
Sharing Code through First-class Environments

Christian Queinnec* & David De Rouret

Ecole Polytechnique Department of Electronics and Computer Science,

& INRIA-Rocquencourt University of Southampton

Abstract

Nowadays the Net is one of the most obvious driving forces.
Yet, to consider it as one global store through which val-

ues and code may be shared is still immature. This paper

suggests first-class environments as a means to achieve that

goal in a multi-user Scheme framework. We propose two
new special forms with a simple semantics. Our model al-

lows precise control over environments (including extensible
environments) and does not require (but does not prevent)

reflective operations.

1 Motivation

Millions of users now dream of means through which they

may share programs and/or data. Data are becoming more
and more comple~ they are no longer made of simple, atomic,

flat values such as numbers or characters but now mun-
danely incorporate pointers, as exhibited by the increasing
number of WWW pages full of references towards remote
pieces of information. Other data are only acquired after

long computations and are better shared rather than recom-
puted. Of course, data may be stored in shared files but then
need to be parsed to resurrect programmatically. All these
reasons favor the invention of a common shared distributed

memory that offers a language independent API (Applica-
tion Programming Interface) allowing numerous users to de-

vise structures or claeses, to instantiate them and to share

or migrate the resulting instances so they can be directly

computed upon.

On the other hand, programs are mainly shared through

tar. gz files (provided they can be recompiled), exchanged

via strings as in Tcl [OUS93] or compiled into bytecode as in
Java [Sun95]. Basically when a program text is interactively

submitted for evaluation, it is converted into some code (pre-

“ Laboratoire d’Informatique de
l’Ecole Polytechnique (URA 1439), 91128 Palaiseau Cedex, fiance
– Email: Christian. Queinnec@polytechnique.fr This work has been
partially funded by GDFLPRC de Programmation du CNRS and EC
project reference ERB 4050 PL 930186.

tso”th~pton SO17 lBJ, UK – Email: dder%oton.ac.uk This

work has been partially funded by EPSRC GR/K36409 and EC
project reference ERB 4050 PL 9301S6.

Penniaaion b make digitab?mrd copy of part or all of thii work for personal
or classreom use is ranted without fee provided that oopiea am not made

kor d~tributad tir pm or commafoial ~vanta e, the copy?ight notice, the
titte of the Publk%tion and its date appear, a#notioetagiwthat
oopying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servws, or to radktribute to Ma, requires prior apadfk pwm~
andhr a fee.

ICFP ’96 5/96 PA, USA
01996 ACM 0-89791 -771 -WWW35...$~.~

sumably accompanied by some literals) and some free vari-

ables. These free variables have to be bound to some loca-
tions before this program may be run. Reciprocally, a pro-

gram is implicitly parameterized with respect to its free vari-
ables. Therefore, to be able to share code, we must specify in

which environments free variables must be found; this may
be achieved through the existence of first-class environments

as in [BL84, RAM84, FF86, GJL87, MR91, Jag94, LF93].

A code to be shared mav then be remesented bv a module,

a function that expects “an environment providing the (lo:
cations of the) free variables that the program needs for its

evaluation.

The essence of our proposal is to offer two new special
forms to handle first-claes environments i.e. collections of
named locations. The first one, export, allows us to reify

a lexical environment (or part of it) into a first-class value.
The second special form, import, evaluates some forms in

an environment which is a mixture of an explicitly stated
first-class environment composed with the current lexical en-
vironment. Our proposal still provides efficient compilation
as well as some additional functions to manage first-class en-

vironments. First-class environment is the last component
of the computation state that was not reifiable in regular
Scheme. Our aim is to show that we can (i) overcome this
limit ation without degrading performance, (ii) ease code
sharing by a precise control over the environments within

which code is installed. Programs are parameterized with
respect to their free variables and as such are much more

reusable than closures that may only be customized as far

as their arguments allow customization.

A closure gets values in a combination; an importation
gets locations from a first-class environment. Making some

resources available is better achieved through a first-class
environment than through a list, a record or even a clo-

sure since these values impose some order, some accessing
method and are too overspecified. A first-class environment

can only be imported and allows reference to the captured
variables with the least possible syntax: that of variable

reference.

Importation allows us to parameterize [Lam88] a pro-
gram with respect to an unordered set of variables. Different
programs may be parameterized with respect to intersecting
sets of variables, thus achieving a sort of fragmented letrec
between them if they are imported into the same environ-
ment; different programs may thus share mutable locations.
Conversely, one program may be imported into different en-
vironments by different users, or into different environments
by a single user to achieve fault-tolerance by replication of

251

http://crossmark.crossref.org/dialog/?doi=10.1145%2F232627.232653&domain=pdf&date_stamp=1996-06-15

computations: importation features a sort of dynamic reen-
trant linking facility.

Our first-class environments (i) obey the quasi-static

discipline meaning that variables are, on importation side,

statically known to be either static or quasi-static as in
[LF93] and, on exportation side, local variables are stati-

cally known to be either captured or non captured in a first-
class environment, (ii) do not require reflection (but do not

prevent it), (iii) are versatile enough to promote new use-

ful programming techniques (modules, objects, etc.), (iv)
may be exercised to explain the behavior of toplevel envi-

ronments.

