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tion technique is an extension of the magic templates rewriting, and it can improve the
performance of query evaluation by not materializing the extension of intermediate views.
Standard relational techniques, such as unfolding embedded view definitions, do not apply to
recursively defined views, and so alternative techniques are necessary. We demonstrate the
correctness of our rewriting. We define a class of “nonrepeating” view definitions, and show
that for certain queries our rewriting performs at least as well as magic templates on
nonrepeating views, and often much better. A syntactically recognizable property, called
“weak right-linearity,” is proposed. Weak right-linearity is a sufficient condition for nonrepe-
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right-linear evaluation of right-linear views, while applying to a significantly more general
class of views.
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1. INTRODUCTION

Declarative systems such as relational and deductive databases try to
make posing queries simple by letting the users specify what they want to
compute rather than how to compute it. This strategy leads to databases in
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which it is relatively easy to pose queries. However, since the user does not
supply information on how to answer the query, the burden of deciding how
to evaluate the query falls on the system.
Thus, declarative systems must have powerful optimization techniques

available. In large databases they could make the difference between a
query being feasible or infeasible. For nonrecursive queries many well-
known optimizations for relational databases can be applied. Several
techniques for optimizing recursive queries have been recently proposed,
including “magic-sets,” “right-linear evaluation,” “counting methods” and so
on. (See Ullman [1989b] for a comprehensive discussion of these and other
strategies.)
In this paper, we propose an optimization technique that integrates

magic sets and a form of tail-recursion elimination significantly more
general than right-linear evaluation. By not representing intermediate
results of a bottom-up computation, substantial savings over magic sets
alone can be realized.
To motivate our technique, consider the following SQL views.

Create View V As Create View W As
Select p Select p

From R, S, W From T, U
Where R.A 5 S.A And S.B 5 W.B Where T.C 5 U.C

View W represents a natural join of T and U, and view V represents the
natural join of R and S with W. Let us imagine that we can process joins in
a pipelined fashion from left to right. In other words, if we want to compute
RÅÄSÅÄT, we can pass the result tuples from RÅÄS directly to be joined
with T without representing the join result RÅÄS explicitly in persistent
storage. Now suppose that we had a query

Select p

From V
Where V.D 57

where D is an attribute of R. One way to execute this query would be as
follows: First, apply the selection condition to R, and then join it with S.
Pass the resulting B attribute column into a subprocess that computes the
corresponding part of the view W, storing the result in a relation W9.
Finally, join the RÅÄS result with W9.
The problem with the plan above is that it materializes an intermediate

result W9, probably on persistent storage. This overhead could have been
avoided had we processed the query as a join of the four base relations,
rather than by starting a separate process for the intermediate view W. In
a relational system, one can achieve this saving by applying a process of
rewriting, or unfolding. For example, using various relational equivalences,
we could have determined that the following view definition is equivalent
to the definition of V above.
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Create View V As
Select p

From R, S, T, U
Where R.A 5 S.A And S.B 5 T.B And T.C 5 U.C

The advantage of this unfolded definition is that it has no intermediate
views to worry about. As long as a view W is mentioned only once in the
definition of a view V, such unfolding can only improve the expected
performance of the required joins.
For relational view definitions, an unfolding into a new view definition

over just the base relations is usually possible, so that no intermediate view
relations need to be materialized. (Exceptions include Select Distinct sub-
views and subviews involving aggregation.) However, for recursive view
definitions, one cannot always fully unfold a view definition. Consider the
following SQL-like definition of a transitive-closure view.

Create View TC(Begin,End) As
Select Source, Destination
From Link

Union
Select Source, End
From Link, TC
Where Link.Destination 5 TC.Begin

The problem is that the view TC is defined in terms of itself. No matter how
much unfolding we do, there will always be a TC relation mentioned in the
From clause of the unfolded view.
Our goal is to avoid materializing intermediate views. For recursive view

definitions, unfolding is not a solution, and so we look for other techniques.
The new techniques that we develop will also apply to nonrecursive views,
and so provide an alternative to explicit unfolding.
Since most of the recent work on optimizing recursive view definitions

has taken place in the deductive database research community, we choose
to present this paper in the context of a deductive database, where views
are written using rules. However, the choice of syntax is not crucial; our
results would apply equally well to an SQL-like language, with or without
recursion. To see what can go wrong without a tail-recursive evaluation,
consider the following example.

Example 1.1. Let P be the set of rules

p~X, Z!4 e~X, Y!, p~Y, Z!

p~100, X!4 t~X!,

where e and t are base relations. To make the example more concrete,
suppose that e(X, Y) holds when there is a way to get from town X to town
Y in some remote region. We number the towns 1, . . . , 100. t(X) holds
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when item X is available in the region’s capital, which is town number 100.
Items are numbered 1, . . . , 1000. Then p(X, Z) holds if it is possible to get
from town X to a town that has item Z. (One could imagine other rules like
the second rule, for different commercial centers, but for simplicity we do
not consider additional rules here.)
Suppose that the t relation is given by {t(1), t(2), . . . , t(1000)}, and the e

relation is given by {e(1, 2), e(2, 3), . . . , e(n 2 1, n), e(n, 1)}. In other words,
all items are available in the capital, and the towns are located at various
points on a single cyclic one-way road. Suppose our query is ?-p(1, Z), that is,
“Tell me what’s available starting from town 1.”
Standard techniques such as magic templates would materialize every

tuple of the form p(i, j) where 1 # i # 100 and 1 # j # 1000, thus
storing 100,000 tuples in order to answer the query. It is not necessary to
store that many tuples if we apply a tail-recursive evaluation. As we shall
see, our tail-recursive evaluation does not materialize p(i, j) when i . 1.
p(1, j) is materialized for 1 # j # 1000. Some additional tuples for some
newly-introduced relations may be materialized, but for this example the
number of such tuples would be just 100. The total number of materialized
tuples is two orders of magnitude smaller than that for the standard
approach, and thus represents a significant improvement in performance.
Magic-sets [Bancilhon et al. 1986; Beeri and Ramakrishnan 1991] is a

general technique that can, in principle, be applied to any (recursive or
nonrecursive) deductive database. By passing binding information from the
query itself into the rule evaluation, magic sets restricts the computation to
tuples that are in some sense relevant. Magic templates [Ramakrishnan
1991] is an extension of magic-sets to handle nonground tuples. Magic-sets
and magic-templates materialize portions of all intermediate views, as
described in Example 1.1, and so suffer from the problems mentioned
above.
Other techniques, such as right-linear evaluation [Naughton et al. 1989a;

