
Inductive, Conductive, and Pointed Types

Brian T. Howard

Department of Computer and Information Sciences

Kansas State University

bhoward@cis. ksu. edu

Abstract

An extension of the simply-typed lambda ‘calculus is pre-
sented which contains both well-structured inductive and

conductive types, and which also identifies a class of types
for which general recursion is possible. The motivations for

this work are certain natural constructions in category the-
ory, in particular the notion of an algebraically bounded
functor, due to Freyd. We propose that this is a particu-

larly elegant core language in which to work with recursive

objects, since the potential for general recursion is contained
in a single operator which interacts well with the facilities

for bounded iteration and coiteration.

1 Introduction

In designing typed languages that include recursion, there
has long been a tension between the structure provided by

types based on well-founded induction and the freedom per-
mitted by types based on general recursion. Very few lan-

guages outside of purely theoretical studies have chosen a
strictly inductive system (one exception is charity [CF92]),

partly because the logical price to be paid for ensuring that
all recursion is well-founded is the necessity that all com-

putations terminate, hence the language cannot be Turing-
equivalent. On the other hand, the prevalence of inductively

defined structures in computer science makes it natural to
structure many algorithms in terms of iteration over ele-

ments of an inductive datatype. This natural structure is
lost in common programming languages, where iteration is

at best a syntactic sugaring for an application of a fixpoint
operator.

In this paper we present an,extension of the simply-typed
lambda calculus with inductive types which also allows gen-

eral recursion in a controlled manner, thus preserving many

of the benefits of well-founded structural induction in a
Turing-equivalent language. There are two key ideas which
permit this:

● In addition to inductive types and iteration over their

elements, we also consider the dual notion, the cond-
uctive types, along with their associated natural oP-
eration of coiteration.

Permission to make digitalhard copy of part or all of this work for personal
or clsssroom use is ranted wimout fee provided that mpies are not made

Ior distributed for pro t or mmmeroial advantage, the copyright notioe, me
title of the publication and its date appear, and notice is given mat
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
past on servats, or to redistribute to lists, requires prior specific permission
andlor a fee.

ICFP 96 !396 PA, USA
@ 1996 ACM 0-69791-771 -OAWOO05...$505O

All the potential for unbounded recursion in the lan-
guage is” confined to a subset of the types which are
syntactically identified as “pointed” —a generalization

of the standard notion of a lifted type, along the lines
of Moggi’s computation types. General recursion over

pointed types follows from adding a function which

forces evaluation of an element of a pointed conduct-

ive type, either producing a value of the corresponding

inductive type or failing to terminate.

All of the components of the language are motivated by con-

structions in category theory. This reflects our belief that
the language of categories can be a useful source of inspi-

ration and guidance in the design of programming language
features. Our goal is to apply several recent results and
trends in category theory to issues in practical language de-
sign, producing an elegant, powerful base language with the

full natural structure afforded by inductive and conductive
types. This structure is well-behaved with respect to a pow-
erful set of equational reasoning principles, ensuring that

many useful program transformations will be sound.

As an example of a program written in this language,
consider first the following term jibs, of the conductive type

vt.(1+ nat x t) L (which may be thought of as a type of
streams of natural numbers. The details of the language
will be presented in Section 2; we will use a minor amount

of syntactic sugaring which will not be discussed further):

jibs = gen(~(m, n). [,z(rn, (n, m + n))j)(l, 1)

This generates the stream 1,1,2,3,5, . . . of Fibonacci num-
bers by coiteration; no non-termination is yet involved, be-

cause it only generates successive numbers in the stream on
demand. Now consider the related inductive type pt.(1 +
nat x t) I, which is essentially a type of finite lists of natural

numbers (the purpose of the lifting will be explained in a

moment). A reasonable function defied by iteration over
this type is head Up to, which when given a natural number
k will take a list and return the longest prefix consisting

entirely of numbers less than k:

headUpto = M. it(~lxj. case z of
LIO: nil

LZ(n,l): if n < k
then cons(n, 1)
else nil),

where nd and cons (n, 1) are abbreviations for fold[~10] and

~oki l~z (n, l)j, respectively. Again, this is a perfectly well-
founded operation, because all lists of the inductive type

