest of patch-based techniques for classification, we
propose to adopt the state-of-the-art Hamming Embedding
method for category-level recognition. This produces a rep-
resentation which is more efficient and compact in memory
than the solutions based on exact patch matching. However,
the original Hamming Embedding technique can not be used
off-the-shelf, since the similarity output by this technique is
not a Mercer Kernel. A naive option would be to adopt
instead a k-nearest neighbor classifier, but from our prelimi-
nary experiments the resulting classification accuracy is then
low. To address this problem, we adopt a kernelization tech-
nique on top of our matching-based solution, which enables
the use of support vector machines and thereby allows good
generalization properties even when using a linear classifier.
As a result, Hamming Embedding classification is efficient in
both training and testing stages, and provides better perfor-
mance and efficiency than the recently proposed concurrent
matching-based classification techniques [3, 23].

Last but not least, the proposed approach is shown to out-
perform the most recent coding schemes benchmarked in [5].
The only noticeable exception is the latest improvement of
the Fisher Kernel [21], which still remains competitive. Be-
side, we show that the combination of Hamming Embed-
ding similarity with Fisher Kernel is complementary and
achieves the current state-of-the-art performance. Most im-
portantly and as noticed in [23], the high flexibility offered
by a matching-based framework is likely to pave the way to
several extensions.

The rest of the paper is organized as follows: Section 2 de-
scribes the most related works. Section 3 presents our sys-
tem architecture. It includes the feature extraction proce-
dure, where an improved SIFT descriptor is introduced, and
the Hamming Embedding similarity-based representation.
Section 4 reports the experimental results conducted on the
PASCAL VOC 2007 and Caltech-256 collections and com-
pare them to the main state-of-the-art methods discussed in
Section 2. Section 5 concludes the paper.

2. RELATED WORK

The bag of visual-words (BOW) is one of the most popular
image representations, due to its conceptual simplicity, com-
putational efficiency and discriminative power stemming for
the use of local image information. It represents each local
feature with the closest visual word and counts the occur-
rence frequencies in the image. The length of the histogram
is given by the number of visual words of a codebook dic-
tionary. Van Gemert et al. [24] introduced an uncertainty
model based on kernel density estimation to smooth the hard
assignment of image features to codewords. However, BOW
discards the spatial order of local descriptors, which severely
limits the descriptive power of the image representation. To

take into account the rough geometry of a scene, the spatial
pyramid matching (SPM) proposed by Lazebnik et al. [18]
divides the image into blocks and concatenates all the his-
tograms to form a vector descriptor which incorporates the
spatial layout of the visual word. The BOW and this SPM
extension are generally used in conjunction with non-linear
classifiers. In this case, the computational complexity is
O(N?®) and the memory complexity is O(N?) in the train-
ing phase, where N is the size of the training dataset. This
complexity limits the scalability of BOW- and SPM-based
non-linear SVM methods.

In order to limit the quantization error, Yang et al. [27] pro-
pose a linear spatial pyramid matching method based on
sparse coding (ScSPM). A maxz pooling spatial pooling re-
places the average pooling method for improved robustness
to local spatial translations. A very successful method is
the improved Fisher Kernel (FK) proposed by Perronnin et
al. [21] in the context of image categorization. The idea of
FK [11, 20] is to characterize an image with the gradient
vector of the parameters associated with a pre-defined gen-
erative probability model (a gaussian mixture in [20]). This
representation is subsequently fed to a linear discriminative
classifier. andcan be used jointly with other techniques such
as the SPM representation, power-law [21] and L2 normal-
izations. The FK boosts the classification accuracy, at the
cost of a high descriptor dimensionality, which is two orders
of magnitude larger than BOW for the same vocabulary size.
However, the FK is classified using a linear SVM, which
counter-balance the higher cost of the non-linear classifiers
involved in BOW-based classification. Other improvements
are achieved by combining different types of local descriptors
or by integrating objects localization task [10].