1989b] give better performance than magic sets for restricted classes of
programs. Common programs such as transitive closures (including Exam-
ple 1.1) fall into the class of right-linear programs. The right-linear
optimization can be thought of as a limited form of tail-recursion elimina-
tion. In this paper, we propose a form of tail-recursion elimination that
applies to a larger class of programs.
Our techniques are motivated by considering a top-down, Prolog-style

evaluation method without memoing that does not fully compute “interme-
diate” predicates. In some cases, Prolog-style evaluation effectively applies
tail-recursion elimination. It is this tail-recursion elimination that is ex-
ploited for right-linear programs in Naughton et al. [1989a; 1989b]. We use
this observation about top-down evaluation to motivate a bottom-up for-
malization of tail-recursion elimination. This formalization improves on
top-down evaluation in that it remains efficient even when top-down
evaluation does not terminate.
The main idea is to introduce a new relation query. query(S, A) will hold

if S is a required subquery, and A is where the resulting answers should be
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placed. So for example, query( p(X), p(X)) means “pose the query p(X) and
store the answers in p” while query( p(X), q(X)) means “pose the query
p(X) and store the answers in q.” By rewriting the rules using the query
relation, we will be able to avoid unnecessarily storing answers to interme-
diate subqueries. For Example 1.1, we may derive a tuple query( p(100, Z),
p(1, Z)) during the evaluation of the rewritten program. This tuple ensures
that answers to the subquery ?-p(100, Z) are not explicitly materialized,
but are instead passed directly as answers to the original query ?-p(1, Z).
Our rewriting augments magic-templates with a mechanism based on the

query relation, to take advantage of tail recursion. We define the class of
“nonrepeating” programs and show that for nonrepeating programs the
augmented version of magic templates does no worse than ordinary magic
templates, while it often does much better. We define a sufficient syntactic
condition for nonrepetition, which we call “weak right linearity.” The class
of weakly right linear programs properly includes the class of right-linear
programs. Where there is no tail recursion to eliminate, our rewriting
reduces to the standard magic-templates rewriting. Thus we are able to
evaluate the tail recursive portion of a program using the more efficient
technique, while using magic templates for the remainder of the program.

2. PRELIMINARIES

Informally, a program is a set of rules defining one or more views. We
consider normal programs with function symbols [Lloyd 1987] as presented
formally below.

Definition 2.1. A term is defined inductively as follows:

—A variable or a constant symbol is a term.
—If f is an n-ary function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn)
is a term.

If p is an n-ary predicate symbol and t1, . . . , tn are terms then p(t1, . . . , tn)
is an atom. A literal is either an atom or a negated atom. When we write an
atom p(XW ) it is understood that XW is a vector of terms, not necessarily
variables.

Definition 2.2. A normal rule is a sentence of the form

A4 L1, . . . , Ln

where A is an atom, and L1, . . . , Ln are literals. We refer to A as the head
of the rule and L1, . . . , Ln as the body of the rule. Each Li is a subgoal of
the rule. All variables are assumed to be universally quantified at the front
of the clause, and the commas in the body denote conjunction. If the body of
a rule is empty, then we may refer to the rule as a fact, and omit the “4”
symbol.
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A normal program is a finite set of normal rules. A Horn rule is one with
no negative subgoals, and a Horn program is one with only Horn rules. A
Datalog program is a function-free Horn program.
Logical variables begin with a capital letter; constants, functions, and

predicates begin with a lowercase letter. The word ground is used as a
synonym for “variable-free.”
If a predicate is defined only by facts, then we say that the predicate is

an extensional database (EDB) predicate; otherwise the predicate is an
intensional database (IDB) predicate.
We consider only Horn programs in this paper. The techniques developed

in this paper could be extended to programs with negation by combining
with the techniques of Kemp et al. [1992], Morishita [1993], Ramakrishnan
et al. [1992], and Ross [1994].

It will be convenient in our exposition to use HiLog notation for some
meta-predicates [Chen et al. 1989]. HiLog allows one to have atoms as
terms in other atoms. For example, we might write magic( h(X)) where h is
a predicate symbol rather than a function symbol. The use of HiLog in the
present context is not essential. We could rewrite magic(h(X)) as m h(X), and
rewrite magic(A) in terms of several cases for A having various predicate
names. However, HiLog enables a more concise and clear presentation.

2.1 SLD Resolution

We present a definition of SLD-resolution from Lloyd [1987], specialized to
use a left-to-right “computation rule.”

Definition 2.3. A goal is a (negated) conjunction of atoms, written
4 A1, . . . , An.

Definition 2.4 (SLD-tree). Let P be a program and G a goal. The
SLD-tree for G with respect to P is defined as follows:

—Each node of the tree is a (possibly empty) goal, together with a
computed substitution.

—The root node is G, with empty computed substitution.
—Let G9 5 4A1, . . . , An (n $ 1) be a node in the tree. Then, G9 has a
child for each rule r such that the head of r and A1 are unifiable. Let
H 4 B1, . . . , Bm be a variant of r using new variables. The child node
G0 is

4 ~B1, . . . , Bm, A2, . . . , An!u

where u is the most general unifier of A1 and H. The computed substitu-
tion at G0 is fu where f is the computed substitution at G9. We say that
each Biu in G0 is a rule-child of A1 in G9. For i . 1, if Ci in Gi has
rule-child Ai in G9, then Aiu in G0 is also a rule-child of Ci in Gi.

—Empty nodes have no descendants.
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We shall assume without loss of generality that the most general unifiers
chosen are idempotent. We say C in GC is a rule-ancestor of D in GD if
there is a sequence C0, . . . , Ck of atoms, and a sequence of goals G0, . . . ,
Gk such that C0 5 C, G0 5 GC, Ck 5 D, Gk 5 GD, and for i 5 1, . . . , k,
Ci21 in Gi21 is a rule-child of Ci in Gi. Similarly, we can define rule-
descendant.
A subrefutation for the leftmost atom A in a goal G9 is a shortest

(downward) path in the SLD-tree from G9 to a descendant G0 of G9 that
contains no rule-descendants of A. We associate with the subrefutation the
computed substitution at G0.
SLD-resolution is the process of finding the computed substitutions at all

empty nodes of an SLD-tree.

Note the difference between ancestors in the SLD-tree (a relationship
between goals) and rule-ancestors (a relationship between atoms in goals).
SLD-resolution is an example of a top-down query-processing strategy,

also sometimes referred to as backward chaining. One starts with the goal
to be proved, and repeatedly substitutes the body of a rule for an instance
of the head in the goal to be proved. The query succeeds when all the
literals in the goal have been proved, i.e., when the resulting goal is empty.

2.2 Magic Templates

An alternative to a top-down query processing strategy is a bottom-up
strategy, also sometimes referred to as forward chaining. One starts with
all the information one has, and uses the rules to generate new informa-
tion. When all of the subgoals of a rule are satisfied, an appropriate
instance of the head predicate is inferred. The new information can then be
used on the next iteration to generate more information, and so on. The
bottom-up evaluation process in which a rule is fired only for instances of
the body in which at least one subgoal was newly derived on the previous
iteration is called “semi-naive evaluation.”
There are a number of reasons why one might prefer a bottom-up

strategy to a top-down strategy, and the reader is referred to Ullman
[1989b] for a discussion of this issue. However, a bottom-up evaluation of
the original rules is likely to be inefficient because it does not take the
query into account. A bottom up evaluation of the original program will
materialize all predicates defined in the rules, while a query may need to
access only a small fraction of the database in order to be answered.
Top-down methods use the information in the query by passing variable
bindings from the query into intermediate goals.
In order to restrict the bottom-up evaluation of a set of rules, one first

rewrites the rules so that they take the query into account. In the
rewritten program, only rules that are relevant to the query are ever fired.
One rewriting technique developed for this purpose is the “magic tem-
plates” rewriting of Ramakrishnan [1991]. We now review the magic
templates rewriting.
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In our presentation, we shall assume that subgoals are evaluated from
left to right. In the terminology of Ramakrishnan [1991], we use a “full
sideways information passing strategy” with a left-to-right order of sub-
goals.
While the original magic templates transformation introduces a new

predicate m p for each predicate p, we shall use the notation magic( p(XW ))
rather than m p(XW ). Essentially, we view magic as a meta-predicate, as in
HiLog.