102

http://crossmark.crossref.org/dialog/?doi=10.1145%2F232629.232640&domain=pdf&date_stamp=1996-06-15

are finite. If we wish to use this function to find the list
of all Fibonacci numbers less than 100, we must first force

jibs from a stream into a list; it is this action of “observ-

ing” the value of a conductive object which introduces the

only possible source of non-termination in the language, and

the only reason it is allowed in this program is that we

made an explicit provision for it with the lifting operator
~, creating a pointed type. The correct function applica-

tion is thus head Up to 100 (force jibs); with an appropriate
reduction strategy (which only needs tc) be lazy in apply-

ing the force function), this evaluates to the desired list
(1, 1,2,3,5,8,13,21,34,55, 89). The above solution is natu-

ral and elegant, and would not have been nearly so easy to
produce in a strictly iterative style. On the other hand, a

solution using the standard machinery of fixpoint operators
would have obscured or overpowered the intuitive construc-

tion of the iterative and coiterative pieces of the computa-
tion.

1.1 Related work

A preliminary attempt was made in the author’s PhD thesis
[How92] (see also [How93]) to reconcile inductive types with

types for general recursion. The solution there was to in-
troduce two different kinds of recursive type, corresponding

to the choice between induction and recursion. This sy5
tern did not provide a close integration of the two kinds of

recursive type, and suffered from a reliance on the heavy
machinery of fixpoint induction for reasoning about terms

involving general recursion.

Following recent work by Freyd and others on algebraic

compactness [Fre90, Fre91, Fre92, Bar92, Sim92, Fio94], the
more elegant solution presented in this paper was developed.

In brief, Freyd showed how to reduce the problem of finding
solutions for general recursive domain equations to that of
buildlng inductive types, provided the functors involved are
algebraically bounded, i.e., the inductive and conductive

types are canonically isomorphic. By syntactically identi-
fying a class of type expressions which will correspond in

a model to algebraically bounded functors, we may apply
this construction to develop a programming language which

accounts for general recursive functions while only dealing

with inductive (and conductive) types.
In spirit, this work also follows in the footsteps of Crole

and Pit ts [CP92], who present a met alanguage which ac-
counts for general recursion by obtaining a jirpoint object

which allows unbounded iteration under control of Moggi’s
computation type (see also [Mog95] for recent work of Moggi

along similar lines).
Independently, Launchbury and Paterson [LP95] have

developed a type system similar to that described here to
keep track of values which may be unboxed in the imple-

mentation of a lazy functional language. Their notion of
a pointed type (which must be boxed) exactly corresponds

with ours except they only allow recursive types which are
pointed. It is difficult to see how a value of one of our un-

pointed inductive types could usefully be unboxed in gen-
eral; however, it is interesting to note that a natural unboxed
representation of the type pt.1 + char x t is exactly the tra-
ditional null-terminated string used in C.

1.2 Structure of the paper

In Section 2 we present the details of our proposed lan-
guage and its categorical motivations: fist a basic language

with functions, sums, and products is described, then in-

ductive, conductive, and pointed types are added in turn.

The major novelty of the language is the system of pointed

types and the explicit forcing operation they permit–-this

is described in section 2.1. Following this are two sections

of examples and comparisons to related work: a fixpoint

combinator over pointed types is constructed in Section 3,

based on the fixpoint object of Crole and Pitts [CP92]; then

Freyd’s construction of recursive types from inductive types
[Fre90] is applied in Section 4 to provide universal types
for call-by-value and call-by-name versions of the untyped
lambda calculus; and finally, in Section 5, we compare our

system to several recent proposals advocating a categorical
style of program construction and manipulation based on

iteration and coiteration [MFP91, FM91, Mei92, Kie93].

2 The language AP”L

Figure 1 presents a convenient formulation of the syntax of

our base language with finite sums and products. As usual,

a typing judgment r D M: a means that the term M has

type u, given the context 17 (a list of free variables and their
types). Figure 2 lists the axioms governing these terms; they

are derived from the equations which hold among the cor-
responding arrows in a closed category with finite products

and coproducts. Observe that the term metavariables M,

N ,. ... are restricted to range over only terms of the ap-

propriate type (so that, for example, the axiom (lq) does
not imply that ali terms are equal to O, but only all terms

of type 1). In association with standard rules about equal-

ity and substitution, these axioms provide an equational se-

mantics. A non-deterministic operational semantics for the
language may be obtained by directing the /3 axioms from

left to right. For more details about this system and the
relation between its equational and operational semantics,
consult [How92]; related systems are considered many places
in the literature, for example [GLT89, LS86, Mit90].