This paper follows another line of research on building a ker-
nelized efficient matching system. Various similarity match-
ing methods are proposed in the literature. Some of these
use feature correspondences to construct an image compar-
ison kernel which is compatible with SVM-based classifica-
tion [4]. Bo and Sminchisescu [2] propose an effective kernel
computation through low-dimensional projection. Duchenne
et al. [7] extend the region-to-image matching method of
Kim et al. [17], and formulate image graph matching as an
energy optimization problem, whose nodes and edges rep-
resent the regions associated with a coarse image grid and
their adjacency relationships.

A very simple matching-based method is the one proposed
by Boiman et al. [3], who use a Nearest Neighbor (NN) as
a nonparametric model, with does not require any train-
ing phase. Two approaches are considered: NN Images-to-
Images and NN Images-to-Classes. For the first approach,
each test image is compared to all known images and the
class of the closest image is chosen and assigned to queried
image. The second approach pools all descriptors of all the
images belonging to each class to form a single representa-
tion of that class. A given image is then compared to all
the classes. NN Images-to-Classes achieves good results on
standard benchmarking datasets. Tuytelaars et al. [23] ex-
ploited the kernel complementarity by combining NN and
BOW. However, as shown in our experimental section, our
matching-based method is the first to report competitive
results against the best encoding method, namely the FK.
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Figure 1: Proposed image classification system architecture.

3. PROPOSED APPROACH

Figure 1 gives an overview of our method. We first extract
local features on a dense grid. For this purpose, we propose
an improved variant of the SIFT [19] descriptor. It better
takes into account the contrast information than the orig-
inal one. These descriptors are individually encoded using
the Hamming Embedding technique [15], which represents
each descriptor by a visual word and a short binary signa-
ture. This binary vector is shown to integrate some residual
information about the class which is not captured by the
visual word. At this stage, the similarity between two im-
ages is done by computing the score produced by HE. More
precisely, we used the extended HE method [14] by Jegou et
al., which integrates a regularization technique to address
the visual burstiness phenomenon encountered in images.
The images are then described in a similarity space, which
amounts to constructing a vector whose components corre-
spond to a similarity to a fixed set of training images. A
linear SVM classifier is then learned in this similarity space.

3.1 Feature Extraction

We extract SIFT [19] descriptors from a dense grid. More
precisely, we adopt the same grid parameters as used in [5],
i.e., a spatial stride of 3 pixels with multiple resolutions.
These extracted patches are described using a local descrip-
tor derived from the original SIFT descriptor [19]. The pro-
posed variant of SIFT aims at addressing the following is-
sues:

e A strong gradient, such as generated by a boundary,
gives an overwhelming importance to a few compo-
nents in the SIFT descriptor. Lowe proposes a solu-
tion [19] to address this problem by clipping the com-
ponents whose value is larger than 20% of the whole
energy. However, this solution is not satisfactory since
it does not correct the components which magnitude
is lower than this threshold.

e The SIFT descriptor are L2-normalized®, in order to
ensure invariance to intensity changes. However, this
solution completely discards the absolute value of the
gradient, which is a meaningful information.

e Dense patch sampling produces many uniform patches
which are not very informative. Worst, uniform patches

'In typical implementations, they are finally multiplied by a
constant such that the components lie in the range [0..255],
in order to encode each component with 1 byte.

have a low signal to noise ratio. Consequently, the
normalization that is performed to achieve intensity-
invariance magnifies the noise.

To address these issues, the SIFT generation procedure is
modified as follows. Starting with the SIFT descriptor be-
fore clipping and normalization,

1. The descriptors with zero norm are filtered out, which
amounts to removing the uniform patches.

2. Instead of the clipping procedure, each component is
square rooted. This power-law component-wise regu-
larization is similar to the one performed in the im-
proved Fisher Kernel [21], but here applied directly on
the local descriptor.

3. Finally, instead of using the L2 normalization, the fi-
nal vector is normalized by the square root of the L2
norm of the transformed descriptor. This gives a bet-
ter trade-off between full invariance to intensity change
and keeping the information about the absolute inten-
sity measure.

We have evaluated the interest of this SIFT variant on the
PASCAL VOC 2007 classification benchmark. For this we
use our proposed approach described in Section 3.4 as well as
the improved FK method [21]. We observe gain of around
2% of mAP when this SIFT variant is used with our ap-
proach for classification. Fisher Kernel with this variant
achieves an mAP of 59.8% and 62.2% without and with spa-
tial grid, respectively. These results are 0.5 to 1.5% better
than the regular SIFT descriptor in the same setup.

