
Storage Use Analysis and its Applications

Manuel Semanol’2 and Marc Feeleyl
{Serrano,Feeley }@ IRO.UMontreal.CA

1 Universit6 de Montr6al C.P. 6128, SUCC. centre-ville, Montr6al Canada H3C 3J7

2 INaIA B.P. 105, Rocquencourt, 78153 Le Chesnay Cedex, France

Abstract

In this paper we present a new program analysis method

which we call Storage Use Analysis. This analysis deduces

how objects are used by the program and allows the opti-

mization of their allocation. This analysis can be applied to

both statically typed languages (e.g. ML) and latently typed

languages (e.g. Scheme). It handles side-effects, higher or-
der functions, separate compilation and does not require CPS

transformation. We show the application of our analysis to
two important optimizations: stack allocation and unbox-
ing. The first optimization replaces some heap allocations by

st aek allocations for user and system data storage (e.g. lists,

vectors, procedures). The second optimization avoids box-
ing some objects. This analysis and associated opt imitations

have been implemented in the Bigloo Scheme/ML compiler.
Experimental results show that for many allocation inten-

sive programs we get a significant speedup. In particular,

numerically intensive programs are almost 20 times faster
because floating point numbers are unboxed and no longer

heap allocated.

1 Introduction

Modern strict functional languages such as Scheme and ML
are still often much less efficient than traditional imperative

languages such as Fortran and C. Few compilers for fict-
ional languages are able to produce executable programs

whose efficiency is close to that of imperative ones [12]. To a
large extent, this inefficiency is due to poor use of memory.

Because read and write operations are much more expen-
sive than arithmetic operations and control operations on

modern computers, memory access is a major performance
issue. Consequently, an efficient system must allocate as few

objects as possible and must choose very carefidly the loca-
tion where the objects are allocated. Let’s discuss these two
points further.

● High allocation rate:

For languages like Scheme and ML polymorphism is

difficult to implement efficiently. With these languages,

functions which accept several kinds of arguments are

legal, such as an “identity” function which accepts
characters, fixrmms and flonums. This feature is hard
to handle efficiently (fixnums and flonums are not gen-
erally of the same size and cmot be stored in the same
kind of hardware registers). The traditional solution is

Permission to make digitablwd copy of part or all of this work for personal
or classroom use is ranted without fee provided that mpies are not made

!/or distributed for pro t or commercial advantage, the txpyright notice, the
title of the ublication and ita date appear, and notice is given that

!)copying is y permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
andlor a fee.

ICFP ’96 !5/96 PA, USA
Q 1996 ACM 0-69791-771 -5/96/0005... $3.50

to “box” values, i.e. use pointers to values in memory

rather that direct values. This uniform representa-

tion [19] is inefficient because it requires memory allo-

cation for all objects. In this paper, we present an al-

gorithm whi+ allows mized representation. With this

framework, values can be directly represented without

requiring indirection. There are two benefits: mem-

ory allocation is less frequent and values are accessed

more efficiently.

Location of allocation:

Some programs make heavy use of objects with dy-

namic extent (nested lifetime). Stack based language

implement ationsl which do not exploit this charac-

teristic will pay a higher cost for allocation than is

required. Instructions are already present in the pro-

gram to allocat e and deallocate activation frames, Ob-

jects with dynamic extent could be allocat ed (and deal-

located) at no cost in the frames. In order to automat-

ically find when objects can be allocated in the stack

we have designed a conservative analysis which deter-

mines if objects have dynamic extent.

The two optimizations presented in this paper (mixed

representation and stack allocation) use the same analysis

but in different ways. Section 2 first develops this analysis

for a small source language and then the language is ex-

tended to obtain a language with data storage, side effects

and modules. The stack allocation decision algorithm is

presented in Section 3 and the mixed representation in Sec-

tion 4. We have implemented these two optimizations in the

Bigloo Scheme/ML compiler, and have measured the gain

in performance on benchmark programs. The experimental

results are present ed in Section 5.

2 Storage Use Analysis (SUA)

In this section, we will present Storage Use Analysis (SUA) by
first describing the analysis for a simple fist-order language

with only fixnum and flonum values and then we will extend

it by adding several data types (higher-order fimct ions, lists
and vectors).

2.1 The input language A

The input language for the first version of our analysis is a

simple language resembling Lisp (functions are second class

citizens and closures do not exist), with only immediate val-

ues (flamm and flonum), and without any data storage. A’s

grammar is shown below:

1Some systems like Sml/NJ [2] allocate activation frames in the
heap.

50

http://crossmark.crossref.org/dialog/?doi=10.1145%2F232629.232635&domain=pdf&date_stamp=1996-06-15

Syntactic categories

v E Varld (Variables identifier)
f E Funld (Functions identifier)
A C Exp (Expressions)
Is E Cnst (Constant values)
HE Prgm (Program)

r’ c Def (Definition)

Concrete syntax

rI ,:= r... r
r ::= (define (~ v . . . v) A)
A ::=

1:
I (labels ((f (v . . . v) A) . ..) A)
I (if AAA)
~ [~~! v A)

. . .
I (+ AA)A)

Note that since fimctions are first-order A is not a ftmc-

tional language. A program is composed of several global

function definitions; local functions are introduced by the

labels special form. The language includes side effects on
variables (the set ! form).

2.2 The first-order SUA

For the sake of simplicity, we will consider the last fi.mction

definition as the entry point of the program (equivalent to

the C main function). So running a A program means calling

the last function defined, with no arguments.

Sw” (II)=
repeat

SUa~PP (11.$m.i~)

until no approximation set changed in this iteration

Sua~PP(f, al, an)=
Vic[l..ra]

let ie=Sua~,t (17i)

w%. (f$cwgi) t Awu (f larst) Um,

if f not yet processed in this iteration
then let dka:,t (f$b~d~)

A, (f$ren) t -&r (ibe.)IJz,

.4Vmr (j$re.)

Sua~4t (atree)=
case atree

[k]:
{7(k)}

[warn:

[

A..,? war)

(if atree street street)]:
Sua:’t (atree),
Sua~~t (street) USua~,t (atreef)
(set ! war vd)]:

let z=Sua~,t (val)
Avmr(war) t Avm,(war) Uc,

0

(labels ((fl (w . . . %) atr-1) . ..) atree)]:
Sua~~t (atree)
(+ al aa)]:
{fixnum, flonum}

(f al . . . an)]:

Sua&(f, al, an)
i

The SUA algorithm shown in algorithm 2.1 computes t ype

information about variables and function results (which will

both be called variables). The result of the analysis is an

“approximation set” for each variable, which indicates the

type of values that can be bound to the variable. Since the

only data types are fixnum and flonum, an approximate ion

set is a subset of the set do = {f ixnum, f lonum}. Note that

because the analysis is conservative an approximation set is

a superset of the true set of types that can be bound to the

variable.
Note that the SUA algorithm requires a-converted pro-

grams. It is written in en intuitive pseudo language which

uses the following not ation:

‘T(k) The type of a constant (f ixnum or f lonum).