Definition 2.4 (Magic templates). For each rule

h~XW !4 p1~XW 1!, . . . , pn~XW n!

defining an IDB predicate h in the original program, we generate some
rewritten rules.

(1) For each IDB predicate pi in the body we generate the rule

magic~pi~XW i!!4magic~h~XW !!, p1~XW 1!, . . . , pi21~XW i21!.

(2) We also generate the rule

h~XW !4magic~h~XW !!, p1~XW 1!, . . . , pn~XW n!.

Note that EDB predicates are not affected by the rewriting. Finally, if the
query is ?-q(YW ), then we add the fact

magic~q~YW !!

as a “seed fact.”

Example 2.5. Let P be

p~X, Z!4 e~X, Y!, p~Y, Z!

p~n, X!4 t~X!,

where e and t are EDB predicates. This program is a slightly more general
version of the program from Example 1.1. Suppose our query is ?-p(1, Z).
Then the rewritten program would be

magic~p~Y, Z!!4magic~p~X, Z!!, e~X, Y!

p~X, Z!4magic~p~X, Z!!, e~X, Y!, p~Y, Z!

p~n, X!4magic~p~n, X!!, t~X!

magic~p~1, Z!!
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We now consider the performance of the rewritten rules on two sample
databases. In both cases, suppose that the t relation is given by {t(1),
t(2), . . . , t(m)}.

(a) Suppose the e relation is given by {e(1, n), e(2, n), . . . , e(n, n)}.
Evaluating the rewritten rules gives us Q(m) tuples for p, namely
p(1, j) and p(n, j) for 1 # j # m. In addition, we have a constant
number of magic tuples. (Evaluating the original rules bottom-up would
give us Q(nm) tuples for p, namely p(i, j) for 1 # i # n, 1 # j # m.)

(b) Suppose the e relation is given by {e(1, 2), e(2, 3), . . . , e(n 2 1, n)}.
Evaluating the rewritten rules gives us Q(nm) tuples for p, namely p(i,
j) for 1 # i # n, 1 # j # m. In addition, Q(n) magic tuples will be
generated. (As we shall see in Section 4, we can improve on this
complexity for programs like the one above by using a rewriting
strategy incorporating tail recursion elimination.)

One point to note about the magic templates rewriting is that it gener-
ates nonground tuples. For example, the fact magic( p(1, Z)) contains a
variable Z. Nonground tuples can make bottom-up evaluation of rules more
costly because, in general, one needs to perform unification of atoms rather
than matching. In some cases one can eliminate the nonground tuples. In
the example above, one could replace magic( p(Y, Z)) by magic( p9(Y))
throughout, where p9 is a new unary predicate, without changing the
essential behavior of the program.
In other cases, the nonground tuples are essential. An example is a

program containing a fact p(X, X) that states that p is true if its two
arguments are equal.

2.3 Tail Recursion

Consider the following C code fragment for a recursive binary-search
procedure, based on one from Sethi [1989]:

int search(int lo, int hi, int val) {
int k;
if (lo . hi) return 0;
k 5 (lo 1 hi)/2;
if (val 55 List[k]) return 1;
else if (val , List[k]) return search(lo,k21,val);
else if (val . List[k]) return search(k11,hi,val);

}

This procedure searches for the value val in the global array List, whose
elements are in increasing order.
The procedure search is tail recursive because every recursive call must

be the last statement executed in the procedure. A compiler that notices
that a procedure is tail recursive can optimize this code by converting the
recursive call into iterative code. The optimized code for the procedure
above might look like this:
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int search(int lo, int hi, int val) {
int k;

L: if (lo . hi) return 0;
k 5 (lo 1 hi)/2;
if (val 55 List[k]) return 1;
else if (val , List[k]) hi5k21;
else if (val . List[k]) lo5k11;
goto L;

}

The main reason why the iterative code performs better than the recur-
sive code is that new activation records do not have to be stored on the
stack for each recursive call. In the iterative code, control returns to the
initial call as soon as an element is either found or known to be absent from
the array. In the recursive code, once an element is found (or found to be
absent) control passes one level up to the calling activation of search,
returning a Boolean value. Control then passes level by level up the
activation stack until the initial call is reached. At each level, the interme-
diate result indicating whether the recursive call returned 1 or 0 has to be
stored.
In this article, we address an analogous form of tail recursion in

recursive database rules. In our context, the intermediate results (corre-
sponding to the Boolean values in the program above) are not just simple
variables, but whole relations. Hence, it is particularly important that
these recursive calls be optimized so that such relations are not stored or
copied more often than necessary.

3. TOP-DOWN CAN BEAT BOTTOM-UP

You may be startled by the title of this section, especially if you have seen
the paper “Bottom-up Beats Top-down for DATALOG” [Ullman 1989a].
However, there is no inconsistency here: the model of top-down computa-
tion in Ullman [1989a] represents intermediate answers, whereas the one
used in this section does not.
There are cases where a top-down method like SLD-resolution can “beat”

bottom-up with magic sets (with or without duplicate elimination) for the
following reason: Top down returns the binding relation at the leaves of
derivation trees directly, while magic sets computes all the intermediate
relations. Consider the following example.

Example 3.1. Let P be the program of Example 2.1(b), that is,

p~X, Z!4 e~X, Y!, p~Y, Z!

p~n, X!4 t~X!
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e~1, 2!

···
e~n 2 1, n!

t~1!

···
t~m!

SLD-resolution would construct the following derivation tree for the query
?-p(1, X):

p~1, X!

u
e~1, Y!, p~Y, X!

u
p~2, X!

u
···
u

p~n, X!

u

}
t~X!

{u

$X 5 1% · · · $X 5 m%

SLD-resolution effectively uses tail-recursion elimination by returning the
answers, that is, bindings for X, directly from the leaves of the SLD-tree.
Without this kind of tail-recursion elimination, the answers would be
percolated up the tree through the intermediate nodes until the original
query was reached, as in the top-down method of Ullman [1989a].
To find all the answers, the amount of work done by SLD-resolution is

Q(m 1 n). As we have seen, the magic templates method would compute
all the intermediate relations p(i, X) for i 5 2, . . . n, each of which is size
m. Magic templates computes Q(mn) tuples, and is inferior to SLD-
resolution on this example.

The complexity of the top-down evaluation in the above example is
dependent both upon the query and upon the e relation.

Example 3.2. Consider the program from Example 3.1.
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(a) If the query was ?-p(X, Y) rather than ?-p(1, X), then the SLD-tree
would have size Q(mn 1 n2) while magic sets would have time
complexity Q(mn).

(b) If we added the n 2 2 extra tuples

e~1, 3!, e~2, 4!, . . . , e~n 2 2, n!

to the program above, then the SLD-tree for the original query ?-p(1, X)
would still be finite, but will have mFn leaves1, and hence be of size
exponential in n. By contrast, magic sets (with duplicate elimination)
would still take Q(mn) space and time.

(c) If we added the tuple e(n, 1), we would create a cycle in the e relation.
SLD-resolution would not terminate, while magic sets would still take
Q(mn) space and time.