Our proposal roughly stands as a new point among the
pioneering works of [BL84, RAM84, FF86, GJL87, Lam88,

CR90, MR91, Jag94, Tun92, LF93, DPS94] on module, ex-

portation and importation systems. We improve on [LF93]
since we are able to manage extensible environments and

implicit sets of free variables with a much simpler seman-
tics, while we offer some reflective features of [Jag94] with-
out impeding compilation efficiency. Detailed comparison is
deferred until section 7.

Since the semantics of these new special forms is fairly

straightforward, we dare start by immediately introducing
their denotational semantics in section 2. We then present,

in section 3, a series of examples illustrating some of their
usage. Section 4 introduces auxiliary functions to enhance

environment management as well aa new examples of use.
A naive implementation is sketched in section 5. Section 6

comments on reflective aspects while comparison with re-
lated works appears in section 7.

2 Formal Semantics

This section presents the denotation of two new special forms
named export and import. Table 1 cent sins the main frag-

ment of a denotational semantics for Scheme. The notations
are inspired from [C R91]. Given a memory state (a store)
and a number of locations, the allocate function invokes its
third argument on the resulting store and the freshly aJlo-

cated locations. The major difference from the semantics of
[CR91] is the structure of the Env domain. Instead of map-

ping an identifier directly into a location, an environment p
rather has signature:

Id x Store x (Store x Loc ~ Answer) ~ Answer

In other words, given an identifier and a store, an envi-
ronment invokes its third argument with the location associ-
ated to the identifier and the resulting store. This signature

is not new [FW84] but will ease our later introduction of ex-
tensible environments. This signature is illustrated by the

denotations of reference and assimment in table 1.

Conventions for environment” handling are inspired by

[LF93]; they appear in table 2. The null environment is
named p L. Environments may be restricted: p\W returns a
new environment that is similar to p except that it only con-

tains the identifier v. This restriction is naturally extended

to a set of identifiers using notation p\{v. }. Environments

may be chained: p @ p’ returns a new environment that be-
haves as p but for the identifiers not contained in p that are
then looked for in p’. We overload the usual extension no-
t ation, p[v + cr], to cope with the new signature of environ-

ments. We ~so extend it to sets of identifiers and locations
as in p[v” + a’]. Finally it is possible to actively check,

wit h p 3 {V*} u, whet her an environment really associates

locations to a set of identifiers in a given store.

The denotations of export and import each have two

cases depending on whether or not the set of given identifiers

is empty. Since to export or import an empty set of variables
is pointless, these specisl cases will mean export or import

all possible variables where “all possible” is explained below.
Table 3 contains these denotations with 7W(~+) standing

for the free variables of the n+ forms. These denotations
may be paraphrased as follows:

(export) : yields the entire current lexical environment.

(export v+) : yields the current lexical environment res-
tricted to the identifiers given. Due to their presence
in the export form, these identifiers appear free and

therefore are necessarily contained in the current lexi-
cal environment i.e. have an associated location. The

initial store, uo in table 1, shows that locations may
be uninitialized provided they are not read.

(import () ir ~+): evaluates T to obtain an environment,

checks that the free variables of r+ are contained in
this environment then evaluates ~+ in this sole envi-

ronment. The current lexical environment is therefore
totally shadowed by the new environment during the

evaluation of ~+. As for implicit begin forms, the final
value of the import form is the last value of r+.

(import (v+) m r+): evaluates x to obtain an environ-
ment, checks that the variables v+ are defined in this

environment then evaluates T+ in this very environ-

ment restricted to v+ and chained to the current lex-

ical environment. The v+ identifiers of the new envi-

ronment shadow their homonyms in the current lexical
environment. The final value oft he import form is the
lsst value of T+.

Observe that a free variable of r+ is either explicitly

mentioned by the import form (and must be provided by
the obtained environment—this is checked only once at im-

portation time, that is linking time) or, must be present in
the lexical environment of the import form. Reciprocally, a

local variable is either exported or not. This first case occurs
when an export form mentions the local variable (implicitly

or explicitly) from within its binding scope. This catego-
rization of free and local variables is statically decidable: we

name it the quasi-static discipline in honor of [LF93] who
introduced the term ‘quasi-static”.

Note that (export v+) and (import (v+) . . .) restrict
the first-class environment to only contain the v+ variables.

This is also the case of (import () . ..) which restricts the
imported environment to all the possible variables i.e. the

free variables of its body. On the other hand, (export) lets
the caller grab the entire lexical environment with all the

variables it contains or potentially contains if extensible; see

section 4 below.

3 Examples

This section presents some examples involving importation
and export ation. This first example creates then exports
locations containing values. It shows that it is possible to

alter the exported environment from the outside with values
computed as if evaluated inside. This facility is important

252

Vc Id
a E Loc = Address+ {non-existent-variable}
p c Env = Id x Store x (Store x Loc ~ Answer) ~ Answer
K E Cent = Value x Store * Answer
u G Store = Loc * Value

c G Value =Fun+Env+Id+ . . .