3.2 Hamming Embedding

The Hamming Embedding method of [13] is a state of the
art method for image retrieval. It provides an accurate way
of computing the similarity between two images based on
the distance between their local descriptors. It can be seen
as an extension of BOW, where a better representation of
the images is obtained by adding, to the visual word, a short
binary signature that refines the representation of each local
descriptor.

To generate the binary signature, each descriptor is first
projected onto a m-dimensional space by a fixed random ro-
tation matrix. Each projected component is compared with
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Figure 2: Hamming Embedding matching: In case of
bag of words, being in the same cluster descriptors
z and y match. While with HE matching depends
on the relative location of the descriptors.

a median value learned, in an unsupervised way, on an inde-
pendent dataset. This comparison produces either a 0 or a
1 per component, producing a bit-vector of length m. This
binary signature gives a better localization of the local de-
scriptor in the Voronoi cell associated with the visual word.
Figure 2 illustrates this method for a 2-dimensional feature
space (m = 2). Each red dot shows a descriptor. The clus-
ter centers (visual words) are represented by the blue dots.
For a given cell, the hyperplanes or axes (shown in dashed
lines) represent the decision boundaries associated with the
comparison of the projected components with the median
values. As a result, the cell is partitioned into 2" sub-cells,
each of which being associated with a given binary signature.

Two descriptors assigned to the same visual word are com-
pared with the Hamming distance between their binary sig-
natures. They are said to be matched only if the distance
is less than a fixed threshold h;. This provides a more ac-
curate comparison between descriptors than in the BOW
model, where the descriptors are assumed to match if they
are assigned to the same visual word. In the example of Fig-
ure 2, the descriptors x and y belong to the same cluster,
but have binary signatures 00 and 11, respectively, which
means that they are not similar.

Each successful matching pair votes, which increases the
similarity score by a quantity that depends on the Ham-
ming distance between the binary vectors. The final image
similarity score is computed as the sum of voting scores and
then normalized as in BOW. For the sake of efficiency, the
method uses a modified inverted file structure which incor-
porates the binary signature. As in the original work of
Jegou et al. [13] we use m = 64, and consider Hamming
thresholds between h; = 20 and h; = 24.

T T T T T
True matches: HesLap e :
False matches: HesLap =====---: i
True matches: Dense
False matches: Dense ==+===--- :

Figure 3: Empirical distribution of true matches and
false matches as a function of the Hamming distance
(haist). We only show a zoomed version for haist =0
to 22. Measurements are performed on PASCAL
VOC 2007 dataset (category boat).

Score weighting. As mentioned above, the Hamming dis-
tance between two descriptors is used to weight the voting
score. This was first done by considering a Gaussian func-
tion [14] of this distance. In this work, we adopt a more
simple choice in order to remove the parameter o associated
with the Gaussian function. More precisely, we use the lin-
ear scoring function hth:h , where h is the Hamming distance
between the binary signatures. From our preliminary exper-
iments, the results obtained by this linear weighting scheme
are comparable to the original Gaussian weighting function,
which requires to optimize o by cross-validation.

Burstiness Regularization. In [14], a Burstiness regular-
ization procedure is proposed to achieve improved results
in image search. The so-called burstiness handling method
regularizes the score associated with each match, to com-
pensate the bursty statistics of regular patterns in images.
Following these guidelines, we also apply this regularization
to obtain better similarity scores.

3.3 HE for classification: motivation

Compared to the BOW representation, the main interest of
HE is the additional information provided by the binary sig-
nature. We have conducted an analysis to evidence that the
Hamming distances between local descriptors provide a com-
plementary and discriminative information for image classi-
fication. This analysis is performed on the PASCAL VOC
2007 dataset. SIFT descriptors are extracted from a dense
grid as well as from the Hessian Laplace interest points. Any
pair of descriptors is referred to as a true match if the two
descriptors come from same object category, otherwise it is
considered as a false match.