II .Jmain The program entry point.

d,,,(v) The approximation set of variable v.

f ~bedrj The body of function ~.

f b,, The it’ formal parameter of fimction f.

f J+.. The artificial variable representing the re-

sult of function f.
The algorithm performs a fix point iteration. Each itera-

tion is a depth first traversal of the entire call graph initiated
by the program’s entry point. The fix point iteration stops

when an iteration does not add any new information. This
process is guaranteed to stop because there is a finite number
of variables, a finite number of possible approximation sets,
and no element is ever removed from a variable’s approxi-

mation set. Let’s study SUA’s behavior with the program:

(define (id .) .)
(define (plus a b) (+ a b))
(define (foo) (plus (id 4) (id 5.0)))

The analysis collects approximation sets for x, a and b

and the result of id, plus and f oo. The traversal of the

call graph starts with the body of foo which leads to a call

of the fimction id with the value 4. We are collecting type

information so this call to id assigns the approximation set
{fixnum} to x. Since id returns x, the approximation set

{f ixnum} is also assigned to the result of id. After process-

ing this first call to id, the analysis examines the second call

(id 5. O). This time, the approximation set for id’s argu-
ment is {f lonum} so the analysis assigns the approximation
set {f ixnum, f lonum} to x. In a given iteration, the depth

first traversal of the call graph will not visit a function’s

body more than once, so id’s body is not processed again
and the approximation set of id’s result is not changed (this

is done in the next iteration). After the second call to id,
the call to plus is processed. Since at this point the approx-

imation set of id’s result is {f ixnum}, the analysis assigns
the approximation set {f ixmuo} to a and b.

During the second iteration, when the analysis processes
the body of id, f lonum is added to the approximation set of
id’s result. This approximation set is propagated to a and
b and the fix point is reached in 3 iterations. SUA concludes

that all variables and function return values of this program
can be a fixnum or a flonum.

Implementation note: The set of variables and firaction re-

mits is finite and known at compile time. This property

is important becauae it allows eficient implementation of

A.=, table using eficient set representations (e.g. using bit-
vector3).

Algorithm 2.1: A first-order analysis

51

2.3 The first-order SUA with modules

We now extend A to support modules. Rather than add

new constructions to the language we will assume that all

global functions are ezported (i.e. that they are visible in

other modules).

From the compiler’s point of view, the fact that a func-

tion is exported means that its actual parameters may be

unknown because it can be invoked outside the current mod-

ule. To handle this we have to introduce a representa-

tive for unknown values. As customary [8] this is noted

“top” (T). Approximation sets are now subsets of Al =

{T, f ixmm, f lonunr}. When a variable’s approximation set

cent ains T, it means that any value may be bound to the

variable. Algorithm 2.2 contains the updated SUA algorithm

It makes use of the new notation:

II $..Pcr~ The set of II’s exported functions.

In this new version of the analysis, the traversal of the call

graph is initiated by all exported functions. The formal pa-

rameters of all exported functions are initially approximated

by {T}. The fhnction dspread. ~ will be useful later on to

spread T into data storage approximations.

Stml(11)=

Vfaue.port
Sua&rt (f)

Sua~=port (~)=

let rb=f’s arity
Vk[l..?’b]

L., (fJwgi) +- A.., (f$.arg,) U{ T},
if f not yet processed in this iteration

then let z=~ua~~t (f $b..iy)

A.., (f$.e.) i- Aw(f$res)Ua,
“4~pread-~ (Awr (t~res))

Stmipp(f, al, an)=

if f is imported
then {T}
else Vie [1 ..n]

let z=tkm~,t (a~)
A... (f lar~{) + Avmr (flargi) u~,

if f not yet processed in this iteration

then let ic=St4a&~t (f$b~dv)
Av.r(f$.es) + A.., (f$m,,)Uz,

A.., (/$...)

‘spread-T (a) = a

Algorithm 2.2: A first-order analysis with modules

2.4 The higher-order SUA with modules

We now extend the analysis to accept as input a higher-order

functional language. Three new constructions are added to

A: make-closure (to create closures), closure-ref (to ac-

cess a closure’s free variables) and cl o sure-call (to invoke

a closure). Here are the modifications to A’s gramman

A ::= . . .

[(mike-closure f w . . .v)

‘function sua~,i is not defined here becsuse it has the same clef.
inition as ~ua~,, (with references to ~ua~,, replaced with ~ua~,,).
This kind of misuse will be used in the remainder of the paper to
avoid redundancy.

I (closure-ref w k)
\ (closure-call A v . . .v)

The usefulness of these constructs rests in the ability to

easily translate Scheme programs into A. The translation of

the following program:

(clef ine

(clef ine
(clef ine

is:

(clef ine

(clef ine
(clef ine
(clef ine

(curry-plus X) (lambda (y) (+ x y)))

(add a b) ((curry-plus a) b))

(main) (add 3.4 5.6))

(curry-plus x) (nrake-closurel f x))

(f p y) (+ (dosure-ref p O) y))
(add a b) (closure-call (curry-plus a) b))

(main) (add 3.4 5.6))

The translation required to map Scheme, ML or other

higher-order functional languages ~o A is the so-called J-

lifting transformation [16].

Sua~~t (atree)=
case utree

[(ilosure-call e al . . . an)]:

u Sua2 .Iocall(f, al, an)

f6~+L(e)
[(make-closure; f VI . ..)]:

let al= S74a~,t (q ~. .

A.1.(i) t msdre-closure(j, al, . . .),
{clO;}

[(closure-ref f k)]:

u clos~-ref(AA (i) , k)

clo~@ua~at(f)
end

Sua2 ,lOcail(e, al, . . .)=
case e

ClOi :

Sua& (closur~mction(A.to (i)), al, . . .)

else:
Sua~ailUre ()

end

Su::pp (j, al, an)=

If n = ~’s arity

then Sua&(f, w, an)
else Sua~ailUre ()

Sua$ailure ()= 0

A s%:::: a)=

Su;:=pmt (closure=mction(A.,. (i))),

a

Algorithm 2.3: A higher-order analysis with modules

Closures introduced bv make-closure are for now the

only data structures of our language. SUA is modified to

compute information about types and data storage by adding

“closure approximations”. A closure approximation is a

tuple cent aining a closure fimction and a closure environ-

ment (a list of approximation sets, one for each free vari-

able). Closure approximations are created by the function

52

—
mske-closure. The fimction associated with closure ap-

proximation a is obtained with closure~unct ion(a) end

clos~-ref(a, i) returns the approximation set associated

with the ith free variable of closure approximation a.

Closure approximations are stored in a closure approxi-

mation table named d.,.. There is a one-to-one correspon-

dence between entries in this table and make-closures in the

program. To add a closure approximation to an approxima-

tion set, clo; is added to the set, where i is the entry’s index

in A.,.. In this version of our algorithm, approximation sets

are subsets of da = {T, f ixn~ f lonum, CIOI, . . ., C1O*},

where k is the number of make-closures in the program.

A new problem arises with functional values. In latently

typed languages closure-call can lead to two possible er-

rors: the object given to closure-call is not a closure or

the number of arguments is incompatible with the fimction

called. We have to deal with these possible errors in the SUA.

For the sake of simplicity we suppose that closure-ref is

always correct. This is reasonable since these constructions
are inserted by the program which is in charge of the J-1ifting

end not by the user. The treatment of errors is straightfor-
ward: errors just produce empty approximation sets. This
means that an error leaves all the approximation sets as they
are. This is sound because at run time, if an error occurs,

the program is interrupted, so errors do not return values.

Our handling of closures has been guided by their special
nature: they are immutable data (since we are using flat

closures, mutable free variables are stored in cells) and they
are always accessed via the closure-ref procedure which

requires a constant index as second argument. It is thus

possible to distinguish the free variables.