We Fun = Value* x Cent x Store + Answer

(qv] p K CT= (p v a Aa’ci.(lt ((Y’ a) u’))

t~(set ! v 7r)] p ~ u = ~[7rJ p Asu’. (p v u’ ,lu’’a.(~ e a“[cr + e])) a

~~(lambda (v*) m+)] p K u =

(K inValue(k*6’c7’. if #e* = #v*

then allocate u’ #v* k“a”.~+~r+] p[v” L a*] R’ U“[CY* A c*]

else wrong “Incorrect arity” en~lf) a)

F.[(7r 7r*)] p 6 a = E[m] p k+Yu’.E*[7r*] p Ae*a’’. (p [Fun e’ K a“) u’ u

t+[m7r+] p K a = &[7r] p A&u’.t+[7r+] p K d u

t+[7r]p Kcr=z[7r]p KC7

&*[Yr T*] p K a = C5[?r] p h7’.t*[7r*] p A&*u’’.(x (.S)$E* a“) a’ a

t“[]plccr=(fcocl)

U. = kx. wrong “Uninitialized address”

Table 1. Denotational semantics of a subset of Scheme

pl = Avuq.(q a nora-ezisterat-uariabie)

p\V = Mug, if v = v’ then (p v a g) else (q u non-existent-variable) endlf

P\{v .*} = (P\u) @ (P\{u”})

P\{} = PL

(p) @ (p’)= Avaq.(p v a Au’a. if a = nora-ezident-uarialde then (p’ v a’ q) else (q a’ a) endif)

p[v + a] = Av’aq. if U’ = v then (q a a) else (p u’ a q) endif

p[v* 2 a“] = if #v* >0 then p[v” ~ 1 ~ cr” t l][v*JI+ CY*J1] else p endif

(P) 3 {}w = (~ ~)

(p) 3 {v v’ }aq = (p v a h’a. if a = non-ezistent-uariabie then wrong “Missing variable” else (p) 3 {v* }u’q endif

Table 2. Auxiliary functions for environment

253

for debugging, profiling, instrumenting, or upgrading pro-

grams as well as for autoload functions. An export form is
a mechanism that extends the scope of the exported vari-

ables. Reciprocally, import forms provide the regions where

this scope do extend.

(clef ine (create-stack . content),. .,,. .\\ ... , ,., ,
\Lez [Ccounrer -1) j ; znwouuce local

(define (push x) ; define push
(set ! counter (+ counter 1))
(set ! content (cons x content)))

(define (pop) ; define pop
(if (pair? content)

(let ((top (car content)))
(set ! content (cdr content))
top)))

(push (length content)) ; pe?form some Computation
; ; export three local bindings and one global

(export counter + push pop)))

(let ((stk-env (create-stack 11 22 33 44 55))
(+ *))

; ; import only push, pop and counter

(import (push pop counter) stk-env
(set ! pop (let ((old-pop pop))

(lambda ()

(import (+) stk-env
(set ! counter (+

(old-pop)))))

(push (+ (pOp) (pOp))))
(import (counter) stk-env

counter)) +3

; modify pop

; import +
counter 1))

; three operations

; import counter

The first program defines a generator of stack utilities to
be gathered in a first-class environment. The second pro-
gram creates such a first-class environment then imports it
for some computations (redefining the pop location to count

the number of times it is invoked) and, finally, reads the
count er variable. Observe that these importations do not
shadow the local variable st k-env nor the global variable *.
Observe also that the redefinition of pop is possible since the

stk-env environment captures the location of pop and not

only its value. Moreover the new value of pop is evaluated
after importing the same addition function that the original

push was using, and of course the same counter variable.

3.1 Modules

A reverse view would be to fill externally provided locations
with values. In the first case, the definer of the program
builds a ready-to-use environment while in the second case
the definer only provides a function, a module, that installs
a set of values into locations provided by the client of the
module. Here is an example of that second technique:

(define (install-stack-module env)

(import (push pop counter) env ; acquire locations

(let ((content ‘()))
(set ! push (lambda (x) ; install push

(set ! counter (+ counter 1))
(set ! content (cons x content))))

(set ! pop (lambda () ; install pop

(if (pair? content)
(let ((top (car content)))

(set ! content (cdr content))
top)))))))

(define counter O)

(define (get-pusher)

(let ((push ‘wait) (pop ‘wait)) ;provide locutions
(install-stack-module (export counter push pop))
push))

(define synchronous-push
(let ((pushers (list (get-pusher) (get-pusher))))

(lambda (x)
(for-each (lambda (push) (push x))

pushers))))

In this example, the get-pusher function inst alk the

push function twice, into two distinct but similar environ-
ments. The synchronous-push function just pushes its ar-

gument onto two different stacks. Note that counter is
shared by these two installations so both push functions in-

crement the same counter. This is an example where map-
ping two a priori different variables onto the same location

offers a customization that was not explicitly apparent in
the install-stack-module code and difficult to implement

if only values were exported.

Our view of “module” should not be confused with the
“unit of compilation” concept (sa provided by compilers
such as Bigloo) where the goal is efficiency rather than re-
usability.

3.2 Objects

The relationship between objects and first-class environ-
ments haa been studied for long and bsaicalIy the examples
we could provide with our special forms would be in spirit

similar to those of [L F93]. Nevertheless we do not think
this is a good idea since one of the critical point for method
lookup is the ability to test efficiently the class of an object.
The class-of function that returns the class of an object
would be something like:

(define (class-of o)
(import (class) 0 class))

The linking cost of that import form is much higher than
the execution cost of its body because the location of class

254

is not necessarily in a fixed position in the first-class envi-
ronment o and must be looked for dynamically.

3.3 Enquiring closures

Some Scheme implementations provide a function, proce-

dure->envirorment, that given a closure returns the en-

vironment it closed. This is a dangerous feature since it

has to be precisely defined and may break previous op-

timization. For instance in the following example, does

(procedure-> environment foo) contains y and does the
addition disappear since x is zero ?

(define foo
(let ((x O)(y ‘foo))

(lambda (Z) (+ X Z))))
(import (x y) (procedure-> environment foo) ; import y f?