Figure 3 gives the empirical distribution, zoomed on small
distances, of the true and false matches, as a function of
the Hamming distance haist, for the category boat. One can
observe that the Hamming distance provides a strong prior



about the class: the expectation of false matches is clearly an
increasing function of hgist, which confirms that low Ham-
ming distances are more often related to true matches.

Note that all the false matches are accepted in the case of the
BOW framework, that only uses vector quantization. Ham-
ming Embedding based matching is able to filter out many
false matches by choosing a proper threshold h:. More-
over, the contribution of the matches are advantageously
weighted based on the Hamming distance, in order to reflect
the true/false match prior, and therefore to achieve better
image classification. Note that setting a high threshold h;
would allow many false-matches to vote (as in BOW). On
the other hand, a very low value is not satisfactory because
too few matches are kept. It is therefore important to choose
a threshold in an appropriate range, which is done by cross
validation for a given dataset, see Section 4.1.

3.4 Hamming Embedding Similarity Space

We propose to apply HE to represent images in a similarity
space. The idea is to represent an image by its similarity,
as output by a strong matching system, to a set of sample
images. There are few methods in the literature that em-
ploy such a similarity space for classification. These include
nearest neighbors based approaches like NBNN (3] and its
variations [1, 23] or graph based matching methods [7], see
Section 2 for a short survey. However, none of these works is
able to compete with the state-of-the-art Fisher kernel [21].

Similarity space image representation. Unlike NBNN,
which relies on pure NN classification, our motivation is to
produce an image representation that can be fed to a strong
classifier such as an SVM. This is more similar to [23] and [7],
which use NBNN and graph-matching in their matching sys-
tem. In our case, the HE similarity between a given image
and the training images is obtained as the sum of voting
scores, with burstiness regularization. Based on the analy-
sis in Section 3.3, such a similarity space embedding is ex-
pected to be more discriminative than BOW. The image is
represented by an N dimensional vector, where N is the
number of training images. Each of its component is a sim-
ilarity score to one of the training images. A given image [
is therefore represented as:

Igg = [HEsim(Z,I1) HEsim(Z, I2) HEsim (I, In)] (1)

where HEgm (I, ;) is the similarity computed by HE be-
tween images [ and I;.

Remark: One of the key advantage of HE over NBNN
based methods [3, 23] is that it does not need to compute
the Euclidean nearest neighbors of the descriptors, which is
costly both in terms of memory (to store the raw SIFT de-
scriptors) and efficiency. In contrast, HE efficiently achieves
accurate matching based on the binary signatures, which in
addition are compact in memory (8 bytes per descriptor).

Normalization of similarity scores. Figure 4 (top) shows
the distribution of the scores produced by HE. One can ob-
serve that most of the scores are low, while few are high, due
to the high discriminative power of this matching method.

0.004 0.006 0.008 0.01

0 0.03 0.06 0.09 0.12 0.15 0.18

Figure 4: Distribution of similarity scores (a) before
and (b) after power normalization (with o = 0.3).
Note the change in the scales. The scores are
obtained for trainval set of PASCAL VOC 2007
dataset.

A similar observation was done for the Fisher Kernel [21].
Such a score distribution is not desirable for classification,
because large values may generate some artifacts. In order
to distribute the scores more evenly, we therefore adopt the
power normalization method proposed to improve the Fisher
Kernel [21]. It consists in applying the following component-
wise function: f(xz) = z“. Note that, in our case, the scores
are all non-negative.

When optimizing the parameter a by cross-validation, we
consistently obtain a value between 0.2 and 0.35. The val-
ues in this range provide comparable results, which suggests
that this parameter can be set to a constant, e.g., a = 0.3.
Figure 4 (bottom) shows the distribution of images scores
after power normalization with a = 0.3, again computed
on PASCAL VOC 2007 dataset. As one may observe, the
power-law emphasizes the relative importance of low scores.
Finally and similar to the Fisher Kernel, the vector is L2-
normalized, producing the following final image representa-
tion:

i [HEim (I, 11)* HEgim(I,12)* ... HEgm(I,IN)%]
HE =
VEN HEgm (I, 1;)%*

)

(2)
where the denominator is computed such that the Euclidean
norm of the final vector is 1.