In a standard way, we may interpret a type expression

a containing a free type variable t as a functo~ that is, it
provides a map from types to types by substitution for t,
and it may be extended to a map on terms of function type

(because the intended model of this language is a cartesian

closed category, we will feel free to abuse the distinction
between arrows and elements of an exponential object, and

to switch between external and internal views of functors).
For example, if u = 1 + t,then as a functor it maps the type
~ to 1 + T and it maps a term M of type ~ + w to the term
[Az: l.~~+”O,Ag: ~.~j+”(My)] of type 1 + ~ ~ 1 + V. When

talking about a as a functor, we will find it convenient to
name these maps Fa, or simply F; thus, we would write
F(7-) = 1 + ‘r and F’(M) = [kc. LI o, h. L2(MY)] (dropping

type annotations for brevity).

A solution to the recursive type equation t = u is a type T
such that there is an isomorphism between ~ and F(T), i.e.,

r is a fixpoint of F. A well-known technique for finding a
fixpoint, attributed to Lambek, is to consider the category of

F-algebras, whose objects are (in our case) functions of type
F(v) + v, for any type v; given F-algebras ~: F(r) + r and

g: ‘F(v) + v, an
T + v such that

arrow from $ to g is a function h of type
the following diagram commutes:

103

rb@:O~U
(oE)

I’b M:u-+u rDN:rBv

rb[M,N]:a+7~v
(+E)

Figure 1: Syntax of the basic language

(+ /3) (Az: a. M)N = {N/x}M (Xr: o. Mz) = M, x not free in M (+ q)

(xPI) m(M, f’V) = M M = O (lq)

(x@,) T,(M, N) = N M = (7r1M,7rzM) (Xq)

(+PI) [M, N](~:+’P) = MP M = ❑ “ (Oq)

(+P2) [M, N](~j+’F’) = NP M = [Xc: a. M($+rz), ~y: ~. M(~~+”y)], (+v)

x and y not free in M

Figure 2: Axioms of the basic language

F(T)
F(h)

— F(v)

f I I9

r—v
h

If ~: F(r) a r is an initial object in this category, then in

fact r is a fixpoint of F, and ~ is the desired isomorphism.

If g: F(u) ~ u is the isomorphism for any other fixpoint w
of F, then the initiality of f implies that the arrow h in the

above diagram gives a unique way to map r into u; in this
respect, ~ is the least fixpoint of F.

A dual solution to t= a may be found by taking a termi-
nal object in the category of F-coalgebras, which are simply
functions of type v j F(v). Reversing all the arrows in
the above diagram, if ~: 7 +- F(7) is such a terminal object,
then T is the greatest fixpoint of F.

If we extend our assumptions about the category under-
lying JP”l to suppose that at least every F which corre-

sponds to a type expression u has both least and greatest
fixpoints (that is, it is algebraically complete and cocomplete
in a relevant sense), then we may augment the language to

include these fixpoints as the types pt. u and vt.u, respec-
tively, which we will frequently write as pF and uF. An
important point to note is that the type expression t ~ a
does not produce a (covariant) functor-given a function

f: r + v, there is no general way to produce a function of

type (~ -+ a) ~ (v ~ a) (consider u = ~ = O and v = 1,
and note that the existence of a function of type 1 ~ O leads
to inconsistency). This contravariance in the first argument
of ~ leads us to restrict the types a for which we can find

fixpoints to those in which t occurs only positively, that is,

to the left of an even number of function arrows.

The terms and proof rules corresponding to these least

and greatest fixpoint types (which are commonly called in-

ductive and coirzductive types, respectively) are given in Fig-

ure 3. For pF, the term foldP~ is (the isomorphism of)
the initial F-algebra, and the application it~~ M produces

the unique F-algebra morphism from foldw~ to the given

function M. Dually, unfoidv~ is the terminal F-coalgebra,

and genur M produces the unique morphism from M to
Urlfoidv ~ .