(set! x y)) ; change x to a non-number !?

To open up a closure should not break the compilation
of the associated function, just as the exportation of a lo-

cation must not break the exporting code. It is therefore

necessary to know statically which variables may be ex-
ported, so the compiler can be cautious with these variables.
We therefore introduce a new syntax to define a function

and the environment it may export. Let’s call this syntax

enquirable-lambda and suppose the existence of a couple
of functions (using ad-hoc primitives, hash-tables, whatever)
associating/retrieving a value to/from a closure. Of course,
to store this value in the closure object itself would be the

best implementation.

(define-syntax enquirable-lambda
(syntax-rules ()

((enquirable-lambda exporting formals body . . .)
(let ((proc (lambda formals body . ..))

(env (export . exporting)))
(set -exported-env ! proc env)
proc))))

(define (procedure-> environment proc)
(get-exported-env proc))

A generic function, as in CLOS [BDG+ 88], may look for
a method in a dispatch table, held in some closed variable,
according to the class of a receiver. This dispatch table haa

also to be made available to the general outer add-method!

function to be enriched with a new method. A good way

to extract a dispatch table from a generic function is to use
our previous enquirable-kunbda facfity:

(define-syntax define-generic
(syntax-rules ()

((clef iue-generic (selector receiver arguments . ..))
(define selector

(let ((dispatch-table (initial-dispatch-table)))
(enquirable-lambda (dispatch-table) ; erpo~t

(receiver arguments . ..)

((lookup-method dispatch-table
(class-of receiver))

receiver arguments . . .)))))))

(clef ine (add-method! generic class method)

(import (dispatch-table) ; import
(procedure-> environment generic)

(augment-dispatch-table !
dispatch-table class method))

generic)

3.4 Dynamic evaluation

The import form may be viewed as a kind of “static” eval
facility where it is possible to evaluate some static forms r+

in a dynamically chosen environment. The difference from
a full-fledged eval is that here the forms to evaluate are

known statically and all the bindings they need must exist
beforehand: there is no possible incremental definition i.e.

dynamic creation of new bindings.

The import form corresponds to the many cases where

eval is invoked on a backquot e form as suggested by the

following approximate relation (paying attention to the pos-

sible lexical capture of variable x):

(eval ‘(... ,x . ..) env) N (import (x) env (... x . ..))

Toplevel facilities that acquire dynamically the forms to

evaluate (i.e. performing something like (eval (read)))
cannot be helped by our import form. However, our import

form do correspond to the cases where some code has to
be evaluated in some environment and it is not possible to

write this code in the scope of that environment. This im-

possibility may occur for many reasons; for example, the

size of the code may make it unmanageable in a single file,
or some deferred user code (hooks) may be allowed to cus-

tomize a predefine library. Even if a direct programmation
would not have used eval but objects instead, here follows

a realistic example where a byte-code machine may be dy-
namically instrumented from the outside.

(define (build-machine)
(define bytes *(255))
(define PC O)
(define val ‘wait)
(define env)())
(clef ine (wrong) “no such opcode”)

(let ((opcodes (make-vector 256 wrong)))
(define (run)

(let* ((byte (vector-ref bytes PC))
(0p (vector-ref opcodes byte)))

(set! PC (+ PC i))
(Op)))

(define machine-env
(export bytes PC val env opcodes

wrong run machine-env))

(vector-set ! opcodes O run) ; nop
machine-env))

(define machineO (build-machine))

(import (opcodes bytes PC val run) machineO
(vector-set ! opcodes i ; load-quick

(lambda ()

(set ! val (vector-ref bytes PC))
(set! PC (+ PC i))

(run)))
(vector-set ! opcodee 2 ; exit

(lambda () val))
(set! bytes *(O i 23 2))
(run)) + 23

The load-quick bytecode instruction is synthesized out
of the definition of the build-machine abstraction but as if

it were defined in. The load-quick instruction just loads the
val register with the next bytecode.

While import allows to evaluate some code as if con-

t ained in some environment, import is free of leakage. The

following example leads to an error since it is not possible
to extract build-machine from machineO:

(import () machineO
(export build-machine))

4 Library

The export special form is currently the only way to cre-

ate first-class environments. It is a simple step to enrich

255

the model with regular side-effect-free functions that create
or manage first-class environments. These functions give

the user access to the auxiliary functions of the denotation:

one may create an empty (or arid [L F93]) environment with

create-empty -environment; see table 4.

The maior innovation is the introduction of extensibleu
environments. An extensible environment is an immutable
first-class value that contains all possible variables. The

trick is whenever an identifier is looked for in an extensible
environment that does not contain it yet, a new location is

associated to it and recorded. Therefore no identifier can be
found not to belong to an extensible environment! Thk is

this feature that imposed thesi nature of Env. Extensible
%environments are created by C? ; see again table 4. An

extensible environment uses a location as a place holder for
the actual environment it stands for and this location is

initialized with pL.

4.1 letrec visited

Extensible environments stand for environments in which all
possible variables are bound to locations [CR91, ~ 5.2.1]. To
say that variables are bound does not mean that they are ini-

tialized: they are not, and it is an error to ask for the value of

an uninitialized variable. The crest e-complet e-environ-

ment function creates a new extensible environment where
all possible variables are uninitialized. It is therefore possi-

ble to define letrec aa a regular syntax without resorting
to the existence of the necessarily non existent <undefined>

value as done in [CR91, $ 7.3]. We neglect here the order of

evaluation to simplify the expansion:

(define-syntax letrec
(syntax-rules ()

((letrec ((var val) . ..) body...)

