Check for
Updates

A Probabilistic Relational Model
and Algebra

DEBABRATA DEY and SUMIT SARKAR
Louisiana State University

Although the relational model for databases provides a great range of advantages over other
data models, it lacks a comprehensive way to handle incomplete and uncertain data.
Uncertainty in data values, however, is pervasive in all real-world environments and has
received much attention in the literature. Several methods have been proposed for incorporat-
ing uncertain data into relational databases. However, the current approaches have many
shortcomings and have not established an acceptable extension of the relational model. In this
paper. we propose a consistent extension of the relational model. We present a revised
relational structure and extend the relational algebra. The extended algebra is shown to be
closed. a consistent extension of the conventional relational algebra, and reducible to the
latter.

Categories and Subject Descriptors: F 4.3 [Mathematical Logic and Formal Languages|:
Formal Languages—algebraic language theory, G.3 |Probability and Statistics|: Statistical
Computing: H.2.1 |Database Management|: Logical Design—data models; H.2.3 |Database
Management|: Languages—data manipulation languages (DML), query languages; H.2.8
|Database Management|: Database Applications; 1.2.3 |Artificial Intelligence|: Deduction
and Theorem Proving—uncertainty, “fuzzy,” and probabilistic reasoning

General Terms: Languages, Theory

Additional Key Words and Phrases: Data uncertainty, data incompleteness, probability
calculus, probabilistic relation, relational model, relational algebra

1. INTRODUCTION

Over the last two decades, relational databases have gained widespread
popularity and acceptance in business information systems. Early database
systems, based on the hierarchical or the network models, are rapidly being
replaced by newer products based on the relational model. The primary
reason for this shift is the fact that relational databases provide a great

This research was partially supported by the College of Business Administration, Louisiana
State University.

Authors’ address: Department of Information Systems and Decision Sciences, College of
Business Administration, Louisiana State University, Baton Rouge, LA 70803; Dey email:
gmdev@unix1.snce lsu.edu: Sarkar email: gmsark@lsuvm snee.lsu.edu

Permission to make digital/hard copy of part or all of this work for personal or classroom use
15 granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and 1ts date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers. or to redistribute to lists, requires prior specific permission
and ‘or a fee.

© 1996 ACM 0362-5915/96/0900-0339 $03.50

ACM Transactions on Database Systems, Vol. 21, No. 3. September 1996, Pages 339-3689

http://crossmark.crossref.org/dialog/?doi=10.1145%2F232753.232796&domain=pdf&date_stamp=1996-09-01

340 . D. Dey and S. Sarkar

range of advantages, such as access flexibility, logical and physical data
independence, data integrity, reduced (and controlled) data redundancy,
and enhanced programmer productivity. Unfortunately, the relational
model does not have a comprehensive way to handle incomplete and
uncertain data. Such data, however, exist everywhere in the real world.
Having no means to model these data, the relational model ignores all
uncertain data and focuses primarily on values that are known for sure;
uncertain data items are represented using “null” values, which are special
symbols often employed to represent the fact that the value is either
unknown or undefined [Maier 1983; Date 1986]. Consequently, relational
databases do not yield satisfactory results in many real-world situations.
Consider, for example, the case where a database is used to monitor
locations of battleships during a war {Wong 1982]. 1t is clear that, for every
decision (regarding deployment, battle, or other operations), it is essential
to consider the approximate locations of the ships. Since the relational
model cannot represent the inherent uncertain nature of the data, it cannot
be used directly.

Similarly, a financial institution may be interested in storing some
non-deterministic attributes of different companies for the purpose of
making the right investment decisions (Barbard et al. 1992]. Marketing
and production decisions are mostly based on expected customer behavior
patterns, which are seldom deterministic. Similar examples are plentiful in
the literature [Wong 1982; Buckles and Petry 1983, 1984; Prade and
Testemale 1984; Zemankova and Kandel 1985; Barbara et al. 1992]; they
all point towards the need for an extension of the relational model so that
uncertain data can be supported. To that end, we propose an extension of
the relational model—the probabilistic relational model (PRM). The main
contribution of this work is the following: (i) a probabilistic relational
model with relations abiding by first normal form (INF), and (i1) an
associated algebra that is closed, a consistent extension of the traditional
algebra, and reducible to the latter. We propose appropriate integrity
constraints and discuss null values within the context of a probabilistic
model.

The rest of this paper is organized as follows. Previous research dealing
with data uncertainty is examined in Section 2. Section 3 discusses the
proposed approach. The relational algebra for this approach is discussed in
Section 4. Section 5 discusses some properties of the relational algebra.
Incompleteness in the joint probability distribution of objects is treated in
Section 6 as an extension of the proposed algebra. Section 7 concludes the
paper and offers future research directions.