The language described to this point is called AW” in
[How92]; it is shown there that the reduction rules for this
language are confluent and strongly normalizing, hence only
total functions may be computed. In fact, the class of to-

tal functions expressible in APV is quite large, containing
precisely those functions provably total in the logic ID<W,

1For efficiency’s sake, we should also add terms and axioms
providing explicit inverses to foldfl ~ and unjotdvF; although

it~~ F(.foldPF) (and dually genuF F(unfoldvF)) has the r]ght be-

havior, it works in time proportional to the size of its argument in-
stead of constant time. This is related to the well-known hnear -time

predecessor problem,

(P@ i% M(WPF ~) = M(F(it.F ~)~)
P(foldPF N) = M(F(P)N) ~pq)

P = itwFM

(vO) un~oldVF(genVF M N) = F(genvF M)(MN) “nfo~~”;(::jn;:g)(M~) (Vq)

F@re 3: Syntax and axioms/inference rules for inductive and conductive types

which is first order arithmetic augmented by tinitely-iterat ed

inductive definitions (see [BFPS81] for details about this

logic; the relation to APV wsa presented in ~ow94]2). This

almost certainly contains every total function that would
ever be needed for practical purposes, as it contains at an

early stage every function bounded by Ackerrnann’s noto-
riously fast-growing function. However, from a theoretical

viewpoint this is nowhere near the class of all computable

functions (and as long as all computations are terminating

it can never hope to cover the entire class, because to do

so would solve the Halting Problem), and from a practical

viewpoint the proof of expressibility y of i~y total function

bounded by some fast-growing function does not lead to an
efficient program, since the result will have the running time
of the bounding function!

2.1 Contravariance and pointed types

The usual Smyth-Plotkin construction of fixpoints of mixed-
variant fimctors in categories enriched with an order struc-

ture [SP82] reveals a coincidence between least and greatest

fixpoints. Recent work of Freyd [Fke90, Fre91, Fre92] shows

that this coincidence is the essential property needed to han-

clle contravariance. Specifically, all that is needed to con-

struct a fixed point for a contravariant endofimct or F is to

show that the covariant functor F= is algebraically bounded,

meaning that it has both an initial algebra and a termi-
nal coalgebra, and they are canonically isomorphic. Conse-

quently, the only addition needed to AK” to allow the repre-
sent ation of fixpoints of contravariant funct ors is a function
expressing this isomorphism.

We do not want to assert that all corresponding least and

greatest fixpoints are isomorphic; for instance, if there were
any function from wt. t to @. t then all terms of any given

type would be provably equal (given that we desire categori-

cal finite sums aa well aa cartesian closure). Following Simp-
son [Sim92], we will identify the algebraically bounded func-

tors by considering a faithful commutative strong monad
whose functor T is algebraically bounded. Call a type T

pointed if it is the underlying object of an Eilenberg-Moore
T-algebra, i.e., if there is a retraction P.: T(7) ~ ~ for the
tit q.: T + T(r) such that P7 o T(p7) = p. o I.+, where

pr: T= (T) + T(r) is the monad multiplication. Say that a

2An interesting feature of this correspondence is that conductive
types and non-strictly-positive inductive types (where t occurs to the
left of a function arrow) do not add to the expressiveness-sl] com-
putations over these types may be coded up using a family of ordinal
notations described by strictly-positive inductive types.

functor F is pointed if F(T) is pointed for any r, and say

that it is conditionally pointed if F’(7) is pointed whenever
T is; then we have the following proposition:

Proposition 1 For any interpretation of ~~”~ in a carte.
sian closed categorg with finite sums, least and greatest fix-

points for all relevant endofuractors, and a monad as de-
scribed above:

1. If u and T are pointed types, and u is an arbitrary type,
then 1, Tv, u x r, and v + r are all pointed types.

2. If F is conditionall~ pointed, then VF is pointed.

3. If F is pointed, then pF and VF are canonically iso-
morphic [and pointed).

Since the motivating example is the category of predo-
mains and total functions, with the standard lifting monad

identifying the pointed objects as the domains,3 we will
write ~1 for the type T(T). The corresponding additions

to the terms and proof rules are given in Figure 4. The lift

[MJ corresponds to an application of the unit, while the

pointed abstraction A lx: aJ. M corresponds to applying the
functor T to the function k. M: a + ~ and post-composing

with the retract from TL to T. These generalize the simi-
lar constructions in Moggi’s computational lambda calculus

[Mog89] in two ways:

● We include the total function space constructor as well

aa the Kleisli exponential; this is consistent with our
other type construct ors because we only allow general
recursion on pointed types (see below).