(import (var . . .) (create-complet e-environment)
(set! var val) , . .
body...))))

The local variables of the letrec form are looked for
in the extensible environment created, and their associated

locations are of course found since this is an extensible envi-
ronment. The initializing assignments are evaluated in that

environment followed by the body of the letrec form. If
some variable is referenced before being assigned then an

error will be raised since the variable was created uninitial-
ized in the extensible environment.

Although extensible, a smart compiler may notice that
the locally created environment is only used for a fixed num-
ber of variables that are not reexported (unless the body
contains such an export form). Therefore the environment

does not need to be actually extensible. On the other hand
the compiler haa to be cautious when referencing an im-

ported variable and check whether it is initialized or not. It

is possible to perform an approximate analysis [Que94, p.
389] to discover some surely initialized variables and avoid

checking them.
This new definition of let rec is intended to be an expla-

nation not a actual implementation. Compilers should still
consider letrec as a primitive special form.

The technique used to illustrate a correct expansion for
letrec i.e. introducing new uninitialized locations out of

an extensible environment may be turned into a syntax, say
uninitialized-let, but may also be used to shadow i.e.

exclude some locations from an environment as in:

(import (ezcluded variables)
(create-complet e-environment)

(export))

4.2 Linking environments

The chain-environment function allows us to use the @ op-

eration and thus to compose environments piece by piece.
To chain an extensible environment with anything is mean-

ingless but the reverse is really useful. Suppose that the ini-
tial environment contains all the predefine variables, then

this environment may be reified with an (export) form and
stored in the scheme-env variable. Chaining scheme-env

with an extensible environment allows multiple users to share
a common environment with their own additional bindings

gathered in the second part of this environment. See sec-
tion 6.3 for a different solution where users’ bindings are
recorded before the initial environment and may thus shadow
initial bindings. A function to create such toplevel environ-

ments may be defined as:

. . .
(set ! scheme-env (export))

.,.
(define (create-user-toplevel-environment)

(chain-environment scheme-env
(create-complete-environment)))

Our proposed special forms do not provide control of the

mutability of bindings, therefore the previous solution does
not prevent s theme-env from being mutated. This point

will be addressed later in section 6.4.

Chaining does not mean that the environments involved

are really chained by the implementation; see section 5.

A common problem of first-class environment lies with
increment al definition [RAM84, MR91, Tun92] which re-
quires adapting the resolution of free variables to the evolu-
tion of first-class environments. More precisely, the problem
arises when the current lexical environment is (p) @ (p’). If
p is an environment not containing a variable X then the
location associated to X must be provided by p’. Now, if p is

mutated to contain X then thk new definition dynamically
shadows that of p’. Such a change is against quasi-static

discipline and is not possible in our model since our envi-
ronments are immutable. Even if p is an extensible environ-

ment, it totally shadows p’ and it is pointless to chain it in

front of any other environment. The magic also comes from
import which is a special form and not a function as eval;

see section 3.4.
We do not think that this position is against interactive

modular programming [Tun92] as one can recreate a new
environment excluding some locations, but rather suggest

that it avoids subtle bugs as names clashes should not be
automatically ignored and it avoids developing sophisticated

implementation techniques to ensure efficiency.

To export the entire environment is dangerous: it de-
grades efficiency since all locations may potentially be mu-
t ated and therefore prevents optimization. It is neverthe-

less mandatory if one wants to reify the entire state of com-
putation. Given the semantical gap between (export v)
and (export), the latter might be renamed (the-environ-
ment) to prevent hazardous typos.

5 NaYve implementation

Fundamentally a first-class environment is nothing more than

an unordered set of second-class named locations and can
be implemented ss a table (possibly accessed with some

256

[create-empty-environment] +

inValue(Je*Ku. if #e* = O

then (K itavalue(pl) a)

else wrong “Incorrect arity” endif)

[chain-environment] +
inValue(k*mY. if #c” =2

then(~ inValUe((&* lllE..) @(6*l2lE.v))~)

else wrong “Incorrect arity” endif)

(a’a) =

~1/~q. let~=(d~) IE”v

in(p v a Aa’a’. if a’ = non-exigtent-variable
then allocate a’ 1 Aa’’a’. lets’’=cr*Jl

in(qa’’[a-+ inValue(p[v +cr’’])] a“)

else (q a’ a’) endif)

[create-complete-environment] +

inValue(Ae*m7. if #e* =0

then allocate u 1 ~a’a*.(K inValue((flTw* JI)) a’[a’ Jl+ inValue(p~)])

else wrong “Incorrect arity” endif)

Table 4. Environment related functions

[environment-get] +

inValue(Ae*Ku. if #e” = 2
then let p = e* llIE..

and v = e* 1211~

in (p v a Au’a. if a = non-existent-variable
then wrong Won existent variable”

else (K (a~cv) u’) endif)
else wrong “Incorrect arity” endif)

[environment-present?] +
inValue(Ae*mY. if #e* = 2

then let P=e*ll[E.v

and v = e“ J211~

in(pva~a’a.(fi inValue(a #non-e#istent-variable) u’))

else wrong “Incorrect arity” endif)

[environment-rename] -.-+
inValue(k*tcu. if #c* = 3

then let/2=&*lllEnv

and v = E* J.211d

andv’ = e* J3114

in(p v a Aa’a. if m = non-existent-variable
then wrong ccNon existent variable”

else (K inValue(p[v+ non-esistent-variable] [v’+ a]) a’) endif)

else wrong ’’Incorrect arity” endif)

[environment-enrich] +

inValue(A&*Ku. if #e* = 2
then letp=e*Jllm.v

and v = e* J211~

inallocateol Aa’cr*. (K inValue(p[v +cr*Jl]) a’)
else wrong “Incorrect arity” endif)

Table 5. Environment related reflective functions

257

hash coding if its size or extensibility justifies this) map-
ping names to their associated locations; see figure 1.