Algorithm 2.3 presents the extensions to SUA needed to
accept the higher-order version of A (we assume finction

sua~pp in the algorithm uses the new version of the graph
traversal function, i.e. Sua~,t). The dspread-~ fimction also

requires a slight modification: if a closure can be returned
by an exported function, this closure is also exported as it
can be invoked with unknown actual parameters. The new

A spread- T handles this.

Let’s study SUA on the example of the curried addition

curry-plus. Assuming no exported functions, the itera-

tion process starts by traversing main. The call to add as-
signs the approximation set {f lonum} to a and b. The call

curry-plus in turn assigns the approximation set {f lonum}
to x, and the fimction’s result is assigned the approximation

set {clol } after storing a closure approximation over one

flonum (i.e. make-~oaure(f, {f lonum})) in A.,.(l). The

first argument of the closure-call has the approximation
set {c101 }, so SUA continues by analyzing f‘s body with
the approximation set {C1O1 } for p. The closure-ref thus
returns the approximation set {f lonum}.

2.5 The higher-order SUA with modules and lists

SUA can be easily extended to accept other data types. In

this section, we present how lists are added to the analysis.

Lists (in Lisp and Scheme) differ from closures because they

are mutable data. Lists are built out of pairs. The two fields

of a pair can be distinguished in our approximation scheme

(just like all the free variables of a closure are distinguished).

A ::= . . .
I (cons A A)
I (car A)

[(cdr A)
I (set-cu! AA)

[fset-cdr! A A)

The handling of pairs in the SUA is very similar to clo-

sures. The SUA extended for pairs is shown in Algorithm 2.4

(the cases for cdr and set-cdr ! are left out because of their

obvious symmetry with car and set-car !). d..., is a ta-

ble similar to A.,o but for pair approximations. A pair

approximation is a tuple of two approximation sets (one
for each field of the pair) and is created with the func-

tion c=a. c~r(a) and c~r(a) respectively return the ap-

proximation set associated with the car and cdr field of

pair approximation a to which is added the special approx-

imation obj (as explained in section 4.5, obj denotes the

generic Scheme object type and is needed to prevent un-

boxed pairs). Approximation sets are now subsets of A3 =

{T,f imuuz,flonum, C1OI,..., clo~, consl,..., cons., obj},

where c is the number of cells to cons in the program.

The main change is in the dspread-~ fimction. Even

when closures are exported, the values they hold cannot

be changed because closures are immutable data storage.

Because pairs are mutable they may be altered when ex-

ported (i.e. the fields of the pair can be changed using the

set-car ! and set-cdr ! functions). The new dspread_~

fimction handles this. When pairs are exported, T is added

to the approximation set of each field. Note that a pair is

spread at most once per iteration by dsnread- ~. This is.
necessary to handle cyclic approximations.

Sua~Bt (atree)=
case atree

[(consi a d)]:

+t.on.(i) + C==(h:,t(a), tk:,t(d)),
{COl’lSi}

[(carp)]:

u C=(“Ln.(i))

Consiesua:#t (p)

[(set-cam! p =)]:

let s+=Sua~~, (z)

Vcons~6Suag~t (p)

A..., (i) t C=S(c=(Awn, (i))Uiz’,
c~r(Aeon, (i))),

0
end

‘spread-T (a) =
VcOnsiCa

if cOnsi not already spread in this iteration

then let a’=c~(&,n$ (i)),

let d’=c~r(.4 (i))

“%pread-T (a’) ~
A spread-T (d’),

“4 .O=S(i) + CWS(a’ (J{T}, d’U{T}),
....
a

Algorithm 2.4: A higher-order analysis with modules and

lists

Let’s study SUA on the following Scheme program (the

program is presented in Scheme rather than in A so that it

53

is easier to read):

1: (define 1st (let ((pi (consl 1 o)))
2: (let ((p2 (consz 2 PI)))

p2)))

:: (define (length 1)
5: (if (pair? 1) (+ 1 (length (cdr l))) O))
6: (length lst)

Types used by this program are: f ixnum, pairs (i.e. consl

and consz) and the special obj type (we omit boolean,

needed for the pair? predicate, because it does not ap-

pear in a variable’s approximation set). Here is the state of

the tables at the end of the analysis:

A..,(pi) = {consl}

A...(p2) = {consa}

Av..(lst) = {conaz}

Am,(l) = {f ixnum, consl, conaz, obj}

A....(I) = c~({flxnum}l {flxnuzIl)
A...,(2) = cons({f ixnum}, {cons, })

The invocation of length at line 6 has added consz to 1’s

approximation set. Because of the call to cdr, the recursive

call at line 5 has added c~r(A..., (2)), that is {consl, obj},

in one iteration and {f ixnum, obj} in the next iteration.

2.6 The higher-order SUA with modules, lists and vectors

We conclude this section by adding vectors.

A ::= . . .

[(make-v-t A M
/ (vref A A)
\ (vset! A A A)

Sua~,t (atree)=
case atree

[(mSke-VeCti Zen tiller)]:
Sua~~t (len),

A..., (i) + maii=ect(t%ta~.t (filler)),
{VeCti}

[(vref u O)]:

Sua~4t (o),

u V=f (“4,.=* (i))

end

A spread-~(a ‘=
VvectiGa

if vect< not already spread in this ite.atic.n

then let r’=v~f(&.t(i))

A spread-T (r’),

A...,(i) + mti~ect(.’U{T}),
....
a

Algorithm 2.5: A higher-order analysis with modules, lists

and vectors

Vectors differ from closures and lists in that they are

mutable and because it is not possible, a priori, to know, at

compile time, which part of a vector is addressed when us-

ing vector accessors. SUA computes information about types

and data storage but it does not discover the exact value of

a fixnum. So for vectors the SUA merges all possible values

cent ained in a vector into a single approximation set (e.g. if

a vector is composed of a character and a fixnum, SUA will

indicate that each entry is a “character or a fixnum”). Algo-

rithm 2.5 presents the modification to our previous analysis

to support vectors.

A...t is a table similar to A..., but for vector approx-

imations. Vector approximations are created by the func-

tion mak~vect and v~f (a) return the approximation set

associated with the vector approximation a. Approxima-

tion sets are now subsets of #14 = {T, f ixnum, f lornq c101,

. . . . clok, canal,... , cons=, vectl, ..., vect”, obj}, where v

is the number of calls to make-vector in the program.

Just like for pairs, vector exportations have to be handled

carefblly. This kind of object is mutable so when exported

vectors can hold any value.

2.7 Related work

The SUA is an extension of Shivers’ Ocfa (Oth order control

flow analysis) [29, 28]. We have generalized his analysis to

different data storage. Shivers’ analysis only handles clo-

sures, our analysis also handles lists and vectors.

In a previous paper [26] we have presented an algorithm

which is close to the present Sual. The goal of that work

was to study the impact of control flow analysis on function

compilation. The analyses presented here are more gen-

eral because closures are only considered as one special data

storage. Efficient closure compilation is not the focus here.

We study the problems of unboxed representation and stack

allocation.

Ayers has studied similar improvements to Shivers’ Ocfa.

In his PhD thesis, he presents extensions for lists, vectors,

etc. Our work has been realized concurrently with his [24, 3].

The large difference between our analyses comes from the

formalism. Ayers uses Galois connection while we chose a

more algorithmic approach.