2. PREVIOUS RESEARCH

Previous research in the area of data incompleteness and uncertainty falls
into four different categories. The first category deals with extending the
relational algebra to handle “null” values and provides the semantics of
“null” values [Codd 1979; Maier 1983; Date 1986]. These representations

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

A Probabilistic Relational Model . 341

using “null” values assume that data values are either known with cer-
tainty or they are unknown. This assumption, however, is too restrictive to
model most real applications, and hence, this approach is not useful for our
purpose. Lipski [1979] discusses the semantic issues of representing data
incompleteness using “null” values. He introduces the concepts of internal
and external interpretations of a query under the closed world and open
world assumptions, respectively. Although his scheme is more expressive
than the usual interpretation of “null” values, it still cannot express the
stochastic nature of data.

The second category deals with the uncertainty involved in the retrieval
of incomplete data and the costs of data incompleteness. Wong [1982],
Mendelson and Saharia [1986], and Dey et al. [1995] assume that, while it
is possible to do so, data items are not described completely because of the
high associated cost. These investigations provide a framework for perform-
ing design time cost-benefit trade-off analyses to decide how much data to
store. They all model the information retrieval and decision-making under
uncertainty that results from data incompleteness, but ignore the inherent
uncertainty associated with the data items themseives. However, many
attributes of the real world—such as stock prices, weather reports, cus-
tomer satisfaction, and future demand—are inherently stochastic. As a
result, contrary to their assumption, the uncertainty associated with these
data items cannot be completely avoided. In summary, these models are
useful tools for deciding on desired levels of data storage, but are not
adequate for the representation of data uncertainty.

The third category models data uncertainty using fuzzy set theory
{Buckles and Petry 1983, 1984; Prade and Testemale 1984; Zemankova and
Kandel 1985]. The typical assumption in these models is that some at-
tributes (or data items) do not have precise values; rather, they take on
“fuzzy” values. For example, the height of a person can have the values
“tall” or “short” instead of values such as 5 feet 3 inches. This approach is
an improvement over the conventional relational model, but is not well-
suited to represent business data. In order to understand why this is so, we
need to discuss the nature of uncertainty associated with data items. It is
well-documented that there are two types of uncertainties in the real world:
uncertainty due to vagueness and uncertainty due to ambiguity [Klir and
Folger 1988]. Uncertainty due to vagueness is associated with the difficulty
of making sharp or precise distinctions in the real world. For example,
subjective terms such as tall, far, and heavy are vague. These cases can be
modeled reasonably well with the help of tools such as fuzzy set theory.
Uncertainty due to ambiguity, on the other hand, is associated with
situations in which the choices among several precise alternatives are left
unspecified. For example, we may know that a person’s height is in the
range of five to seven feet, but we may not know the exact height of that
person. These situations need to be modeled using some kind of uncertainty
measure.

In most business situations, the uncertainty about data arises from
ambiguity and not from vagueness. If some data item is of interest in an

ACM Transactions on Database Systems, Vol. 21, No. 3. September 1996

342 . D. Dey and S. Sarkar

application, it is reasonable to assume that there is a way to measure and
collect that data up to the level of precision that is necessary for that
application. The uncertainty lies not with the reported value but with the
correctness of the measurement or data collection techniques. For example,
if a weighing scale reports a person’s weight as 150 pounds, then there is
no uncertainty with the reported value itself. It is, however, possible that
the scale behaves correctly only 70% of the time, in which case the
uncertainty arises from the erratic behavior of the scale. One would say
that there is a probability of 0.7 that the weight of the above person is 150
pounds.! Such a case needs to be modeled using some uncertainty measure
such as the probability measure [Klir and Folger 1988).

The fourth category of work uses that approach. For example, the work of
Cavallo and Pittarelli [1987] extends the relational model to represent
uncertainty due to ambiguity using the well-known probability calculus.
They assign a probability measure with every tuple in a relation; it
indicates the joint probability of all the attribute values in that tuple. They
impose a restriction that the total probability assigned to all the tuples in a
relation is exactly one. However, note that a relation contains information
about the key, as well as the non-key, attributes, the key being the unique
identifier of an object. If we know that the object exists in the real world,
the probability of its existence (and hence the marginal probability of its
key value) should be unity. An important limitation of their relational
structure is that a separate relation would be required for every object that
is known to exist with certainty. For example, the information about
several hundred employees in an organization will have to be broken across
several hundred relations. On the other hand, if all the information is to
appear in a single relation, there is no way of asserting the certainty in the
existence of objects and their key values in the above model (since all
probabilities in a relation must add up to one). Moreover, the main focus of
their work is on information content, and probabilistic functional and
multi-valued dependency. As a result, they discuss only projection and join
operations for their relational structure and do not define other useful
operations and the relational algebra.

Raju and Majumdar [1988] generalize the basic relational concepts by
using fuzzy relations. In their model, each tuple is assigned a possibility
measure that represents the possibility of its membership in the relation.
Moreover, their attributes may take fuzzy subsets as their values. Their
model, however, suffers from the same problem with deterministic keys. If
the existence of an object is known with certainty, and if its attribute
values are uncertain, then their model cannot represent that fact. Second,
since they use set-valued attributes, their model poses the usual implemen-
tation problem associated with all non-1NF relations. An associated con-
cern is that of simplicity of user views. The non-1NF view of relations does

To see the difference with vagueness, note that if the scale did not exist in the first place, we
would have to resort to reporting the person’s weight as “heavy” or “light” based on our
subjective judgment of the person’s appearance.