1st-class environment location

nameO
I +

I I

name2 II t valueO

o
Figure 1. First-class environment

Let’s suppose that the lexical environment is represented

by linked lexical contours i.e. sequences of locations. An-
other technique to implement first-class environment [Que94,

p. 269], improving multiple reification of similar environ-
ments (see figure 2), is to pair the current lexical environ-
ment with a (static) table mapping names to their associated
lexical indexes (i, j) where j is an offset in the Z’h contour.

The cost of reification is small but the linking time is slowed
down and too much oft he current environment is captured.

Ist-class environment

F

~meo iO jO

mmc 1 il jl

narne2 i2 j2 “

...

-rj2

Lexical environment

H
...

value2

o
Figure 2. Variant of first-class environ-

ment

When importing a first-class environment, there is al-
ways a finite number of statically known variables to resolve
in that environment, that is the given variables of the import
form, or the free variables of the body of the import form.
Wenow suppose that these variables are gathered in anim-

port contour map.

Before evaluating the body of import, a fresh contour is
allocated and for each variable of the contour map, its loca-
tion is dynamically looked for in the first-class environment
and copied, according to the contour map, in the fresh con-

tour; see figure 3. Access to these variables passes through
this new contour. For instance, a reference to the imported

nameo variable (stored at position z in the import contour
.th

map) will be compiled by fetching the z content of the
fresh import contour, dereferencing it into the location hold-

ing the value. Note that the body of the import form does
not need any longer the names of the imported variables,

their rank in the import contour map is sufficient. However
the names are required at link-time to fill the fresh contour.

The additional cost of accessing such an imported vari-

able is just one indirection and a check that it is not unini-

tialized. This mechanism is reminiscent of the closure cre-
ation of the FAM [Car84]. Any missing variable is immedi-

at ely report ed, so no other test is needed when evaluating
the body of the import form. The real cost of an import

form is concentrated in the linking cost, that is the research

of the required named locations when building the contour

for the import form.

1st-class environment location

T~’~eo

(fresh
import contour lexical environment

FTFT-””’
L
I

I I
-’\ L--l\

-.. “,.imw.conto.rnw
r-Q.\ ‘\

‘.’’.”. n
\’ \\

\\ aname(l
\

.

i

Figure 3. Lexical environment at import
time

As mentioned earlier, some improvements are possible

when an extensible environment is explicitly imported: this.“
is quite similar to the optimization where a com~ination has

an exphcit 1ambda form as operator.

6 Reflective aspects

It is clear from the information gathered in a first-class en-
vironment that, given the name of a variable, its associated

value may be found dynamically and/or mutated (if allowed;
see section 6.4 below) in this environment. It is also easy to

determine whether a name is present or not in a :lirst-class
environment. The environment-present? predicate (see

table 5) corresponds to a stable property: its answer cannot
vary. To check whether a binding is initialized is a different

predicate whose answer may evolve from false to true.
If the language provides an object system, a simple way

to offer reflection over first-class environments is to make
them regular objects. Otherwise, specific functions may be
offered. Observe that, conversely to other proposals for first-
class environment [RAM84, MR91], the presence of these
additional functions is completely independent of the im-
port ation mechanism and does not impact it.

258

(set ! the-enviroment (export)))6.1 Renaming

An interesting effect might be achieved if one is allowed

to create a modified copy of a first-class environment: it

is then possible to change the name under which a loca-

tion is exported, thus providing a renaming facility for ex-

ported environments; see function environment-rename in

table 5. Renaming is not universally recognized as a good
tool [DPS94] but we think in a more and more persistent,

multi-user world, name clashes are very likely to happen.
This renaming facility may accompany cr-conversion to

still produce a first-class environment defining the same set
of names. The renaming work is done at run-time and does
not impact the compilation of the import form since the

compiled code only depends on the presence of some loca-
tions in some well defined place (the import contour) and is

independent of the names that were used to find these very
locations.

6.2 Extension

Another interesting effect is to enrich a first-class environ-
ment with a given name. The enrich-environment function
may be given a name v and an environment p and returns
a new first-class environment, the equivalent of

(import (v) (create-complete-enviroment)
(chain-environment (export v) p))

In the resulting environment, the name is associated with
an uninitialized location. Note that the environment which

is extended, p, is not mutated even if extensible.