Jagannathan and Wright describe in [15] a control-flow

analysis and an application which removes type checks. Their

analysis gives more precise type information than ours be-

cause it does not merge types for polymorphic programs.

More precise type information is valuable to remove type

checks but is not more valuable for a rnized representation.

As explained in section 4, we use unboxed representation for

monomorphic program parts which are efficiently detected

by our analysis.

2.8 Extensions

Our input language A, is still much simpler than a full pro-

gramming language such as Scheme or ML. Some important
constructions are missing. We present here how to add them

to SUA.

b Variable arity functions: this construction can be added

to SUA by splitting fictional application in two sepa-

rate cases. Each time a function is applied (in a direct

call or in a closure-call construction), the analysis

handles the last parameter of variable arity functions

specially. In Scheme, this parameter is bound to the

54

list of the optional actual parameters. In SUA, this

means that the approximation set of the last formal

parameter is the approximation set of the list of the

optional actual parameters.

● The Scheme special form apply: this construction is an

alternative way to apply functions. Rather than apply

a function to its n actual parameters, it is applied to

a list of length n which holds the actual values. Since
our analysis is able to distinguish individual elements
of a list, the apply form can be efficiently handled:

each formal parameter is assigned the corresponding
approximation set from the list’s approximation set.

● call/cc: the analysis does not treat call/cc spe-
cially. This library function takes closures as argu-

ments. These closures therefore escape because call/cc
is managed as any imported function. call/cc’s result

is simply approximated by the set {T}.

● Multiple values can be easily added by the addition of

a treatment similar to the one for vectors.

● Scheme and ML global variables: global variables can

be managed using a global environment. A subtle

problem with global variables can arise when the source
language allows references to global variables before

their declaration. For example, the Bigloo Scheme

compiler considers this program as legal:

(module foo (static X))

(clef ine (foo) (print x))
(foo)

(define x 8)

Before its declaration x holds a special value (uninitial-

ized, which stands for the lack of initialization) which
has to be stored in x’s approximation set. This im-

plies that no optimization can be applied to x because
it holds at least two types: the type of the uninitialized

value and the fist value used on the declaration site.

In order to give a unique type to global variables, be-

fore the SUA ansdysis, we perform a simple conservative
analysis to determine the set of variables which are al-
ways defined (then initialized) before being referenced.

This analysis is straightforward, because it consists of

a simple abstract tree traversal. These variables do not
hold the special uninitialized value in their approxima-

tion set.

3 Stack allocation

The storage allocation optimizations discussed here assume

an area of memory managed by a garbage collector and an
area of memory managed as a stack. The stack is scanned by

the collector to find the root pointers. Activation records are
allocated on the stack when entering a procedure and they
are removed from the stack upon procedure exit. Within
a procedure activation the allocation of additional storage

from the stack is permitted; this storage is freed when the
procedure exits.

We present a conservative optimization based on SUA

which automatically replaces heap allocations by stack al-
locations when it is legal to do so. This optimization is
valuable if stack allocations and desdlocations are fast with

respect to heap allocations. For the sake of simplicity we

add a let form to A:

A ::= . . .
I (let ((u A)) A)

This form has no impact on the SUA algorithm (it can be
seen as a macro over fhnction application). For our stack

allocation optimization, we assume that in A source pro-

grams all allocations (the result of make-closure, cons and
make-vect) are bound to local variables using let forms.
Consequently, each allocation has a unique name.

Here are three examples that present interesting situa-
tions for our optimization.

1: (define (foo)

2: (let ((x (consl 1 2)))
(car (id x))))

::

5: (define (id Z) Z)

In this first example, the pair bound to x can be stack allo-

cat ed since it is never used outside of x’s let extent.

1: (define (bar)
2: (let ((x (cons~ 1 2)))

(let ((y (consz 3 x)))

: (cdr y))))

In this second example, the pair allocated at line 2 is live
when bar exits (since it is the result of bar) while the one

at line 3 is dead outside x’s scope. Only the
be stack allocated.

1: (define (hux)
2: (let ((PO (consl 1 2)))

(let ((pi (consz 3 4)))

: (let ((pz (gee PO PI)))
5: po))))
6:
7: (define (gee a b) (set-cclr! a b))

Fh-mlly, in this example, no pairs can be
because they are all live when hux returns.

3.1 When is it legal to stack allocate?

We present in this section the condition an

second pair can

stack allocated

allocation must

satisfy to be done on the stack rather than in the heap. For
now we are not concerned with preserving the tail-recursive
property of the program (at the end of this section we discuss
modifications of our optimization to make it suitable for lan-

guages like Scheme which have to implement tail-recursive

calls without consuming stack space).
An allocation can be done on the stack if the data stor-

age allocated is not live at the end of the procedure that

allocates it. Data storage is live at the end of a function if it

appears (directly or indirectly) in the result of the function
that allocated it or if it appears (directly or indirectly) in a
global variable. Compile time computation of the liveness
property requires information about data storage which is

provided by SUA. This information is: the set of allocations
a variable may be bound to, the set of allocations possibly
contained in an allocation, and the set of allocations possibly
returned by a fi.mction.

3.2 Stack allocation decision algorithm

Each allocation is marked with a stamp. The “current stamp”
is incremented each time a let form is encountered. When

55

a fimction definition for f is reached, the current stamp is

saved in h and then f’s body is processed. Each allocation

in the approximation set of f’s result that is stamped with
a more recent value than h escapes from f and so cannot be

stack allocated. In addition all allocations which are acces-

sible from a global variable cannot be stack allocated.
‘The first part of the algorithm (algorithm 3.1) dispatches

bet ween two function types: exported functions and static

fimctions. These two kinds of fwction differ. For the first
one, no returned (or pointed by) value can be stack allo-

cated (since the function is exported the result value usage
is not known to the compiler). For the second one, only data

storage allocated by the function cannot be stack allocated.

A!: o (O stands for an initial stamp value)

Sta.lsprog (fl)=

Vfa
if f6Wexp0rt

then Stackeaport (f)

else Stack,t~t;. (f)

Stack, tati. ($)=

let h=w?te

Stack (f +bo.+~) ,

sprea~n,~ac~ab~e(A.., (f) , h, *%)

Stacke=po,t (f)=

Stack (f &o@) ,

SPrIXi&natac~ab~e (“&.IIt (f) , ‘1, ‘1)

Stack (atree)=
case atree

(closure-call e al . . . an)]:
Stack (e),

W[l..rl]
Stack (a;)

(set! 7Jar val)]:
Stack (wal)

(labels ((fl . ..) . . . (f~ . ..)) atree)]:
‘Vw[l..n]

Stack~tatiC (fi) ,

Stack(atree)

(let ((mm vai)) atree)]:
%! +- *’M* + 1,

Stack(vat),
Stack(atree)
(f al . . . an)]:
if f is an allocator

then mark! (atree, xl%),

VKII..?3]
Stack(ai)

end

Algorithm 3.1: The “st ackabilit y“ algorithm

OUr stack ~gorithm uses a spread...ekabieie f~ction. This
fimction is similar to A spread- ~. It follows a data storage

chain to mark as “unstackable” all allocations which are
younger (marked as younger) than the value of the second
argument.
The algorithm’s main part is the fimction Stack. It dis-
patches on the abstract syntax tree. Before calling Stackp.~g

all allocations which have been passed as argument to
A spread- ~ have to be marked as wa.stackable. These al-

locations escape from the current module. The compiler is

not able to discover the exact usage of these allocations and

thus, it cannot make any assumption about their lifetime.