Spatial Grid. The spatial pyramid matching proposed in [18]
is a standard way to introduce some partial geometrical in-

formation in a bag-of-words representation. It consists in

subdividing the image in a spatial grid and in computing

histograms separately for each of the spatial regions thus

defined. These spatial histograms are weighted according

to the size of the region, normalized separately and then

concatenated together to produce the final representation.



This idea is adapted to our HE-based representation. It
is done by computing the HE similarities between each of
the spatial regions and the training images. A noticeable
difference is that the full training images are used to compute
the similarity and not just the associated regions, because
we observed that larger region gives slightly better results.
The image is represented as 1 X 1 and 1 x 3 (three horizontal
stripes) grids, that is 4 regions in total. Other methods
usually draw 8 or 21 regions (add 2 x 2 or 4 x 4).

Another difference w.r.t. the method of [18] is that we
train a linear SVM separately for each grid. Two SVMs are
trained, one for 1 x 1 grid and another for 1 x 3 grid. The
similarity scores of the three regions of 1 x 3 grid are stacked
together to make 3N dimensional representation for train-
ing. The final classification scores are obtained as a weighted
sum of the scores from both the classifiers. These weights
are learned by cross-validating on the validation data.

4. EXPERIMENTS AND RESULTS

In this section, we first present some implementation details
and then evaluate the proposed method on two challenging
datasets for image classification: PASCAL VOC 2007 [8]
and Caltech-256 [9].

4.1 Implementation Details

Only one type of feature is used in all our experiments,
namely the SIFT descriptor computed on a dense grid. The
descriptors are extracted from patches densely located with
a spatial stride of 3 pixels on the image, under five scales.
In [5], it is observed that such a dense sampling has a pos-
itive impact on classification accuracy. Also, it allows us to
provide a consistent comparison of our method with several
recent encodings evaluated in [5], and shows the interest of
the variant of the SIF'T descriptor introduced in Section 3.1.
As we use dense features, burstiness handling [14] becomes
more important as visual burst increases. Therefore in all
the experiments we use burstiness regularization. For the
sake of consistency, the vocabulary size is set K = 4096 for
all our experiments with BOW and HE.

Key parameters. There are two important parameters in
our method, namely the HE threshold (h:) and the parame-
ter a involved in the power-law component-wise normaliza-
tion. The impact of these parameters on the performance is
shown in Figure 5, on the PASCAL VOC 2007 benchmark.
The best choice of h;, as obtained by cross-validation for
binary signatures of length 64, is a threshold between 20 to
24. Interestingly, these values are consistent with those used
with HE [15] in an image retrieval context. As suggested in
Section 3, the parameter « is not very sensitive in the range
[0.2,0.35], and is therefore set to the constant aw = 0.3 for all
the experiments.

4.2 PASCAL VOC 2007

Evaluation protocol. The PASCAL VOC 2007 dataset con-
tains about 10,000 images split into train, validation and
test sets. The objective is to perform the classification for
20 object categories. A 1-versus-rest linear SVM classifier is
trained for each category and the performance is evaluated
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Figure 5: Impact of HE threshold (h:) and « on mAP
for test set of PASCAL VOC 2007.

in terms of average precision (AP) for each class. The over-
all performance is measured as the average of these APs,
i.e., it is the mean average precision (mAP). We follow the
standard practice of training on train+4wvalidation and test-
ing on test. The cross-validation of the different parameters,
in particular the threshold h; and the C' parameter of the
SVM (regularization-loss trade off), is performed by train-
ing on the train set and testing on the validation set. The C
parameter is validated for each class whereas h; is validated
for the dataset and finally fixed to h: = 22.

The state of the art. The best results reported on this
dataset using only the SIFT feature were obtained with the
Fisher Kernel [21]. They report 58.3% with grid and 55.3%
without grid. Their descriptor dimensionality is typically
about 32K (or more) without spatial grid, and 8 times more
with. In our case, the final representation is equal to the
number of training images (i.e. 5011 here) and 4 times more
when using the spatial grid.