6.3 Toplevels

All these functions allow us to precisely and reflectively en-
quire and control first-class environments without impeding
the semantics and the efficiency of the exportation/impor-
tation mechanism. They allow us to make completely ex-

plicit the work of a toplevel loop (aa in [GJL87]) that reads
a program r, extracts its free variables fiv(rr) while an-

alyzing (expanding, compiling) it, turns the program into
a module corresponding to (lambda (r) (import (Y~(~))

r m)), selects one environment in which to evaluate it, en-

riches that environment with the free variables (or checks

that they are already present) and, finally, evaluates the
above entity. Depending on the chosen environment, one

may only access a restricted set of variables, share a common
environment with others or even create one’s own private ex-
tensible environment as shown in the following example:

(define (create-user-toplevel-loop read initial-env)
(letrec ((the-environment

(chain-environment (export the-environment)
initial-env)))

(let loop ()

((turn-into-module (read)) the-environment)

(loop))))

(create-user-toplevel-loop

read- from-windowO pure-scheme-env)
(create-user-toplevel-loop

read-f rom-windowl (create-user-toplevel-environment))

Within these two toplevel loops, one may read and write

the the-environment variable. In the first, one has no access
to the create-complete-environment function but may al-

ready simulate hyperst atic environment d la ML just by say-
ing:

(letrec ((fact . . .))

By storing previous values of the-environment and rein-

stalling them, one is also able to regress in time or to switch

among many different environments that may be managed

as any other first-class value. The second toplevel 100P is

much more permissive.

6.4 Mutability

Currently, if a variable is exported, all its importers may
mutate it, even if the author of the module did not want

it. It is therefore necessary for the module author to re-
strict writing access to some exported variables. One way

to achieve this is to only export observer functions as sug-

gested in [FF86, Tun92] but this prevents the importation
of mutable locations such as the errno variable from the C
library. Another way is to enhance the syntax of export to

specify which variables are exported read-only. Since export

forms are special, they cannot be ignored by the compiler
which exactly knows the statue of every variable.

On the import side, the linking phase may check, when
an imported variable is assigned in its body whether the
import ed environment allows it or not. Finally, a regular
function can also be offered to make read-only a named lo-
cation of a first-class environment. Note that only the en-

hanced export form allows the compiler to better handle
non-assigned variables that are exported read-only.

7 Related Works

Pebble [BL84] introduced first-class bindings somewhat sim-
ilar to first-class named locations (except that variables were

immutable). Bindings may be paired to form first-class en-
vironments. Bindings may be made active in a scope using
LET form. Nevertheless this form does not exactly comply

with quasi-static discipline since variables cannot be unam-

biguously resolved with their sole names. This is, for in-
st ante, the case for x, in LET x w 3 N LET b ~ x, whose

meaning depends on the actual type of b that may or may
not contain a binding for x. An expression may be isolated

from the current lexical context with IMPORT corresponding

to our (import () . . .) form.

Importation and exportation were analyzed in [FF86] in

terms of syntaxes, that is without introducing new primi-
tive special forms to Scheme. They essentially export values
rather than locations. This is most of the time sufficient

since values may be closures capturing mutable locations
and offering some protocol to mutate them, delay their ini-
tialization etc. Nevertheless it is not possible to really share

locations not containing functions nor to reify the entire en-
vironment and these are precisely the aspects our special

forms were made for.

The module system of [CR90] for Scheme favors static

development of large applications rather than dynamic cre-

ation of first-class environments. This is mainly due to the

presence of syntaxes whose expansion must be controlled
statically (as in [QP91, DPS94]) and to the research of ef-
ficiency, which requires accompanying locations with extra

information qualifying their content and chiefly their type.
Nevertheless we believe that our proposal is more useful in
a context where many programs will be reused not through
their text but from their runtime appearance.

First-class environments were known in T as locales but
are also present in MIT-Scheme; a detailed presentation ap-

259

pears in [MR91]. Environments are created with make-env-
ironment and they are all ext ensible since computations

may be performed in any first-class environment using a bi-

nary eval function. Therefore it is not possible to capture

a finite set of locations and the problem of incremental defi-
nition occurs negating the quasi-static discipline. Apart the
runtime burden suffered by eval which, compared to our
import, has to compile expressions on the fly, a very efi-

cient implementation of dynamic resolution of variables is
proposed.

Interactive modular programming [Tun92] aims to allow

the concurrent development of code within distinct module

environments. Definitions are qualified as private or public
to specify their scope. It is interactively possible to add or

retract importations of modules inside a module environ-
ment; these operations affect the resolution of variables and
thus negates quasi-static discipline.

Reflective first-class environment appear in [Jag94]. Im-
portation and exportation are accomplished with operations
respectively named reflect and reify. To ease the implicit
manipulation of environments, these operations may have an
additional argument: a closure standing for its closed envi-

ronment. Variables may be qualified aa public and are thus
automatically capt urable by a (reify) form. Reification

barrier may also be installed to limit these captures. The

implementation suggested in section 5 is similar to the “local

caching” strategy of [Jag94].

The closest work is [LF93] whose goal was similar to us

i.e. to share locations; they introduced the “quasi-static”
concept from which we derive the quasi-static discipline that

allows variables to be unambiguously resolved once and for
all, a paramount quality in our eyes. They introduce two
new special forms: qs-lambda and resolvel. A quasi-static
procedure is returned by qs-lambda and represents a pa-

rametrized piece of code which may be applied as any reg-
ular function but may also be made more static if resolving

(with resolvei) one of its parameterizing variables to some
location. We consider this double behavior as a nuisance

and favor first-class environment on which there exists a
unique operation: the importation. Renaming is natively

offered by qs-lambda aa well as an original lexical inheri-

tance mechanism relating parameterized variables of nested
qs-lambda forms. We instead provide renaming and ex-
tension of first-class environments by functions that do not
impact our import form. We also offer the possibility to
manage implicit sets of free variables and extensible environ-

ments therefore providing a substrate on which it is possible
to build or describe interactive toplevel loops.