Once the algorithm has completed, allocations which have
not been marked as unstackable can be stack allocated (we

will introduce new constraints to safely allocate data storage
in stack in the next section).

wre+nat ~ckable (a, rnin, maz)=
if a not yet processed for the values min and maz

then case a

pairi:
if mark(a) > min and mark(a) < macr

then mark-unstackable! (a),

Va’6c-=(AP.ir (i))

‘Pr~dun.tack.bie (a’, rein, maz),
va’~cdr(dp.i~ (i))

spreadum$ta=bab~e (a’, rein, maz)
VeCti :

...
GIOi :

...
end

Algorithm 3.2: Spreading “unstackabllity”

Let’s study the algorithm’s behavior on our previous bar

function example. The fmction allocates two pairs consl
and consz. SUA proves that y points to consz (which points

to consl) and x points to consl. The consl pair is pointed
to by the result of bar. So, the algorithm concludes that

this pair cannot be stack allocated.

3.3 Extension for proper tail-recursion implementations

and safety considerations

Some languages like Scheme require that executions of an

iterative computation t eke constant space. Let’s consider

the following two functions:

(define (fool x y) (define (foo2 x y)
(if (= y O) (if (= y O)

(display x) (display x)
(fool (cons 1 2) (f002 (cons x x)

(- y l)))) (- y l))))

The two functions differ only in their recursive call. In f 001,
only one allocated pair of the recursive call is live at a time;

in f 002, allocated pairs are linked together and they are all
live at any given point. The common intuitive idea of the
tail-recursive property imposes an implementation to require
only one free pair to run f 001. Our algorithm presented in

algorithm 3.1 provides rough data storage lifetime. It is not
able to distinguish that pairs allocated in f 00 I cannot be
stack allocated while pairs allocated in f 002 can be.

The problem is more general than tail-recursion. As re-
vealed by Chase in [7], there is a general safety problem for
stack allocation optimizers. Sometime, allocating an object
in the stack rather than in the heap cxt ends its lifetime. For
inst ante, in f 00 i, a garbage collector is free to reclaim pre-
vious allocated pairs but if these pairs are stack allocated
they will be all freed at the same time and required space to

run this program is no longer constant. Stack allocation can
convert a running program into one that fails. In his paper,

Chase, presents “safety conditions for stack allocation” in
order to decide the replacement of heap allocations by stack

allocations in presence of loops or recursions. Hk method
and our work are complement ary.

56

3.4 Related work

Kranz presents in [17]
stack allocations. Hk

the strategy used by Orbk to realize
method is less precise than ours. In

Orbit only closures can be stack allocated and only if they

are passed as an argument or applied. These conditions are
very restrictive.

In [9], B. Goldberg and G. Park present a method for op-

timizing the allocation of closures in memory, Their method

is based on what they call an escape analysis, an applic-

tion of abstract interpretation to higher-order functional lan-

guages. Escape analysis determines, at compile time, if any

arguments to a function have a greater lifetime than the
function call itself. The language studied does not contain
side effects and the only data storage used are closures and

lists. Lkt management is very rough because their analysis
is not able to distinguish the elements of a list. Separate

compilation is not studied in that paper.
Ruggieri and Murtagh present in [23] a data storage al-

location framework called sub-heap allocation. This frame-

work consists of partitioning the heap into sub-heaps, one

associated with each active procedure. The contents of the

sub-heap associated with a procedure is exactly the objects

whose lifetime are guaranteed to be contained by the life-

time of the procedure but not by any younger procedure.
The paper presents an algorithm to compute lifetime analy-

sis in order to divide the heap with an input source language
which cent ains no higher-order functions nor side effects.

Ayers also presents sub-heap optimization in [3]. Our
lifetime analysis is similar to his but we do not use it for
the same goal. We decided to stack allocate rather than
sub-heap allocate for two reasons:

● Safety considerations presented by Chase [7] are very

difficult to satisfy with the sub-heap allocation frame-

work because it tends to enlarge object lifetime. Opti-
mized objects are not freed when leaving the function
they have been created but when leaving the function

which is the upper bound of their lifetime.

● Sub-heap allocation is difficult to implement efficiently.

This framework needs allocated memory to hold sev-

eral objects which share a lifetime upper bound. If

all objects are freed at the same time, they are al-

located at different moments. This has two negative
incidence:

o Sub-heap size is difficult to estimate. Sub-heaps

will probably need linking machinery to be ex-
tended which slows down the allocation process.

o Sub-heaps must be allocated empty (i.e. a sub-

heap cannot be filled up at the moment of its

creation). Included in a runtime with automatic
memory management, uninitiahzed blocks of mem-

ory are annoying.

Tofte and Talpin present in [31] a way of implementing A
calculus based languages using regions for memory manage-
ment. At runtime the store consists of a stack of regions. All

values are put into regions with the intended goal to avoid
garbage collection in the runtime system. The allocation of
new regions and the bkdings of values to regions rely on a
typing system and so this technique cannot be applied to
dynamically typed languages.

In [4], Banerjee and Schmidt present a static criterion
to detect stackabllit y of environments for a call-by-value .X
calculus. The presented analysis does not include higher-
order nor imperative features. Thus their approach and ours

are hard to compare.
Other approaches to stack allocation have been proposed

by Hudak in [14].

4 Data representation

Approximations computed by our SUA can be used to remove
some runtime type checks. A type check can be removed

when SUA proves that all the values possibly contained by

the argument of the test is (or is not) of the tested type.
This idea has been presented by Shivers [29, chapter 9] in

his t~pe-recouery. The goal is to speed up program execu-
tion of latently typed languages. In the same way, Henglein

in [13] and Ayers in [3, chapter 6] have presented frameworks
to remove useless tagging/untagging operations. Heinglein

uses type inference while Ayers uses an extended control flow

analysis close to our SUA. The intended goal is more than

compile-time type check reductions. Appel claims “the use
of tag bits leads to inefficiency” [1], Steenkiste and Henessy

evaluate, in [30], at 25~o the cost of type checking and tag-
ging operations for “classical” Lisp applications. We think

this time figure is an upper bound of the real cost. Classical
data flow optimization (such as copy propagation) removes

most type checks and, for smart runtime design, tagging and
untagging operations could require only a logical mask in
the most frequent cases. On modern computers, applying a
mask costs one cycle and these operations are much cheaper

than memory fetches. They have a very small impact on
global performance (for more details see [25]).

We think a much more important source of inefficiency

for language like Scheme or ML come from uniform data
representation. Tag handling is cheap but uniform repre-
sentation is very expensive.

4.1 Uniform representation

Using uniform data representation, all objects have exactly

the same size (usually one word, i.e. pointer size). Objects

that do not fit naturally in one word, such as long floating-
point numbers, have to be boxed (allocated in the heap and

handled through a pointer). This scheme makes it possible
to assume a default size, common to all objects, and default

calling conventions, common to all functions.
Polymorphism leads to the use of the uniform representa-

tion because an object can belong to several different types
at the same time and the actual type cannot be known at
compile-time. Polymorphic fimctions (e.g. the identity fimc-
tion) can be applied to arguments of any type. Therefore,

when compiling these functions, the compiler knows neither
the size of the argument nor the correct calling convention.

4.2 The uniform representation is inefficient

We claim uniform representation results in a serious loss of
efficiency and we present two arguments for this assertion.