● As a result, the body of the pointed abstraction may

be of any pointed type, not just a computation type
T(r).

The term forceP~ gives the promised isomorpbism from

VF to pF (there is always a morphism in the other direction,

described by it&F unfold~~ or, equivalently, genv~ fo~djj);

the axiom (vp,B) simply expresses the fact that it is an F-

(co)algebra morphism. The intuition for calling this func-
tion force is that it provides the interface between the nat-
urally lazy conductive type VF and the more concrete, ob-
servable (at least to the extent that other components of

3This is not quite correct; to avoid cardimdity problems with types
such m pt.(t+ bool) + bool, where boot 5 1+ 1, we need to work

in an effective version of domains. An appropriate category of PEl%n

should work fine.

105

(JJ3) (A[x: a]. A4)liVj = {iV/z}A4

(vp,B) fomeP~ M = foldW~(F(forceP~)(unfoidv~ M))

Figure 4: Syntax and axioms for pointed types

F are observable types such as products or sums) inductive

type @, coercing one to the other perhaps at the expense
of non-termination if an attempt is made to force evaluation
of an “infinit e“ element.

2.2 Properties of reduction

For reference, we collect the reduction rules for ~~”~ in Fig-

ure 5. Using standard results about such reduction systems
(see [KI080, How92]) it is easy to prove that reduction is

confluent and that a lazy reduction strategy (i. e., outer-
most reduction of the principal subt erm of each elimination
operator, reducing force only when it is the argument of
an iteration) is normalizing. In fact, since the reduction

system without (u,u,B) is strongly normalizing, the only op-
erator that needs to be t rested lazily is force.

If we identify the class of observable types as those which

do not contain ~, v, or 1 (intuitively, these are the types
whose values may be “printed out”), then a reasonable def-

inition of observational equivalence says that two terms are

equivalent if they have the same result (normal form or non-

termination) under lazy reduction in all closed contexts of
observable or lifted observable type, with the proviso that

we do not distinguish values of types isomorphic to 1 (since

these are the only types which may be both observable and
pointed). We conjecture that all of the equational rules
listed above (in particular, all of the (q)-rules) are sound
with respect to this observational equivalence, therefore any
program transformation justified by these rules will also

be sound. The restriction to observable and lifted observ-
able types is not harsh: taking the example of the head-

Upto function of the Introduction, which produced values of
type ~t.(1 + nut x ~)J_, we may easily convert such values

into lifted lists, (pt.1 + nut x t)l, by applying the function
it(~ [z]. [}oki pt.l+natxt xl). Similar observation functions

may be defined for all types not containing -+ by applying
Muh-y’s notion of the lifting of a functor [Mu193].

3 A fixpoint object

In [CP92], a jirpoirat object for a monad (T, q, p) is defined
to be a structure (Q, g, w), where <: TQ + Q is an initial
T-algebra and w: 1 G TO picks out the unique fixpoint of
the arrow qn 0<: Tfl -+ Tfl. This is used as the basis for

a logical system for reasoning about fixpoint computations.
For example, given a fixpoint object for T, they construct a

fixpoint combinator for any type of the form a a T,tJ.
In AP”l, we may find a fixpoint object for any monad

(T, q, p) such that pT is pointed. The type Cl is just pT, and
< is joldn. We may construct w by first coiterating the T-

coalgebra VI: 1 ~ T1 to obtain the function gen.~ VI: 1 -+

vT, and then applying it to the seed O and forcing the re-
sult over to Q: forcen (genv~ ~1 O). This gives an ~’infinite”

element in Q; call it co. The desired global object w is then

just w ~ (k 1. [coj).