Items (b) and (c) from Example 3.2 suggest that SLD-resolution has very
limited applicability. However, we will be able to formalize the tail-
recursion optimization suggested in Example 3.1 within a bottom-up frame-
work in such a way that duplicate elimination will eliminate these draw-
backs.
By integrating tail-recursion optimization with magic templates, we shall

obtain the additional benefits of tail-recursion elimination when tail-
recursion elimination is beneficial, while retaining the more general bene-
fits of magic templates.

4. BOTTOM-UP EVALUATION

We describe in this section a method to incorporate the tail-recursive
aspect of SLD-resolution in a bottom-up framework to take advantage of
the tail recursion present in the program. This transformation will allow
the tail recursive evaluation of a portion of the program while the remain-
der of the program is evaluated according to standard magic template
techniques. Bry’s translation of SLD-resolution [Bry 1989] explicitly repre-
sents the intermediate tuples, and hence does not take advantage of this
potential optimization.

4.1 The Tail-Recursive Rewriting

The first step of the rewriting is to decide which predicates are to be
evaluated tail-recursively. In Example 3.1, we would choose p, for example.
We label the chosen predicates as “right-recursive.” Note that it is not
necessary that every occurrence of a right-recursive predicate be rightmost
in its rule. However, only those occurrences that are rightmost will have
the tail-recursion optimization applied. Thus, “right-recursive” refers to a
predicate that will be evaluated tail-recursively when it appears rightmost
in a rule. We shall say that a particular atom is “right-recursive” if it has a

1Here, Fn is the nth Fibonacci number, which for large n is well approximated by afn where
f ' 1.618 and a ' 0.447.
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right-recursive predicate, and “tail recursive” if it is both right-recursive
and rightmost in its rule.
Predicates that are not labeled as right-recursive will be evaluated

essentially as before, using magic templates.
The right-recursive predicates will not have corresponding magic tuples.

Instead, they shall have corresponding tuples in a binary relation we call
query. The tuple query(P, A) will mean that we are trying to solve the atom
P, and that any answer substitutions found should generate an answer
tuple for A, but not necessarily for P. (As with magic, we view query as a
HiLog meta-predicate.) Recall that we allow non-ground tuples, so we could
have tuples like query( p(a, X, Y), q(X)).
The query tuples are the key to the transformation. If one thinks in terms

of an SLD-tree, each tuple query(S, A) records a direct link from a subgoal
S to a rule-ancestor A of that subgoal. Answers for S and for all interme-
diate nodes between S and A are not explicitly stored. Solutions to the
subgoal S are passed as answers directly to A.

Definition 4.1 (Magic templates with right-recursion). For each rule

h~XW !4 p1~XW 1!, . . . , pn~XW n!

defining an IDB predicate h in the original program, we generate some
rewritten rules.

(1) For each IDB predicate pi in the body, if pi is right-recursive then we
have two cases:
(a) If pi is rightmost in the rule body (i.e., i 5 n), and h is also

right-recursive, then we generate the rewritten rule

query~pi~XW i!, A!4 query~h~XW !, A!, p1~XW 1!, . . . , pi21~XW i21! .

(b) Otherwise, we generate the rule

query~pi~XW i!, pi~XW i!!4 query~h~XW !, A!, p1~XW 1!, . . . , pi21~XW i21!

if h is right-recursive, or the following rule if h is not:

query~pi~XW i!, pi~XW i!!4magic~h~XW !!, p1~XW 1!, . . . , pi21~XW i21!.

If pi is not right-recursive, then we generate the rule

magic~pi~XW i!!4 query~h~XW !, A!, p1~XW 1!, . . . , pi21~XW i21!.

if h is right-recursive, or the following standard magic templates rule if
h is not:

magic~pi~XW i!!4magic~h~XW !!, p1~XW 1!, . . . , pi21~XW i21!.

220 • Kenneth A. Ross

ACM Transactions on Database Systems, Vol. 21, No. 2, June 1996.



(2) If h is right-recursive then we have two cases:
(a) If the rightmost subgoal of the rule is not right-recursive, then

generate the rule

A4 query~h~XW !, A!, p1~XW 1!, . . . , pn~XW n!.

(b) If the rightmost subgoal is right-recursive, then no rewritten rule is
generated.

If h is not right-recursive, then generate the standard magic templates
rule

h~XW !4magic~h~XW !!, p1~XW 1!, . . . , pn~XW n!.

Finally, if the query is q(YW ), then we add the fact

magic~q~YW !!

as a seed fact if q is not right-recursive, or

query~q~YW !, q~YW !!

if q is right-recursive.

For rules that do not contain right-recursive predicates, the rewriting
above gives the same results as the standard magic templates rewriting of
Section 2.2.
We call the transformation above “magic templates with right-recursion.”

We denote the result of applying the rewriting to a program P by MTRR(P).
Let us see how our rewriting handles the program of Example 3.1.

Example 4.2. We label p as right-recursive. The rewritten version of P
from Example 3.1 for the query ?-p(1, Z) is

query~p~Y, Z!, A!4 query~p~X, Z!, A!, e~X, Y!

A4 query~p~n, X!, A!, t~X!

query~p~1, Z!, p~1, Z!!.

Given the EDB of Example 3.1, the tuples generated are, in order

$query~p~1, Z!, p~1, Z!!%

$query~p~2, Z!, p~1, Z!!%

$query~p~3, Z!, p~1, Z!!%

···
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$query~p~n, Z!, p~1, Z!!%

$ p~1, 1!, p~1, 2!, . . . , p~1, m!%.

Thus, we have reduced the cost of semi-naive bottom-up evaluation to
Q(n 1 m) time and space.
Consider also how the rewritten program performs for the modified query

and for the modified e relation of Example 3.2. If the query is p(X, Y) as in
part (a), then the complexity is Q(mn 1 n2) as for SLD-resolution, since
there will be Q(n2) tuples of the form query( p(i, Y), p( j, Y)) generated,
for 1 # j , i # n. This may be worse than ordinary magic sets, which have
time and space complexity Q(mn).
On the other hand, if we ask the original query once the additional e

tuples are added as in part (b), then as long as duplicate elimination is
applied, the complexity is still Q(m 1 n), and not exponential in n like
SLD-resolution. In fact, we still get Q(m 1 n) complexity when the e
relation has cycles (and has size Q(n)) as in part (c).

4.2 Supplementary Predicates

In Example 2.6, one can observe that the conjunction magic(p(X, Z)), e(X, Y)
appears in more than one rule. Hence, it may be preferable to compute this
join once, and refer to the computed result in each of these rules.
A technique for systematically performing such common-subexpression

elimination has been proposed in Beeri and Ramakrishnan [1991] and
extended in Sacca and Zaniolo [1987]. The basic idea is to create new
relations called “supplementary relations” that hold the result of the
conjunction of an initial sequence of the subgoals in the body of a rule.
The supplementary relation technique is easily applied to magic tem-

plates, and can also be extended to our rewriting that includes tail-
recursion elimination:
Firstly, the arguments of the supplementary predicates for rules with

head predicates that are right-recursive will have an extra argument A
corresponding to the answer tuple to be generated. Also, for these rules we
can omit from the supplementary relations variables in the head that do
not appear further to the right in the rule body. Finally, we do not have to
generate a supplementary relation for the conjunction of subgoals to the
left of the rightmost subgoal if both the head and rightmost subgoal are
right-recursive. The tail-recursive evaluation will mean that we won’t
directly generate tuples for the head predicate, and so the conjunction of all
subgoals but the rightmost will be used once rather than twice.
For a version of our transformation that incorporates supplementary

predicates, see Ross [1991].