Objects that do not fit in one word have to be boxed.
Long floating-point numbers dramatically illustrate this. For
floating-point intensive programs, boxing numbers can slow

down applications by a large factor. This problem has such
an important impact that many ML and Lkp implementa-
tions use ad hoc methods to reduce the creation of number

57

handles (descriptions of these methods for modern imple-
ment ations can be found in [20, 12]). Mainly, they consist

of local optimizations to avoid boxing numbers for interme-
diate results.

Another negative impact of floating-point boxing is reg-
ister allocation. When flonums are allocated in memory,

every floating-point operation, requires a memory fetch for
each operant. These operations are expensive and much less

efficient than a solution where the numbers are held in reg-
ist ers.

Tagging optimization is not boxing optimization in the
sense that it removes tagging/untagging operations but such

optimized programs must still satisfy the polymorphism con-
st raint. The y are still obliged to box numbers (even if no tag

is written on the handle or stored in the allocated memory).
Small objects (i.e. characters) are also inefficiently man-

aged by uniform representations as memory is wasted.

4.3 Mixed representation

Mixed representation is a representation where all objects
are not reauired to be of the same size. It mixes boxed ob-

L-

jects and unboxed objects. Initial efforts using mixed repre-

sentation are Leroy [18, 19] and Peyton-Jones and Launch-
bury [21], and more recently Shao and Appel [27]. Their

works are complementary because Peyton-Jones and Launch-
bury introduce a (non-strict) language where boxing opera-

tions are explicit &d introduce several source-to-source op-

timization for this language while Leroy and Shao and Ap-
pel present a translation of ML to this mixed language. In
this paper, we will focus on the translation of source lan-

guages (like ML or Scheme) to mixed languages, comparing
our work to Leroy ’s.

Leroy’s translation only uses type information. It mixes
specialized representations when the static types are monomor-

phic and uniform representation when the static types are
polymorphic. Coercions between the two representation styles

are performed when a polymorphic object is used with a
more specific type. As Leroy presents, “in the case of a

polymorphic fimction, for inst ante, coercions take place just
before the function call and just after the function result”.
This solution is very elegant because the translation’s qual-

ity does not suffer from separate compilation (type informa-
tion are propagated across ML modules) but is has some

disadvantages. Every time a polymorphic function is used,
objects have to be boxed. Some data accessors as-epolymor-

phic. For instance, vector accessors are polymorphic where
the same fimction is used to access a vector of iixnums or a
vector of flonums. Vectors are a too important kind of data
storaee to be out of the scoDe of this transformation. In

other words, Leroy’s translation requires some ad hoc treat-
ments for some special functions. The second restriction to

Leroy’s work is about the input languages of its translation.
Programs have to be statically type checked, and as a con-
sequence Leroy’s optimization is not applicable to the Lkp
family.

4.3.1 Untagging vs. unboxing

Optimizing taggingluntagging operations as in [13, 3] does
not require the same analysis as mixed representation. Con-
straints about untagged representations are weaker than for
unboxed representations. An object can be untagged as soon

as its type is never required at runtime, without any poly-
morphism consideration. For instance, with untagged rep-

resentation, a vector can hold in its first slot an untagged
floating point number and in its secand slot a tagged one.

This is not possible with unboxed representation because
these two kind of objects do not have the same size. Untag-

ging optimization consists of type analysis (possibly using
type system as Henglein, control flow analysis as Ayers or
any other data flow analysis) while unboxing optimization
requires type and polymorphism analyses.

4,3.2 Other polymorphism implementation improvements

In [IO], Goubault presents an optimization for latently typed

languages. Like our efforts, its source language is not re-

quired to be statically type checked. Goubault uses data

flow equations to choose unboxed representation. However it

is difficult to compare his work with our because the method
employed is very different than ours and the paper cent ains

neither measurements nor examples.
Harper and Morrisett present in [11] a new scheme to im-

plement polymorphism. The key idea is to separate values
and types for polymorphic functions and to defer the selec-

tion of the code to execute until types are known (e.g. at run-
time). Unfortunate elly this work addresses statically typed

languages and cannot be applied to languages such as Scheme.

4.4 SUA and mixed representation

In this section, we use the SUA approximation to introduce

unboxed represent ations. This is done in two stages.

4.4.1 Type election

A first stage after the SUA analysis is the type election which

gives types to all variables and function results. This pass
obviously uses SUA approximate ions. It does not perform any

data flow analysis to choose better type. Let us study type
election on the following Scheme program (-f x and =f x are

the fixnum subtraction and equality test procedures):

(clef ine (bcopy ! clst src size)
(let loop ((i (-fx size l)))

(if (=fx i -1)
o
(let ((c (string-ref src i)))

(string-set ! dst i c)
(loop (-fx i l))))))

(define (copy-string src)
(let* ((len (string-length src))

(new Gmke-string len)))
(bcopy ! new sr. len)
new))

(copy-string “foo”)

SUA shows that variables new, dst and src are strings, vari-

ables len and i are only fixnums and variable c is a char-
acter. SUA is able to compute these type approximations

because the types of the library functions (string-length,
rnake-string, etring-ref and string-set !) are known by
the compiler. Each one of the variables contains one type

in its approximation set. Hence type approximations also
are the results of type election. If a variable contains more
than one type in its approximation set, then it is given the
special obj’ type.

SUA merges ~ possible values in single sets. Hence, if

a variable cent sins one unique type k its approximation,

58

this variable can only take place in a monomorphic pro-
gram. For instance, if SUA shows that the formal parameter

of the identity function can only be a fixnum it means that

this function has only been given flxnums as argument, no

matter the polymorphism of this function. This is the main

adventage of our method compared to Leroy’s one. SUA

isolates monomorphic parts of polymorphic programs, thus

our method allows us to use unboxed representation when

Leroy’s fails.

4.4.2 Type conversion

The second stage is celled type conversion. It introduces

conversions between boxed representation and unboxed rep-
resentation in the abstract syntax tree. Objects can be

boxed or unboxed. One type exists for these two states.
The boxed state is denoted by the obj type. Conversion

introduction is straightforward because the abstract syntax

tree is fi.dly ennotated. Here is an example that illustrates

type conversion

(define (id x) x)
(define (foo y)

(id (+fl 1.0 (id y))))

Let’s assume that f oo is exported, hence, y end f oo’s result
have type obj. Identity id is invoked with a flonum (result
of +f 1 invocation) and an obj, so formal x end the function

result are typed & obj. Conversions are then inserted.

(define (id x) x)
(define (foo y)

(id (float-box (+fl 1.0 (float-unbox (id y))))))

Cast(atree, T)=
case atree

[k]:
cormert!(k, 7(k), T)

[v]:

convert!(u, T(v), T)
[(if atree street street)]:

let atree=Ca~t (atree, boolean),

let atreet=Ca~t (street, 7),
let atreef =Ca~t (street, 7)

(if atree atree: street)

[(jai . ..)]:
let atree=[(j Cast (al, ‘T(J$arg,)) . ..)]

mnvert!(atree, T(f), T)
end

Algorithm 4.1: Type conversion introduction

Algorithm 4.1 presents a fragment of the complete type con-
version algorithm. Function ‘j’_ is a function that returns the

type of a- expression. Function convert! takes three argu-
ments: an abstract syntax tree, a from type, and a to type.