For the special case T(7) = ~L, where q. is (k: ~. lx~)

(and p. is (~[y: T1]. g)), if we define the term co as above,
then we may use it to construct a fixpoint combinator for
an arbitrary pointed type u by defining

jiza:(a ~ c) ~ a ~ (Af:a ~ u. it~(~[x:aj. jx)eo).

That is, we simply iterate ~“: al ~ a over the object W.
This is as direct an explanation of finding fixpoints in a
typed language as this author has seen (an anonymous ref-
eree of an earlier version of this paper pointed out that this

is essentially the construction given by Mrdry in Theorem

3.12 of [Mu192]).

4 Example: Recursive types reduced to inductive types

It is a relatively simple matter to reproduce in AP”L the
proofs from [Fre90] that the process of finding a fixpoint

of an arbitrary type expression, in which the type variable

may appear both covariantly and contravariantly, may be
reduced solely to the problem of finding fixpoints for the
covariant case, provided the resulting covariant functors are

algebraically bounded. The process we follow is that, given
a bifunctor T which is contravariant in its left argument

and covariant in its right, first we show that pt.T(–, t) is a
contravariant functor whose fixpoints are also fixpoints of T

it se~—that is, we may find fixpoints one variable at a time.
Next, we need to show that if F is a contravariant functor,

then the fixpoints of F are the same as the fixpoints of the
covariant fimctor F2, provided F2 is algebraically bounded.

We omit the details of these constructions here, and just

note an example of this process. In [How92, How93] this
author presented types which correspond to universal types
for call-by-value and call-by-name versions of the untyped
lambda calculus. Specifically, if V = V + VL and N =

(IV ~ iV) 1, then we may use V and N respectively to give

types to the cbv and cbn calculi. In AW”l, we may find
solutions to these type equations by taking

V ~ pr-. ps. (pt. r + tl) + SL s pr. F2(r),

for F’(r) S p.s. r ~ s~

N s pr. ~s. ((@. (r- -+ t)l) + S)l ~ pr, G2(r),

for G(r) s ,us. (r- - s)l.

F@re 6 exhibits the remaining definitions needed for the
simulation. For each untyped lambda term M, the transla-

106

(+ p)

(Xp,)

(X92)

(k: a. M)IV + {N/z}M (A[z: u]. M)llvj + {N/z}A4 (J@)

7rl(M, N) —+ M [M, N](L;+’P) ~ MP (+B,)

7r2(M, N) —~ N [M, N](~;+TP) + NP (+62)

(@) ‘t/@‘(fOid,F ‘) + ‘(F(i%~ ‘)N)

(r@) zmJfoldVF(genvF i’kf N) ~ ~(genVF AI)(MN)

(r@) fOTCep~ &f + foldP~(F(forceP~)(unfoldVF M))

Figure 5: Reduction rules of JP”L

tions ViTA41: VL and ~llkfl: N will be terms of JP”l; it is..—
shown in [How92] that a ~lmple argument based on stan-

dardization of reductions will verify that ‘V[lf] + V[M~

iff M ~cbv M’, and similarly that Af[kf] ~ Af[i’kf~ iff

M +cbn ikf’.

5 Hylomorphisms and inductive programming

There have been several recent efforts in the programming

language community to use programming techniques based
on combinations of iteration and coiteraticm. Two which we

will relate to our system are Meijer’s hylomorphisms and
Kieburtz’s use of weakly initial algebras and their duals.

Both of these proposals stay within the realm of pointed
types, where inductive and conductive types coincide, so

neither is able to take full advantage of the separation be-
tween the well-founded operations of iteration and coitera-

tion and the potential unfoundedness of an explicit jorce op-
eration. Nevertheless, we have been significantly influenced

by their suggested style of programming, which reflects our
intuitions about how the structure of data, should guide the

structure of programs.