4.3 Nonrecursive Predicates

While our terminology describes predicates as “right-recursive,” it is not
necessary that such predicates actually be recursive. The optimization
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described above can still provide significant benefits for nonrecursive
programs. For example, consider the program

p~X!4 q~X!

q~X!4 r~X!

q~X!4 s~X!

in which neither r nor s is recursive in p or q. For a query p(Y), we can
save representing the answer set twice (as p and as q) by labeling p and q
as right-recursive and applying our transformation. We get the same
benefit as unfolding the definition of p in terms of r and s (but not q), as
discussed in Section 1.

5. CORRECTNESS

We shall show that our method is correct by comparison with SLD-
resolution. In the case in which there are no right-recursive predicates, our
result implies the correctness of magic templates, as shown previously in
Ramakrishnan [1991].
We assume that a subset of the IDB predicates of the program have been

labeled as “right-recursive.” We make use of the concept of a “right ancestor.”

Definition 5.1 (Right ancestor). Let a be a selected (i.e., leftmost) atom
in a node N of the SLD-tree for an atomic query q. We associate with a a
right ancestor that is either a itself, or a rule-ancestor of a in N.

—If a is right-recursive, and if a was introduced into a goal by resolving
the rule r with a goal node G having selected atom h that is right-
recursive, and this occurrence of a is rightmost in r, then the right
ancestor of a is the right ancestor of h in G.

—Otherwise, the right ancestor of a is a.

To simplify the proof below, we shall rewrite the magic predicates as
query predicates, substituting query(P, P) for every occurrence of
magic(P) in the head and body of each rule. Again, this does not change
the values of any of the other tuples since query previously held (and is
referenced) only with arguments that have right-recursive predicates. (For
rule evaluation, one would prefer the original magic relation since it
occupies less space.)
Once MTRR(P) has had its magic atoms replaced, we denote the result

by MTRR9(P).

THEOREM 5.2. Let P be a program and let a labeling of right-recursive
predicates be given. Let ?-Q be a query, where Q is an IDB atom. Then the
following correspondence holds between the SLD tree with root4 Q, and the
bottom-up evaluation of MTRR9(P) for the query Q. Let L, M, and N be IDB
atoms.
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SLD-tree Evaluation of MTRR9(P)

(a) There is a goal G with leftmost atom L, computed
substitution u, the right ancestor of L is M, and
N 5 Mu.

query(L, N) is inferred.

(b) There is a goal G with leftmost atom L, a
subrefutation for L with computed substitution u,
the right ancestor of L is L itself, and N 5 Lu.

N is inferred.

PROOF. See Appendix A. e

COROLLARY 5.3 (Correctness). Let P be a Horn program with right-
recursive predicates, and let P9 be MTRR(P) for the atomic query Q. Then
the bottom-up evaluation of P9 correctly answers the query Q with respect to
the least Herbrand model of P.

PROOF. By Theorem 5.2, the soundness and completeness of SLD-resolu-
tion [Apt and Van Emden 1982; Clark 1979; Hill 1974; Lloyd 1987], with
respect to the least Herbrand model, and since MTRR(P) and MTRR9(P)
are equivalent for all EDB and IDB predicates from P. e

Note that our correctness result does not state that the bottom-up
evaluation of MTRR(P) terminates. In general, with recursively applied
function symbols, termination is not guaranteed in either SLD-resolution
or in the corresponding bottom-up evaluation. However, every correct
answer to the query will eventually be generated by the evaluation of
MTRR(P). In the case of function-free programs, the evaluation of
MTRR(P) is guaranteed to terminate.

6. NONREPETITION

While our transformation may sometimes do worse than magic templates,
we can show that it does no worse for the class of nonrepeating programs.

Definition 6.1 (Nonrepetition). Let P be a program, Q a query, and T
the SLD-tree for Q with respect to P. We say P is nonrepeating with respect
to Q if for every pair of leftmost IDB atoms a and a9 in nodes N and N9 of
T, the following condition holds: If u and u9 are the computed answer
substitutions at N and N9 respectively, and h and h9 are their respective
right ancestors, and if a is an instance of a9, then the pair (a, hu ) is an
instance of (a9, h9u9).
The program of Example 3.1 is nonrepeating for the query ?-p(1, X), as

are its modified versions in Example 3.2 parts (b) and (c). (Note that the
SLD-tree for Q with respect to P need not be finite in order for P to
be nonrepeating with respect to Q.) On the other hand, for the query
?-p(X, Y) as in Example 3.1 part (a), the program is not nonrepeating.
In Section 6.3, we shall show that the modified magic templates method

does no worse (and often much better) than ordinary magic templates for
nonrepeating programs.
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6.1 Right Linearity

So far, the examples where savings over magic sets are achieved have been
right-linear programs, so that right-linear optimization [Naughton et al.
1989a; 1989b; Ullman 1989b] could have been applied.

Definition 6.2. An adornment for an occurrence of a predicate p is a
string of “b” and “f” symbols, one for each argument of p, indicating
whether the corresponding argument is called bound or free, respectively.
An argument is bound if all variables in the argument are bound; other-
wise, the argument is free.
Given an adornment for the predicate in the head of a rule, the induced

adornment on a predicate occurrence p in the body of a rule is the
adornment in which all variables in bound arguments of the head and in
subgoals to the left of p are bound, and all other variables are free.

Definition 6.3 (Right linearity). Let P be a program in which there is a
single IDB predicate p, which is labeled as right-recursive. Let a be an
adornment for p. Then P is right-linear with respect to a if

(1) All rules have at most one occurrence of p in the body.
(2) If the head adornment is a, and the recursive rules have their subgoals

ordered so that the p subgoal is rightmost, then the induced adornment
for the p subgoal is a.

(3) For each recursive rule, each argument of p that is free according to a
is the same variable in both the head and the recursive subgoal, and
each of these variables appears only in these two positions.

When rightmost subgoals of right-recursive predicates satisfy the condi-
tion of right-linearity, our transformation is essentially the same as one
developed by Y. Sagiv (personal communication) for this special case. The
idea of “carrying around” a pointer from a subquery to the “top query” was
introduced in a simpler form in Kemp et al. [1990] and (independently) in
Mumick and Pirahesh [1991] for right-linear programs with multiple
bindings. It is noted in Ullman [1989b] that Prolog effectively applies
tail-recursion optimization for right-linear programs.

6.2 Examples

We shall demonstrate below some examples of nonrepeating programs that
are not right linear, for which tail-recursion elimination produces a signif-
icant speedup.

Example 6.4. Consider the program

p~X, Z1, Z2!4 e~X, Y!, p~Y, Z2, Z1!

p~n, Z1, Z2!4 t~Z1!, q~Z2!.
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This program is not right-linear, since the variables Z1 and Z2 are
interchanged in the p subgoals in the first rule. It is nonrepeating (for
arbitrary EDB relations e, t, and q) with respect to a query on p with
bound first argument and second and third arguments free.

Example 6.5. The program

p~X, t~Y!, Z!4 e~X, W!, p~W, Y, s~Z!!

p~X, Y, Z!4 f~X, Y, Z!

is nonrepeating (for arbitrary e and f relations) with respect to a query on p
with free third argument and first and second arguments bound. This
program is not right-linear due to the function symbol around Z in the body
of the first rule.