It introduces boxing operations required by the translation.
Function convert! is source language dependent. For la-
tently typed languages with boxing operations, it introduces
runtime type checks to ensure the soundness of the transla-
tion. For instance, when introducing conversions from o bj

to character, the Scheme convert! version also introduces a

type check using the char? predicate. No type checks are
introduced for statically type checked languages.

4.5 Unboxed data storage

In this section we discuss the unboxed representation of the

three A data types presented in section 2.

4.5.1 Unboxed pairs

Pairs have a special status: they are widely used (many

library fimctions exist to manage them) and in Scheme they
are heterogeneous data structures (i.e. elements of a list can
be of different types). For these reasons, we have decided

to make pairs hold boxed values. If pairs were allowed to
hold unboxed values, they would not have a fixed size and

library functions which have to be applicable to all pairs
would be inefficient and difficult to write. To prevent pairs

from holding unboxed objects, we simply force c~r and car
to have the obj type in their approximation sets.

4.5.2 Unboxed vectors

Vectors are widely used in all programming languages. We
think vectors are not used in the same way as pairs. Even

if Scheme vectors are heterogeneous (each vector slot can
be of a different type), we think they are mostly used as

homogeneous data storage and thus have allowed unboxed

values in vectors. Mixed vectors (vector holding boxed and

unboxed objects) are forbidden because this would prevent
the efficient implementation of vector indexing fmctions. If

a vector only contains elements of a given type, it will be

transformed into an unboxed vector. If a vector contains

at least two elements of different types, it will be a boxed

vector. As shown in section 2.6, SUA merges all possible
values held by a vector in a single approximation so it is

easy to check if all its elements are of the same type.

4.5.3 Unboxed procedures

Because closure creation and access to the free variables
are handled by the compiler, each closure creation can be

treat ed independently. Closures can hold boxed and un-
boxed values (because SUA distinguishes approximated val-

ues in the closures free variables) but unboxed closures are
not allowed.

5 Experimental results

SUA has been implemented in the new release of the Bigloo
Scheme/ML compiler. Both stack optimization and un-

boxed representation are implemented. Hence, we have been

able to make experimental analyses and performance mea-
surements.

Experimental results obtained by running some Scheme
benchmarks on a DEC Alpha (DEC 3000/300 (150 MHz),

running OSF/1 v3.0, with 160 MBytes of memory) are given

in F@re 1. The times given are user+syst em time, in-

cluding garbage collection time. Biglool.7 is the current
distributed version of the system, Biglool.8 is the new ver-
sion including the unboxed representation and the stack al-

location optimization. Both versions of Bigloo use Boehm’s
garbage collector release 4.7 [6]. This collector allows am-
biguous pointers and uses a traditional mark & sweep algo-

rithm. Gsc is the Gambit-C compiler version 2.3a, S2C is

59

Bartlett’s Scheme-to-C compiler version 15mar93jfb [5] and
Gcc is the popular Gnu C compiler version 2.6.3, used at

optimized level 2. Here is a short description of the Scheme
test programs we used:

Nucleic (3496 lines) :
Fft (127 lines) :
Bcopy (43 lines) :
Ttak (2o lines) :
Beval (548 lines) :
Boyer (6o6 lines) :
Maze (800 lines) :
Slatex (2821 lines) :
Mbrot (46 lines) :

Floating-point arithmetic.
Floating-point arithmetic, loops.
Strings, chars, fixnum, loops.
Function calls (with tuples).
Functional, conditional.
Term processing, functional.
Arrays, fixnum, iterations.
IO, strings, lists.
Floating-point arithmetic, loops.

Test

Nucleic
Fft
Bcopy
Ttak
Beval
Boyer
Mase
Slatex
Mbrot

Compder

-

i@Ri%
9.0 s
1.3 s
9.9s

2.9 S
6.7 S
9.4 s

6.2 S

7.8 S

1.0 s

F&me 1: RUI

22.7 S 5.6 S

12.2 s 14.5 s
12.0 s 4.8 S

6.5 S 6.9 S

3.4 s 3.8 S
7.7 s 8.0 S
7.8 S 23.9 S

20.1 s 9.2 S

ime statistics on

39.7 s
12.2 s
57.2 S

14.8 S

4.1 s

18.7 S
22.9 S

35.6 S

1.1 s
9.9 s

1.9 s
●

●

●

1.0:

)EC Alpha

Significant speed up occurs with the numerical bench-
marks Nucleic, Fft and Mbrot. On Mbrot and Fft (which

is a translation of a C routine from [22], not the Lkp version
from the Gabriel suite) Bigloo’s performance is very close to

Gee. Fft and Mbrot are efficiently compiled by Bigloo; no
floating point values get boxed. Fft makes use of vectors of

floats which are optimized as described in Section 4.5.2.
Nucleic computes 7 million floating point values. Our

unboxing optimization allows Bigloo to only allocate 13608

flonums in the heap. The difference in performance between
the Bigloo and Gcc versions is mainly due to the use of struc-

tures to hold 3 D points. In the C version, all the structures

are explicitly allocated on the stack. The Scheme version
does not allow our stack optimization to be frequently ap-

plied. Hence, profiling the Bigloo executable shows that
even though many heap allocations are avoided, 30% of the

execution time is still spent in the garbage collector.

Ttak is written in a ML style using tuples to pass ar-
guments. Our stack optimization avoids heap allocation en-

tirely and the speedup is thus important. The impact of
stack allocation depends on the program tested. The most
import ant speedup is observed for Tt ak (75 YOof memory is
allocated on the stack, which leads to a speed up factor of

5).
F&-ure 2 presents dynamic statistics on the amount of

memory allocated by the programs. For each program tested
and for each compiler, the amount of heap memory allocated
is given. The total amount of memory allocated on the stack
for Biglool.8 is also given.

In accordance with the execution time speedup, the main
reduction of heap allocation is observed on numerical pro-

grams (Nucleic, Fft and Mbrot). Except for the Ttak
program, stack allocations are not widely applied. This poor
result may come from the style of our programs. The nat-
ural Scheme style is to write “allocating>; functions which
return fresh allocations as in:

.
Ted Biglool.7 Biglool.8 (heap) Biglool.8 (stack)

Nucleic 747589 k 127523 k 5655 k

Fft 425432 k 174 k Ok

Bcopy
Ttak
Beval
Boyer
Maze
Slatex

140 k
301148 k

32947 k
14369 k

17563 k
67607 k

98 k
Ok

32903 k

14318 k

15902 k
67431 k

Ok

301148 k
Ok
Ok

Ik
2k

Mbrot 265589 k 27 k Ok

F@we 2: Allocation statistics on DEC Alpha

(define (foo x) (CU (gee x)))
(clef ine (gee x) (cons x x))

The pair built in gee cannot be stack allocated by our method.
The worst case complexity of the SUA algorithm is high.