In the language of the Squiggol group, the functions de-
fined using it are catamorphisms and thc~se using gen are
anamorphisms ([FM91, MFP91, Mei92]). A hylomorphism is

a combination of these concepts which first uses an anamor-

phism to build up what Meijer refers to as a “call-tree”,

and then uses a catamorphism to reduce this tree to a fi-
nal result (compare the Fibonacci example of the introduc-
tion). A requirement for this is that the inductive types
under consideration are all isomorphic to the corresponding
conductive types. They observe that hylomorphisms neces-
sarily introduce the possibility y of partial functions; when

put in the framework of JK”l, where am explicit use of
forceP~ is needed to tie together genVF M: u + VF and

it@ N: pF + r to obtain the hylomorphism from a to ~,
this follows from the necessity of HF being a pointed type.

By making this coercion explicit, our system also allows con-
sideration of purely inductive or conductive types, for which

all functions are total.
Kiekmrtz [Kie93] also uses hylomorphisms (although not

by name) when he demonstrates that a useful notion for
inductive programming is that of finding, homomorphisms
from weak initial F-algebras. That is, we may have a func-

tion g: F’(r) + ~ which has a left inverse p: ~ ~ F’(7), i.e.,

p(g(~)) = z for all x: ~(r); if g is weakly initial then we
may construct an F-algebra morphism from g to any given

f: F(a) + a (which will not necessarily be unique). This

will be possible if we can just find a fixpoint of the map
which takes h: T + u into ~ o F(h) op. But this is just the

hylomorphism which first coiterates p and then iteratively

applies ~ to reduce the call-tree back down. Therefore, in
~~”~, we may find weak initial F-algebras just by finding a

left inverse, provided F is algebraically bounded. Kieburtz

also describes the dual case, but this still involves a hylo-
morphism so it is not fundamentally different (just a shift

of view between which of the given functions is the alge-
bra/coalgebra and which is the left/right inverse).

6 Conclusions

We have demonstrated how recent developments in cate-
gory theory may be used as guidance in designing a pro-

gramming language with well-behaved recursive types. The
language facilities for recursion concentrate on the natural

inductive/coinductive structure which is common to many
of the objects of interest to computer science. When gen-

eral, unbounded recursion is needed, it is introduced in a
controlled manner through a function which forces the eval-

uation of a coiteration process. To avoid inconsistency in a
model which includes both extensional (categorical) prod-

ucts and sums, this forcing operation is only allowed on a

class of types which have been identified as “pointed”. We

believe that the result is an elegant language in which to
describe and examine recursive objects and algorithms.

References

[Bar92]

[BFPS81]

[CF92]

[CP92]

Michael Barr. Algebraically compact functors.
Journal of Pure and Applied Algebra, 82:211-231,

1992.

Wilfried Buchholz, Solomon Feferman, Wolfram

Pohlers, and Wilfried Sieg. Iterated Inductive

Definitions and Subsystems of Analysis: Recent

Proof- Theoretical Studies. Number 897 in Lecture
Notes in Mathematics. Springer-Verlag, 1981.

R. Cockett and T. Fukushima. About CHAR-

ITY. Technical Report 92/480/18, University of
Calgary, June 1992.

Roy L. Crole and Andrew M. Pitts. New
foundations for fixpoint computations: FIX-

hyperdoctrines and the FIX-logic. Information
and Computation, 98(2): 171–210, June 1992.

107

[Fio94]

[FM91]

[Fre90]

[Fre91]

[Fre92]

[GLT89]

[How92]

[How93]

Figure 6: Simulation of call-by-value and call-by-name untyped lambda calculi

Marcello P. Fiore. Axiomatic Domain Theor~ in

Categories of Partial Maps. PhD thesis, Univer-
sity of Edinburgh, 1994.

Maarten M. Fokkinga and Erik Meijer. Pro-
gram calculation properties of continuous alge-

bras. Technical Report CS-R9104, CWI, January
1991.

Peter Freyd. Recursive types reduced to inductive
types. In Fifth Annuai IEEE Symposium on Logic

in Computer Science, pages 498–507, 1990.

Peter Freyd. Algebraiczdly complete categories.

In A. Carboni, M.C. Pedicchio, and G. Rosolini,
editors, Category Theory: Proceedings, Como
1990, pages 95–104. Springer-Verlag, 1991.