8 Conclusion

The Scheme Repository is an example of an Internet re-

source containing interesting programs. Its usability is com-
promised by, at least, the presence of heterogeneous macros
and implicit assumptions on how to process that code (com-
pile, load, eval and their variation). After macroexpansion,
such programs may be made more sharable if packaged as
pure Scheme textual modules expecting an environment pro-
viding the required locations.

If the Net soon appears as a big repository of values

and programs then to be able to capture these locations or
vaJues for later use will be of primary importance. Parts

of applications may be released as modules and thus may
be automatically upgraded whenever their imported loca-

tions are upgraded. To avoid these dependencies, other parts

may be delivered as ready-to-use values or first-class envi-

ronments. In both cases, first-class environments are “mod-
ern hooks” that represent a simple and controlled way to

customize packages by operating on the true (locations of)
variables.

Were we to summarize the significance of our paper, we

would say that (i) it binds quasi-static variables with first-

class environments, (ii) it introduces extensible environ-

ments avoiding the increment al definition problem, (iii)

it reconciles efficiency of first-class environment and some

reflective operations, (iv) it makes a clear distinction be-
tween the orthogonal roles of mapping names to locations
and locations to values.

Acknowledgments

Many thanks to Luc Moreau and the program committee
for their enlightning comments.

Bibliography

IBDG+ 881 Daniel G. Bobrow, Linda G. DeMichiel, Richard P.

[BL84]

[Car84]

[CR90]

[CR91]

[DPS94}

[FF86]

[FW84]

[GJL87]

[Jag94]

Gabriel, Sonya E. Keene, Gregor Kiczales, and
David A. Moon. Comon lisp object system specifi-

cation. SIGPLA N Notices, 23, September 1988. spe-

cial issue.

R BurstalJ and B Lampson. A kernel language for

modules and abstract data types. Technical Report 1,
DEC – SRC, September 1984.

Luca Cardelli. Compiling a functional language. In
Conference Record of the 1984 ACM Symposium on
LISP and Functional Programming, pages 208–217,
Austin, Texas, August 1984. ACM Press.

Pavel Curtis and James Rauen. A module system for

scheme. In Proceedings of the 199o ACM Conference
on Lisp and Functional PTogvamming, Nice, France,
June 1990.

William Clinger and Jonathan A Rees. The revised4

report on the algorithmic language scheme. Lisp
Pointer, 4(3), 1991.

Harley Davis, Pierre Parquier, and Nitsan %&k.
Talking about modules and delivery. In Proceed-
ings of the 1994 ACM Conference on Lisp and
Functional P.ogrammming, pages 113–120, Orlando
(Florida USA), June 1994. ACM Press.

Matthias Felleisen and Daniel P. Friedman. A closer
look at export and import statements. Journal of

Computer Languages, 11(1):29-37, 1986.

Daniel P. Friedrrmm and Mitchell Wand. Reifica-
tion: Reflection without metaphysics. In Confer-
ence Record of the 1984 ACM Symposium on LISP

and Functional Programming, pages 348–355, Austin,
TX., August 1984.

David Gelernter, Suresh Jagannathan, and Thomas
London. Environments as first-class objects. In Con-
ference Record of the Fourteenth Annual ACM Sym-
posium on Principles of Programming Languages,
pages 98–110. ACM Press, January 1987.

Suresh Jagannathan. Metalevel building blocks for

modular systems. ACM Transaction on Progmm-
ming Languages and Systems, 16(3):456-492, May
1994.

260

[Lam88]

[LF93]

[MR91]

[OUS93]

[QP91]

[Que94]

[RAM84]

[sun95]

[Tuu92]

John Lamping. A unified system of pararneterization
for programrm “ng languages. In LFP ’88- ACM Sym-
posium on Lisp and Functional PTogvamming, pages

316–326, Snowbird, Utah, July 1988. ACM Press.

Shinn-Der Lee and Daniel P IMedman. Quasi-static
scoping: Sharing variable bindings across multiple
lexical scopes. in POPL ’93 – Twentieth Annual
ACM symposium on Principles oj Programming Lan-
guages, pages 479–492, Charleston (South Carolina,

USA), January 1993. ACM Press.

James S Miller and Guillermo J Rozas. Free vari-
ables and first-class environments. Lisp and Symbo Iic
Computation: An International Journal, 4(2):107-

141, 1991.

John K Ousterhout. Tcl and the Tk Toolkit. Addison-
Wesley, 1993.

Christian Queinnec and Julian Padget. Modules,
Macros and Lisp. In Eleventh International Confer-

ence of the Chilean Computer Science Society, pages
111–123, Santiago (Chile), October 1991. Plenum

Publishing Corporation, New York NY (USA).

Christian Queinnec. Les langages Lisp. Interl&li-

tions, Paris (France), 1994. ISBN 2 7296 0549 5,
61 24481, English version soon available from Cam-
bridge University Press.

Jonathan A. Rees, Norman I. Adams, and James R.

Meehan. The T Manual, Fourth Edition. Yale Uni-
versit y Computer Science Department, January 1984.

Sun Microsystems. Java Language Specification,
1995.

Sho-Huan Simon Tung. Interactive moduiarprograrn-

ming in scheme. In Proceedings of the 199.2 ACM
Conference on Lisp and Functional Programming,
pages 86–95, San Francisco, USA, June 1992.

261