Example 6.6. Let P be

leaf~t~T1, T2!, s~L!!4 leaf~T1, L!

leaf~t~T1, T2!, s~L!!4 leaf~T2, L!

leaf~L, s~L!!4 atomic~L!.

Given a binary tree T0, leaf(T0, s
i(L)) holds for each leaf L of T0 having

depth i.2 Consider the performance of magic templates with right-recursion
for the query ?-leaf(t0, L), where t0 is a complete tree of depth d having
n 5 2d 2 1 nodes and l 5 2d21 leaves. There will be Q(n) query tuples.
While the size of the tuples themselves add up to give an extra factor of d
to the total size, clever management of the tree structure using pointers
can reduce this factor to a constant.3 There will be l leaf answer tuples.
Thus, semi-naive evaluation of MTRR(P) will take Q(n) time and space.
By comparison, magic sets will generate leaf tuples at every level of the

tree, generating a total of ld leaf tuples. Thus magic sets will have time and
space complexity Q(n log n).

Example 6.7. Let the relation subtree encode a binary tree,4 so that
subtree(t0, t1, t2) holds when t1 is the left subtree of t0 and t2 is the right
subtree of t0. (If one subtree is missing, we substitute the constant symbol
null.) We say that a subtree rooted at t is balanced if it has no descendants
with exactly one child. Then, the program

p~R, X!4 subtree~R, R1, R2!, p~R1, Z!, p~R2, X!

p~R, X!4 atomic~R!, values~R, X!

2We assume all leaves are distinct, so that the structure is indeed a tree and not a directed
acyclic graph.
3This same observation about pointers could also be used in the regular magic-templates
construction, and so it does not affect the comparison made here.
4Again, we assume no common subtrees.
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is nonrepeating for a query p(a, X), assuming that atomic holds for all
leaves with respect to subtree, and not for null. p(a, X) succeeds if the
subtree rooted at a is balanced, and has corresponding rightmost values X.
To see how the transformation handles right-recursive predicates ap-

pearing rightmost in places, and not rightmost in others, we shall look at
this example in further detail. The transformed version of this program,
labeling p as right-recursive, and assuming a query ?-p(a, X) is

query~p~R1, Z!, p~R1, Z!!4 query~p~R, X!, A!, subtree~R, R1, R2!

query~p~R2, X!, A!4 query~p~R, X!, A!, subtree~R, R1, R2!, p~R1, Z!

A4 query~p~R, X!, A!, atomic~R!, values~R, X!

query~p~a, X!, p~a, X!!.

Suppose that the subtree relation corresponds to the following tree:

and that for each leaf L, values(L, L) holds. The tuples generated are, in
order

query~p~a, X!, p~a, X!!, query~p~b, X!, p~b, X!!, query~p~d, X!, p~d, X!!,

query~p~h, X!, p~h, X!!, p~h, h!, query~p~i, X!, p~d, X!!,

query~p~l, X!, p~l, X!!, p~l, l !, query~p~m, X!, p~d, X!!, p~d, m!,

query~p~e, X!, p~b, X!!, p~b, e!, query~p~c, X!, p~a, X!!,

query~p~ f, X!, p~ f, X!!, p~ f, f !, query~p~g, X!, p~a, X!!,

query~p~ j, X!, p~ j, X!!, p~ j, j!, query~p~k, X!, p~a, X!!, p~a, k!.
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Intermediate answers for the nodes i, m, e, c, g, and k are not repre-
sented. Graphically, answers are passed via the arrows in the following
diagram:

6.3 Efficiency

The crucial feature of all the examples above for which top-down does
better, is that the rightmost subgoal shares at least one unbound variable
with the head. We can effectively say, “All solutions for the free variables in
the rightmost subgoal are solutions for the head,” without explicitly repre-
senting the solution of the rightmost subgoal.

THEOREM 6.8 (Efficiency). Let P be a program, and let Q be a query on a
predicate from P such that P is nonrepeating with respect to Q. Then
evaluating the program PR 5 MTRR(P), resulting from the magic templates
rewriting with right-recursion for P and Q, performs no more inferences
than the program PT generated by magic templates for P and Q.

PROOF. By Theorem 5.1, query(L, N) holds when there is a goal G with
leftmost atom L, right ancestor M and N 5 Mu, where u is the computed
substitution at G. The magic tuples generated by PT are either magic
tuples generated by PR, or correspond to first arguments of query tuples
generated by PR. The property of nonrepetition guarantees that the extra
argument A in the query tuples does not affect duplicate elimination in PR
compared with PT, and hence the number of tuples generated for these
predicates. Finally, every time a rule from PR of the form

A4 query~h~XW !, A!, p1~XW 1!, . . . , pn~XW n!.

fires, then a corresponding rule of the form

h~XW !4magic~h~XW !!, p1~XW 1!, . . . , pn~XW n!.

from PT also fires. e
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The evaluation of PR may compute significantly fewer tuples, since it
does not represent intermediate answers for right-recursive predicates.
There is, of course, the overhead of having an extra argument in the query
tuples. At worst, this would add a small constant factor to the overall cost.
In Theorem 6.8, we make the assumption that newly generated atoms are

checked against the current information for variance rather than subsump-
tion. There are some subtle effects on relative efficiency that appear when
one uses subsumption checking. For a discussion of this issue, see Codish et
al. [1994] and Sudarshan [1992].
With the extension proposed above, we can do better than “sip-optimal”

[Ramakrishnan 1991]. Informally, a method is sip-optimal if

—it answers all instances of queries, and
—it generates new queries for every predicate in a rule body whose head
matches a query, according to the given “sideways information passing
strategy,” and

—it infers only the answers and queries necessary by the above items.

Modulo the magic tuples, magic templates is sip-optimal [Ramakrishnan
1991]. Modulo the magic and query tuples, our extension is at worst
sip-optimal for nonrepeating programs, by Theorem 6.8. We can do better
in some cases, for example the program of Example 4.2, because not all
intermediate answers need to be represented.

6.4 Weak Right Linearity

We present a syntactically recognizable sufficient condition for a linear
program/query pair to be nonrepeating. We call this condition “weak right
linearity,” since it is satisfied by all right linear programs. The class of
weakly right linear programs is more general than the class of right linear
programs in three ways:

(1) Multiple mutually recursive predicates are permitted.
(2) Function symbols are permitted in terms containing free variables.
(3) Free variables do not have to be in identical positions in both the head

and the right-recursive subgoal.

Definition 6.9 (Weak right linearity). Let P be a range-restricted pro-
gram, and let p1, . . . , pn be predicates that we label right-recursive.
Suppose that at most one such pi appears in each rule body of P, and that
every rule with a right-recursive predicate in the body also has a right-
recursive predicate in the head. Let Q be a query on some pj, with
adornment a j. We say P is weakly right linear with respect to Q if, once the
rules of P have their subgoals reordered so that the right-recursive predi-
cate (if present) is rightmost,

(1) Each pi has a unique induced adornment a i, and
(2) If the rightmost subgoal of a rule is right-recursive then every free

variable in the head of that rule appears in the head with no enclosing
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function symbols, and also appears free (and only free) in the rightmost
subgoal, according to its induced adornment.