Peter Freyd. Remarks on algebraically compact

categories. In M.P. Fourman, P.T. Johnstone,
and A.M. Pitts, editors, Applications of Cate-

gories in Computer Science, number 177 in Lon-
don Mathematical Society Lecture Note Series,

pages 95–106. Cambridge University Press, 1992.
Proceedings of the LMS Symposium, Durham
1991.

Jean-Yves Girard, Yves Lafont, and Paul Taylor.

Proofs and Types. Cambridge Tracts in Theo-
retical Computer Science. Cambridge University
Press, 1989.

Brian T. Howard. Fixed Points and Extensional-

ity in Tgped Functional Programming Languages.
PhD thesis, Stanford University, 1992. Published
as Stanford Computer Science Department Tech-
nical Report STAN-CS-92-1455.

Brian T. Howard. Inductive, projective, and re-
tractive types. Technical Report MS-CM-93-14,
Department of Computer and Information Sci-
ence, University of Pennsylvania, 1993.

[How94]

[Kie93]

[K108O]

[LP95]

[LS86]

[Mei92]

[MFP91]

[Mit90]

[Mog89]

Brian T. Howard. The expressive power of in-

ductive and conductive types. Presented at the
Tenth Workshop on the Mathematical Founda-

tions of Programming Semantics, March 1994.

Richard B. Kieburtz. Inductive programming.

Technical Report CS/E 93-001, Oregon Gradu-

ate Institute of Science and Technology, 1993.

Jan Willem Klop. Combinatorg Reduction Sgs-

tems. PhD thesis, University of Utrecht, 1980.

Published as Mathematical Center Tract 129.

John Launchbury and Ross Paterson. Para-
metricity and unboxing with unpointed types.
Available at http: Ilwww. cse. ogi .edu/”jl/
Papers/point .ps, 1995.

J. Lambek and P.J. Scott. Introduction to Higher-

Order Categorical Logic. Number 7 in Cambridge
Studies in Advanced Mathematics. Cambridge

University Press, 1986.

Erik Meijer. Calculating Compilers. PhD thesis,
University of Nijmegen, 1992.

Erik Meijer, Maarten Fokkinga, and Ross Pa-
terson. Functional programming with bananas,
lenses, envelopes and barbed wire. In J. Hughes,

editor, Proceedings of the Fifth ACM Conference
on Functional Programming Languages and Com-

puter Architecture, number 523 in Lecture Notes

in Computer Science, pages 124–144. Springer-

Verlag, 1991.

John C. Mitchell. Type systems for programming

languages. In Jan van Leeuwen, editor, Hand-
book of Theoretical Computer Science, volume B,
chapter 8, pages 365–458. Elsevier, 1990.

Eugenio Moggi. Computational lambda-calculus
and monads. In Fourth Annual IEEE Symposium
on Logic in Computer Science, pages 14-23, 1989.

108

[Mog95] - “ ‘- “ ““ ‘
. 1.

[Mu192]

[Mu193]

[Sim92]

[SP82]

lmgemo MoggL Metalanguages arm appuca-
tions. Available as UL-notes. ~dvi. gz by anony-

mous ftp from theory. doc. ic. ac. uk in directory
tfm/papers/140ggiE, October 1995.

Philip S. Muh-y, Strong mormds, algebras and

fixed points. In M.P. Fourman, P.T. John-

stone, and A.M. Pitts, editors, Applications of

Categories in Computer Science, number 177 in

London Mathematical Society Lecture Note Se-

ries, pages 202–2 16. Cambridge University Press,
1992. Proceedings of the LMS Symposium,
Durham 1991.

Philip S. Muh-y. Lifting theorems for kleisli cat-

egories. In S. Brookes, M. Main, A. Melton,

M. Mislove, and D. Schmidt, editors, Ninth hz-
ternational Conference on Mathematical Founda-
tions of Programming Semantics, number 802 in

Lecture Notes in Computer Science, pages 304-

319. Springer-Verlag, 1993.

Alex K, Simpson. Recursive types in ldeisli cat-

egories. Available as kleisli, dvi. Z by anony-
mous ftp from f tp. dcs. ed. ac. uk in directory

publals, August 1992.

Michael B. Smyth and Gordon D. Plotkin. The
category-theoretic solution of recursive domain

equations. SIAM Journal on Computing, 11:761–

783, 1982.

109