Better results have been reported using more than one fea-
ture channel. For instance, the best classification method
(by INRIA) in the original competition [8] obtained 59.4%
using multiple feature channels and costly non-linear classi-
fiers. Similarly, Kernel Codebook [24] and Yang et al [26] use
many channels with soft assignment or sophisticated multi-
ple Kernel learning to achieve mAP=60.5% and 62.2% re-
spectively. To our knowledge, the best result ever reported
on this dataset was achieved by Harzallah et al. [10], who
combine very costly object localization with their classifica-
tion system.

Since different methods employ varying experimental set-
tings (single/multiple feature, various sampling density and
codebook sizes), it is difficult to have a consistent compar-
ison. This issue is addressed by Chatfield et al. [5], who
perform an independent evaluation of the recent encoding
methods. With a consistent setting of parameters for all
methods, the Fisher Kernel improves to 61.69% and the su-
per vector coding [29] achieves a score of 58.13% (reported
64.0%). In Table 1, we refer to those results for a fair com-
parison. All the results reported in this table are, except for
HE, HE* and FK*, from this paper [5]. Other elements like



[ Methods Codebook Spat grid SVM || mAP |
FK 256 yes Lin 61.69
FK* 256 yes Lin 62.22
SV 1k yes Lin 58.13

BOW 4k yes Lin 46.54
BOW 4k yes Chi | 53.42
LLC 4k yes Lin 53.79
LLC 4k yes Chi 53.47
LLC-F 4k yes Lin 55.87
KCB 4k yes Chi 54.60
HE 4k no Lin 53.98

HE 4k yes Lin 56.68
HE* 4k no Lin 56.31
HE* 4k yes Lin 58.34
HE* 4+ FK* 4k, 256 no Lin 60.84
HE* + FK* 4k, 256 yes Lin 62.78

Table 1: Image classification results using PASCAL
VOC 2007 dataset with consistent setting of param-
eters. [FK: Fisher Kernel, FK*: Fisher Kernel with
our SIFT variant, SV: super vector coding, BOW: bag
of words, LLC: locally constrained linear coding, LLC-
F: LLC with with original+left-right flipped training im-
ages, KCB: Kernel codebook, HE: Hamming Embedding
similarity, HE*: HE with our SIFT variant; Lin/Chi:
linear/x? Kernel map ]|.

vocabulary size, classifiers used, spatial grid are mentioned
in the table.

Impact of our SIFT’s variant. The method denoted by
HE* is our Hamming Embedding similarity approach com-
bined with the proposed SIFT variant detailed in Section 3.1.
Similarly, FK* represents the Fisher Kernel combined with
our SIFT variant. A considerable improvement of around
2% is observed by using HE* over HE both with and with-
out spatial grid. The difference is only that HE uses original
SIFT descriptors. As one can observe the variant also im-
proves in case of Fisher Kernel, FK (original SIFT) and FK*
use exactly the same parameters otherwise.

HE classification. Our method, HE* with spatial grid,
performs better than all the methods except the improved
Fisher Kernel. With original sift descriptors (HE) mAP of
56.68% is obtained, which again compares favorably to most
of the methods. Even without spatial grid HE* achieves a
competitive mAP of 56.31%, while relying on a matching-
based method. To our knowledge, it is the first method of
that kind that approaches the best coding method FK on
the PASCAL VOC 2007 benchmark.

Moreover, one would expect such a matching based method
to be complementary with the coding based methods, even
by using the same local descriptors in input. To confirm this,
we combine our Hamming Embedding method (HE*) with
the Fisher Kernel (FK*), using a late fusion of confidence
scores. Doing so, we obtain a mAP of 60.84% and 62.78%
without and with spatial grid respectively. Class-wise APs
are reported in Table 2 for our approach and its combina-
tion with the Fisher Kernel. This combination improves the
results for most of the categories.