That right-linear programs are weakly right-linear is straightforward
from the definitions. The programs of Examples 6.4 and 6.5 are weakly
right linear but not right linear. The program of Example 6.6 is not weakly
right-linear due to the presence of the function symbol s in the head of the
right-recursive rules. Note that Example 6.6 may not be nonrepeating
when the initial “tree” contains repeated subtrees, and is thus a directed
acyclic graph. Since the nonrepetition of Example 6.6 depends upon the
form of the query, it will be impossible to recognize that it is nonrepeating
using a sufficient syntactic condition. A similar observation holds for the
nonlinear program of Example 6.7, where nonrepetition depends upon the
values in an EDB relation.

LEMMA 6.10 Let P be a program, and Q a query. If P is weakly right
linear with respect to Q, then P is nonrepeating with respect to Q.

PROOF. By weak right linearity, all instances of right-recursive predi-
cates will have the same right ancestor, namely the original query, possibly
instantiated in different ways. However, since none of the free arguments
in the head can have been bound (again, by weak right linearity) the right
ancestor will be the uninstantiated query itself, and nonrepetition fol-
lows. e

Our method yields the same asymptotic performance as the right-
linear transformation for right-linear programs, but is more generally
applicable. Unlike the right-linear transformation, our transformation
introduces nonground tuples. As discussed in Section 2.2, nonground
tuples may slow down query evaluation by requiring full unification
rather than matching.

7. CONCLUSIONS

We have discussed the question of tail-recursion optimization, motivated by
the observation that in some cases SLD-resolution can outperform magic
sets by not representing intermediate answers explicitly. We have pre-
sented a modification of magic templates that takes advantage of tail-
recursion elimination. We have demonstrated the correctness of this rewrit-
ing, and have shown that this method does at least as well (and often
better) than magic templates for the class of nonrepeating programs. We
have provided a syntactic sufficient condition for nonrepetition, namely
weak right-linearity. The class of weakly-right-linear programs properly
includes the class of right-linear programs.
As noted by Y. Sagiv (personal communication), the class of left-linear

rules [Naughton et al. 1989b] can be generalized in a symmetric way.
Left-linear optimization and mixed-linear optimization [Naughton et al.
1989b] can then be suitably generalized for programs with rules that
commute and are either weakly right-linear or “weakly left-linear.”
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Appendix A. PROOF OF THEOREM 5.1

In what follows, we assume that the rule variant used in the top-down
computation uses the same variables as the rewritten rules used in the
bottom-up computation. We also assume that top-down and bottom-up
methods compute the same most general unifiers. These assumptions are
not critical, but they simplify the proof by allowing us to ignore variable
renaming.
The proof of the left-to-right correspondence is by induction on the depth

of the SLD-tree. The proof of the right-to-left correspondence is by induc-
tion on the number of iterations of the bottom-up evaluation of MTRR9(P).

(f) The base case is straightforward: At depth 1 the SLD-tree for Q has
one node, namely 4 Q, with leftmost atom Q, the identity computed
substitution and Q itself as right ancestor. In MTRR9(P), query(Q, Q)
holds.
Let us now consider the induction step. Suppose that the implication

from left to right holds for the SLD-tree up to depth n. We show that the
implication also holds at depth n 1 1.
Let G9 be a goal at depth n 1 1 obtained by resolving the goal G of depth

n with a variant of rule r. Let G be 4 D1, . . . , Dk. Let the variant of r
used be

h4 b1, . . . , bm ,

where b1, . . . , bm and h are atoms. Suppose the computed substitution at
G is f, the most general unifier of h and the leftmost atom D1 in G is c.
The computed substitution at G9 is then u 5 fc. Since we used a variant of
r with new variable names, it follows that b1c 5 b1u and hc 5 hu. Let M
be the right ancestor of D1 in G. By the induction hypothesis, query(D1, Mf)
holds. There are two cases:

m $ 1 (In other words, the body of r is nonempty.) We only need to
consider correspondence (a) since no new subrefutations are generated.
Then the leftmost atom in G9 is b1c 5 b1u. The construction of MTRR9(P)
implies that if m . 1, or if m 5 1 and b1 is not right-recursive, then
query(b1, b1)u holds, by the firing of a rewritten rule of the form

query~b1, b1!4 query~h, h!

if h is not right-recursive, or if h is right-recursive then by a rule of the
form

query~b1, b1!4 query~h, A!.

If m 5 1 and b1 is right-recursive, then the right ancestor of b1u in G9 is
M. In this case, we also know that query(b1, M)u holds by the firing of the
rewritten rule of the form

query~b1, A!4 query~h, A!.
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m 5 0 (i.e., the body of r is empty.) We consider correspondence (b) first.
We have a subrefutation for D1 with computed substitution u, and possibly
subrefutations for other ancestors of G9 also with computed substitution u.
We use a second (inner) induction argument to show that for every ancestor
GA of G9 with leftmost atom A that is its own right ancestor, Au holds. The
induction is on the distance from G9 on the chain of ancestors of G9.

Base case. G A 5 G9, that is A 5 D1. If D1 is its own right ancestor, then
query(D1, D1) holds, by the induction hypothesis. Then, the rewritten rule

h4 query~h, h!

fires if h is not right-recursive, or if h is right recursive then the rule

A4 query~h, A!

fires. In either case, D1c 5 D1u holds.
Induction step. Suppose GA is an ancestor of G9 with A appearing

leftmost in GA, that there is a subrefutation of A with computed substitu-
tion u through G9, and that the (inner) induction hypothesis holds for all
descendants of GA on the path to G9. Suppose the right ancestor of A in GA
is A itself. Let GB be the closest descendent of A along the path to G9 such
that B is leftmost in GB, and B is its own right ancestor in GB. Then by the
(inner) induction hypothesis, Bu holds. Consider the goal GC that is
resolved with a rule r9 to generate (a more general instance of) B. Suppose
that the variant of r9 used is

g4 e1, . . . , eq .

Let C be the leftmost atom in GC. Since we have a subrefutation for A,
the subgoal of r9 matching B must be rightmost in r9. The right ancestor of
C must be A, since the right ancestor relationship is idempotent, and since
GB is the closest descendant of A having leftmost atom that is its own right
ancestor. By the (outer) induction hypothesis, query(C, AuC) holds, where
uC is the computed substitution at GC, and is more general than u.
Consider the rewritten rule

A4 query~ g, A!, e1, . . . , eq .

None of e1, . . . , eq21 are rightmost in r9. Hence, the fact that there are
subrefutations for appropriate instances of e1 to eq21 implies that eiu i
holds for i 5 1, . . . , q 2 1 (where u i is defined below), by the (outer)
induction hypothesis. For i 5 1, . . . , q 2 1,

u i 5 u i21c i

for some substitutions c i, and u0 5 uC. Now Bu 5 equ holds, and since the
substitutions on all other atoms in the rule above are more general than u,
it follows that Au is inferred.
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We now look at correspondence (a). Consider the status of G9 5 4
D2c, . . . , Dkc. Let r9 now be the rule variant

g4 e1, . . . , eq

in which (a more general version of) D2 was first introduced. Let H be the
corresponding goal in which (a more general version of) D2 first appears,
and let u0 be the computed substitution at H. Let HD be the parent of H
that is resolved with r9, with leftmost atom D and having computed
substitution uD. By the induction hypothesis, query(D, MuD) holds, where
M is the right ancestor of D in HD. Let e1, . . . , ej be the subgoals to the
left of D2 in r9, so that D2 is an instance of ej11. Then, by G9, there is a
subrefutation for each ei with computed substitution u i such that for i 5
1, . . . , j,

u i 5 u i21c i

for some substitutions c i, and u j is more general than u. Since none of the
subgoals ei in r9 to the left of D2 is rightmost in r9, each ei is its own right
ancestor and query(ei, ei)u i21 holds for i 5 1, . . . , j by the induction
hypothesis.
By the induction hypothesis we have subrefutations of depth at most n for
each eiu i21 for i51, . . . , j 2 1 with computed answer substitutions
u i21c i, and hence eiu i holds. The subrefutation of ej is at depth n 1 1, and
eju holds by correspondence (b) discussed above. Consider the rewritten
rule