The maximum number of iterations to reach the fix point is

the product of the maximum size of approximation sets and
the maximum number of approximation sets (i.e. nz for a
program of size n). Each iteration has a 0(n2) complexity

(the call graph traversal is O(YZ) and operations performed

on the t ree’s nodes are 0(n)). The overall complexity is thus

0(ra4). In spite of this complexity, our analysis is relatively

fast in practice. F@.we 3 presents statistics on compilation
time. For each program tested, we have measured the time

required by SUA, the compilation time until the C code pro-

duction and the global compilation time including the C
compilation. In the worst case (Slat ex), the time required

by SUA is only 20% of the overa~ compilation. -

(70mpdat$on tame

Test SJA Biglool.8 6 Biglool,8+cc t

Nucleic 7.1 s 22.9 S 0.31 538 S 0.01

Fft 0.1 s 0.8 s 0.19 2.9 S 0.09
Bcopy 0.1 s 0.5 s 0.20 1.5 s 0.07
Ttak 0.1 s 0.7 s 0.14 2.6 S 0.04

Beval 1.8 S 3.9 s O.~6 17.8 S 0.11
Boyer 0.1 s 0.9 s 0.11 3.5 s 0.03
Maze 0.4 s 2.0 s 0.20 6.9 S 0.06

Slatex 15,7 s 22.6 S 0.69 79.7 s 0.20
Mbrot 0.0 s 0.5 s o 1.8 S o

F@u-e 3: Compilation statistics on DEC Alpha

6 Conclusion

We have presented in this paper a new static analysis method
called Storage Use Analysis (SUA) which extends Shivers’

Ocfa to modules and general data storage. This analysis al-
10WS two important optimization: unboxed representation
and stack allocation. None of these optimizations require
type information, so both statically typed languages like ML

and latently typed languages like Scheme can use them. Ex-
perimental results demonstrate important speedups for nu-
merical applications where a speedup factor of 20 has been
measured for some programs.

Acknowledgments

Many thanks to Pierre Weis and Alain Deutseh for early
discussions and to Xavier Leroy and Joel F. Bartlett for
their helpfhl feedbacks on this work.

60

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. Appel. Runtime Tags Aren’t Necessary. Technical Report
CS-TR-142-88, Princeton university, 1989.

A. Appel. Compihng with continuations. Cambridge Uni-
versity Press, 1992.

A. Ayers. Abstract Anal~sis and Optimization of Scheme.

PhD thesis, Massachusetts Institute of Technology, Septem-
ber 1993.

A. Banerjee and D. Schmidt. Stackability in the Simple-
Typed Call-By-Value Lambda Calculus. In lfst Static Anal-

ysis Symposium, pages 131–146, Namur, Belgium, Septem-
ber 1994.

J.F, Bartlett. Scheme->C a Portable Scheme-to-C Compiler.

Research Report 89 1, DEC Western Research Laboratory,
Palo Alto, CA, January 1989.

H.J. Boehm. Space efficient conservative garbage collection.

In Conference on Programming Language Design and Im-
plementation, number 28, 6 in SIGPLAN NOTICES, pages 197-

206, 1991.

D. Chase. Safety considerations for storage allocation opti-
mization. In f70njerence on Programming Language Design
and Implementation, Atlanta, Georgia, USA, June 1988.

P. Cousot and R. Cousot. Abstract interpretation: a uni-
fied lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Symponium on
Principles oj Programming Languagea, pages 238–252, Los

Angeles, CA, USA, January 1977.

B. Goldberg and G. Park. Higher order escape analysis: Op-

timizing stack allocation in functional program implemen-
tations. In European S9mposium on Programming, number

432 in Lecture Notes on Computer Science, pages 152-160,

May 1990.

J. Goubault. Generalized Boxings, Congruences and Partial
Inlining. In lf.t Static Analyaia Symposium, pages 147–161,

Namur, Belgium, September 1994.

R. Harper and G. Morrisset. Compiling polymorphism using
intensional type analysis. In 22 Annual ACM Symposium on

Principle4 of Programming Languages, pages 130–141, New
York, NY, USA, January 1995.

P. Hartel et al. Pseudoknot: a Float-Intensive Benchmark for

Functional Compilers. Journal of Functional Programming,
To appear, 1996.

F. Henglein. Global Tagging Optimization by Type Infer-
ence. In Conference on Lisp and Functional Programming,

1992.

P. Hudak. A semantic model of reference counting and its
abstraction. In Abstract Interpretation of Declarative Lan-

guages, pages 45–62. Ellis Horwood, 1987.

S. Jagannathan and A. Wright. Effective Flow Analysis for

Avoiding Run-Time Checks. In 2nd Static Analysis Sympo-
sium, Lecture Notes on Computer Science, pages 207–224,
Glasgow, Scotland, September 1995.

T. Johnson. Lambda Lifting: ‘Ikansforming Programs to
Recursive Equations. In Proceeding of the ACM Confer-
ence on Functional Programming Languages and Computer
Architecture, pages 190-203, 1985.

D.A. Kranz. ORBIT: An Optimizing Compiler For Scheme.
PhD thesis, Yale university, February 1988.

X. Leroy. Efficient data representation in polymorphic
languages. In P. Deransart and J. Maluszyfiski, editors,
Int. Symp. on Programming Language Implementation and
Logigue Programming, volume 456 of Lecture Notes on Com-
put er Science. Springer-Verlag, 1990. Also available as IN-
RIA research report 1264.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

X. Leroy. Unboxed objects and polymorphic typing. In

Symposium on Principles of Programming Languages, pages

177-168, Albuquerque, New Mexico, January 1992.

R. MacLachlan. The Python Compiler for CMU Common

Lisp, In Proceedings of the 1992 ACM Conference on Lisp

and Functional Programming, pages 235–246, San Francisco,

CA, USA, June 1992.

S. Peyton Jones and J. Launchbury. Unboxed Values as First

Class Citizens in a Non-Strict Functional Language. In Pro-
ceedings of the ACM Conference on Functional Progmm-
ming Languagea and Computer Architecture, pages 636-666,

Cambridge, MA, USA, August 1991.

W. Press, B. Flannery, S. Teukolsky, and Vctterling W. Nu-
mem”cal Recipes in C. Cambridge University Press, 1988.

C. Ruggieri and T. Murtagh. Lifetime Analysis of D ynami-
cally Allocated Object. In Symposium on Principles of Pro-

gramming Languagea, pages 285-293, 1988.

M. Serrano. De I’utilisation des analyses de flot de contrde
clans la compilation dcs langages fonctionnels. In Pierre Les-

canne, editor, Actes den journ.4es dts GDR de Programma-
tion, September 1993.

M. Serrano. Vera une compilation portable et performance
des langages fonctionnels. Th.5se de doctorat d’univcrsit6,
Universit6 Pierre et Marie Curie (Paris VI), Paris, France,
December 1994.

M. Serrano. Control Flow Analysis: a Functional Lan-
guages Compilation Paradigm. In 10th Symposium on Ap-

plied Computing, Nashville, Tennessee, USA, February 1995.

Z. Shao and A. Appel. A Type-Based Compiler for Standard
ML. In PToceedinga of the SIGPLAN ’95 Conference on
Programming Language Design and Implemenfafion, June

1995.

0. Shivers. Control flow analysis in scheme. In Proceedings
of the SIGPLAN ’88 Conference on Programming Language
Design and Implementation, Atlanta, Georgia, June 1988.

0. Shivers. Control-Flow Analysis of Higher-Order Lan-

guages or Taming Lambda. CMU-CS-91-145, School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, PA
15213, May 1991.

P.A. Steenkiste and J. Hennessy. Tags and Type Checking in

LISP: Hardware and Software Approaches. In Architectural
support for programming languages and operafing sysfems,

pages 50-59, Palo Alto. CA US, 1987.

M. Tofte and J-P. Talpin. Implementation of the Typed Call-

by-Value A-calculus using a Stack of Regions. In 21sf ACM
SIGPLAN-SIGACT .$ympoaium on principles of programming
Languages, pages 188-201, Portland, Oregon, USA, January

1994.

61