Method/Class | HE* FK FK*¥ HET* + FKF* |
Aeroplane 76.50 78.97 80.92 80.75
Bicycle 62.70  57.43  67.39 67.70
Bird 50.23 51.94 57.10 56.77
Boat 68.62 70.92 69.01 69.86
Bottle 28.40 30.79  33.17 33.77
Bus 63.35 72.18 69.08 69.68
Car 79.37 79.94  80.42 81.27
Cat 61.20 61.35 61.51 62.71
Chair 52.52  55.98  55.43 56.26
Cow 45.24  49.61 49.89 51.67
DiningTable 52.85  58.40  58.71 59.22
Dog 47.11 44.77  48.98 49.96
Horse 77.06 78.84  79.56 80.12
Motorbike 64.27 70.81 70.02 70.27
Person 83.18 84.96  84.56 85.20
PottedPlant 32.46  31.72 34.65 37.00
Sheep 41.29 51.00 49.80 46.71
Sofa 50.15 56.41 55.08 55.54
Train 77.02 80.24 81.36 81.81
TVmonitor 53.24 57.46 57.76 57.80
mAP 58.34 61.69 62.22 62.78

Table 2: Image classification results per class using
PASCAL VOC 2007 dataset. Again, recall that FK*
is the improved Fisher Kernel [21] combined with
our better SIFT variant.

4.3 Caltech-256

Evaluation protocol. The Caltech-256 dataset contains ap-
proximately 30K images falling into 256 categories. Each
category contains at least 80 images. There is no provided
division of dataset into train and test though. However, the
standard practice is to split the dataset into train and test
sets and repeat each experiment multiple times with differ-
ent splits. We run experiments with different numbers of
training images per category: ntrain = 15, 30, 45, 60. The
remaining images are used for testing. Validation is done on
5 images from train set by training on ntrain — 5 images.
The validated h; is equal to 20 for this dataset. We run
experiments for five random splits for each ntrain. Again a
1-vs-rest linear SVM is trained for each class. We report the
average classification accuracy (standard practice) across all
classes.

Results. Table 3 compares our results with the best re-
ported ones. We divide the methods as matching or cod-
ing based, all of them use only SIFT feature. Compared to
PASCAL VOC, matching-based methods perform compara-
tively better on Caltech-256, outperforming many coding ap-
proaches such as Kernel-Codebook [24], Sparse-Coding [27],
Standard FK [20] and the baseline by the authors of Cal-
tech 256 dataset [9]. Overall, our method outperforms all
the matching and coding based approaches. Only the im-
proved Fisher Kernel [21] and LLC [25] perform better in the
case of 15 training images. This is not surprising, because
in our case the dimensionality of the final representation is
equal to the number of training images. With more training
images, the dimensionality of our descriptor increases and
leads to the best results.



Methods/ntrain 15 30 45 60
Baseline [9] - 34.10 - -
Kernel Codebook [24] - 27.17 - -
EMK ([2] 23.20 | 30.50 | 34.40 | 37.60
Coding methods | SCSPM [27] 27.70 | 34.02 | 37.50 | 40.14
Standard FK [20] 25.60 | 29.00 | 34.90 | 38.50
Improved FK [21] 34.70 | 40.80 | 45.00 | 47.90
LLC [25] - 4119 | - 47.68
Kim et al. [17] - 36.30 - -
Matching-based | NBNN [3] - 38.00 - -
Duchenne et al. [7] - 38.10 - -
HE* 32.49 | 41.80 | 46.69 | 49.83

Table 3: Comparison of HE similarity-based representation with the state-of-the-art on Caltech-256.

S.  CONCLUSIONS

In this paper, we have presented a novel approach to image
classification based on a matching technique. It consists in
combining the Hamming-Embedding similarity-based match-
ing method with a similarity space encoding, which sub-
sequently allows the use of a linear SVM. This method is
efficient and achieves state-of-the-art classification results
on two reference image classification benchmarks: the PAS-
CAL VOC 2007 and Caltech-256 datasets. Moreover, it is
shown to be complementary with the other best classifica-
tion method based, namely the Fisher kernel. To our knowl-
edge, this method is the first matching-based approach to
provide such competitive results. We believe that the flexi-
bility offered by this framework is likely to be extended, in
particular for a better integration of the geometrical con-
straints. As a secondary contribution, we have proposed an
effective variant of the SIFT descriptor, which gives a slight
yet consistent improvement on classification accuracy. Its
interest has been validated with the Fisher Kernel.
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