Q14 Q2, e1, . . . , ej ,

where Q1 and Q2 are as follows. Q1 is query(ej11, A), if ej11 and g are both
right-recursive and ej11 is rightmost in r9; otherwise, Q1 is query(ej11,
ej11). If g is right-recursive, then Q2 is query( g, A); otherwise, Q2 is
query( g, g).
This rule fires with Q2 unifying with query(D, MuD) to give Q1u. If ej11

and g are both right-recursive and ej11 is rightmost in r9, then M is the
right ancestor of D2 in G9 and query(ej11, A)u 5 query(D2, Mu ) is
generated. Otherwise, D2 is its own right ancestor in G9 and query(ej11,
ej11)u 5 query(D2, D2) is generated.
(d) The base case is also straightforward: After the first iteration of

MTRR9(P) only query(Q, Q) holds. The SLD-tree for Q has root 4 Q, with
leftmost atom Q, the identity computed substitution and Q itself as right
ancestor.
Let us now consider the induction step. Suppose that the implication

from right to left holds for iterations up to n. We show that the implication
also holds at iteration n 1 1.
We consider correspondence (a) first. Suppose query(L, N) is inferred at

stage n 1 1. Then there are two cases:
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Case 1. query(L, N) is generated by firing the rewritten rule variant

query~bm, A!4 query~h, A!, b1, . . . , bm21 .

Let r be the rule variant

h4 b1, . . . , bm .

Then L must have a right-recursive predicate, a more general version of
L appears rightmost in r, and h is also right-recursive.

Suppose that the matching tuples used in the body are query(H, B),
e1, . . . , em21 respectively. Let u0 be the most general unifier of query(H,
B) and query(h, A). Let u i be u i21 composed with the most general unifier
of biu i21 and ei, for i 5 1, . . . , m 2 1, and let u 5 um21. Thus, query(L,
N) 5 query(bm, B)u. query(H, B) holds at stage n. Hence, by the induction
hypothesis there is a goal G with leftmost atom H, computed answer
substitution f, the right ancestor of H is C, and B 5 Cf. G can be resolved
with r, using most general unifier c to get a goal G1 5 b1u0, . . . , bmu0, . . .
where u0 5 fc is the computed substitution at G1. By the induction
hypothesis, since e1 holds at stage n, b1u0 has a subrefutation from G9
with computed substitution u1. Consider G2, the node with computed
substitution u1 and leftmost atom b2u1, at which the previous subrefutation
was generated. Again, by the induction hypothesis, there is a subrefutation
for b2u1 with computed substitution u2. We proceed in this way until we
reach a goal node Gm. The computed substitution at Gm is um21 5 u, and
the leftmost atom in Gm is bmu 5 L. The right ancestor of L is C, and N 5
Cu.

Case 2. query(L, N) is generated by firing the rewritten rule variant of the
form

query~bk, bk!4 query~h, A!, b1, . . . , bk21

or of the form

query~bk, bk!4 query~h, h!, b1, . . . , bk21 .

Let r be the rule variant

h4 b1, . . . , bm

from which the rewritten rule was generated, where m $ k. (If h is
right-recursive, then the first form of the rewritten rule would have been
generated; otherwise, the second form would have been generated.) It must
be the case that either L has a predicate that is not right-recursive, or bk is
not rightmost in r, or h is not right-recursive.

Here, (a more general version of) L appears as the kth subgoal of r, and
N 5 L. Suppose that the matching tuples used in the body are query(H,
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B), e1, . . . , em21 respectively. Let u0 be the most general unifier of
query(H, B) and either query(h, A) or query(h, h) (depending on which
form of rewritten rule was used). Let u i be u i21 composed with the most
general unifier of biu i21 and ei, for i 5 1, . . . , k 2 1, and let u 5 uk21.
Thus, query(L, N) 5 query(bk, bk)u. query(H, B) holds at stage n. Hence,
by the induction hypothesis there is a goal G with leftmost atom H,
computed answer substitution f, the right ancestor of H is C, and B 5 Cf.
G can be resolved with r, using most general unifier c to get a goal G1 5
b1 u0, . . . , bmu0, . . . , where u0 5 fc is the computed substitution at G1.
By the induction hypothesis, since e1 holds at stage n, b1u0 has a
subrefutation from G9 with computed substitution u1. Consider G2, the
node with computed substitution u1 with leftmost atom b2u1, at which the
previous subrefutation was generated. Again, by the induction hypothesis,
there is a subrefutation for b2u1 with computed substitution u2. We proceed
in this way until we reach a goal node Gk. The computed substitution at Gk
is uk21 5 u, and the leftmost atom in Gk is bku 5 L. The right ancestor of
L is L itself.

We now consider correspondence (b). Suppose N is inferred at stage n 1 1.
If the predicate of N is not right-recursive, then N must have been

inferred due to the firing of a rewritten rule

h4 query~h, h!, b1, . . . , bm .

Let r be the rule variant

h4 b1, . . . , bm

from which this rewritten rule was generated. Let u be the substitution
generated by the rule firing (as in the proof of correspondence (a) above), so
that hu 5 N. Each of the conjuncts used in the body must have an
appropriate instance that holds at stage n. Using an argument similar to
that used for correspondence (a) above, we can find a goal node Gm11 such
that the following conditions hold: The computed substitution at Gm11 is u,
and the leftmost atom in Gm11 is not from r. The goal node G correspond-
ing to the query tuple used in firing the rewritten rule above has leftmost
atom L, say, that is its own right ancestor in G. Gm11 is a descendent of G
in which all atoms “deriving from” L have been resolved out. Hence there is
a subrefutation for L with computed answer substitution u. Finally, by
tracing the individual substitutions generated as in correspondence (a)
above, we can show that N 5 Lu.
If the predicate of N is right-recursive, then N must have been inferred

due to the firing of a rewritten rule

A4 query~h, A!, b1, . . . , bm .

Let r be the rule variant

h4 b1, . . . , bm
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from which this rewritten rule was generated. Let u be the substitution
generated by the rule firing (as in the proof of correspondence (a) above), so
that Au 5 N. Each of the conjuncts used in the body must have an
appropriate instance that holds at stage n. Using an argument similar to
that used for correspondence (a) above, we can find a goal node Gm11 such
that the following conditions hold: The computed substitution at Gm11 is u,
and the leftmost atom in Gm11 is not from r. The goal node G correspond-
ing to the query tuple used in firing the rewritten rule above has leftmost
atom L, say, with right ancestor C, appearing leftmost in GC. The right
ancestor of C is GC is C itself. Gm11 is a (closest) descendent of GC in
which all rule-descendants of C in G have been resolved out. Hence, there
is a subrefutation for C with computed answer substitution u. Finally, by
tracing the individual substitutions generated as in correspondence (a)
above, we can show that N 5 Cu. e
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