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

A Probabilistic Relational Mode! . 343

not have the simple flat file view of relations as in the original relational
model. Finally, it should be mentioned that the use of possibility as a
measure of uncertainty is often not appropriate. Instead, uncertainty in
data can be modeled using probability theory which, due to its wide
acceptance, is easier to interpret. Moreover, probability measures have a
rich theoretical basis for representing uncertainty; they lend themselves to
empirical testability and provide an easy-to-use semantics [Pearl 1986,
1989].

Barbara et al. [1992] propose an extension of the relational model using
probability theory. They also adopt a non-1NF view of probabilistic rela-
tions. and redefine the project, select, and join operations using semantics
of probability theory. Although their approach overcomes some of the above
shortcomings, it too has its own limitations. First, their model also has
non-1NF relations and poses the usual implementation problem. Second,
their definition of the join operation does not allow one to join on attributes
that are parts of the key attributes of both the participating relations. This
is a serious problem because sometimes navigational links cannot be
established between two relations.? Third, their method of data organiza-
tion presumes knowledge of probabilistic independence among attributes,
which may not be known at design time. Consequently, the structure of a
relation cannot be determined before the data is realized. Fourth, their
assumption that key attributes are always deterministic is somewhat
restrictive. For example, a relation may be used to represent a relationship
that an employee works in a department. In that case, the key ({(EMP#,
DEP#}) itself may be uncertain. This cannot be represented if only deter-
ministic keys are supported. Finally, they do not define their algebra in
terms of valid objects and permissible operations on those objects.

Based on the model of Barbara et al. |1992], Tseng et al. | 1993] develop a
set of extended relational operations to represent uncertainty arising from
data heterogeneity. They use probabilities at the tuple, as well as at the
attribute, level. The regular relational operations are redefined, and a new
operation called integration is introduced. In addition to the implementa-
tion problems of a non-1NF model, this proposal has several other short-
comings. First, the use of probability measures at two different levels
introduces needless complexity in the representation of uncertainty; the
semantics of their tuple probability is not discussed clearly. Second, their
relational structure is not well-defined, and the aigebra is not formally
stated in terms of valid objects and operations. Third, their definitions of
relational operations treat primary key attributes separately from the
other attributes. Note that conventional definitions of relational operations
treat all attributes uniformly; this feature is desirable for the ease of

“For example, consider the following three relations: an EMPLOYEE relation with EMP# as
the primary key, a PROJECT relation with PROJ# as the primary key, and an ASSIGNMENT
relation with [EMP#, PROJ#) as the primary key. The join operation that they define cannot
be performed among these three relations. In other words, we will not he able to answer
questions such as: “Which employees are assigned to work on the MICROCHIP project?”

ACM Transactions on Database Systems. Vol. 21, No. 3, September 1996.

344 . D. Dey and S. Sarkar

Table I. EMPLOYEE: A Probabilistic Relation

EMP# SSIt IName fName rank salary dept S
3025 086-63-0763 Lyons James clerk 15K toy 0.2
3025 086-63-0763 Lyons James cashier 20K shoe 0.6
3025 086-63-0763 Lyons James cashier 15K auto 0.2
6723 089-83-0789 Kivari Jack clerk 18K toy 04
6723 089-83-0789 Kivari Jack cashier 20K auto 04
6879 098-84-1234 Peters Julia clerk 25K toy 0.3
6879 098-84-1234 Peters Julia clerk 27K toy 0.1
6879 098-84-1234 Peters Julia cashier 25K shoe 0.6

implementation. Fourth, some of their extended operations—namely pro-
jection, intersection, difference, union, Cartesian product, and join—are
defined only for relations with deterministic tuples (tuples with no associ-
ated probability). Consequently, relations with only deterministic key
values can participate in these operations, although a relation with uncer-
tain key values may result from such an operation. A related problem
associated with this non-uniform treatment of participating and resulting
relations is that an algebra based on their relational operations can never
be closed. Finally, since they use the same definition as Barbard et al.
[1992] for the join operation involving primary keys, the problems dis-
cussed earlier still persist.

It is evident from the above discussion that models dealing with data
uncertainty suffer from several problems. In this research, we address
these problems in a systematic manner, and provide a consistent extension
of the relational model for representing uncertainty in business data.

3. PROBABILISTIC RELATIONS AND BASIC OPERATIONS

3.1 Structure and Meaning of Relations

We present a scheme to store probabilities associated with values of
attributes of real-world objects in terms of a discrete probability distribu-
tion. Unlike Barbard et al. (1992], we do not make any restrictive assump-
tion about the key values for a relation being deterministic. Deterministic
keys can be modeled as a special case in our model. Informally speaking, we
stamp every row (or tuple) of a relation with associated probability mea-
sure. For example, consider the probabilistic relation shown in Table 1. In
this table, the primary key is EMP#, and the last column pS denotes the
probability associated with each row of the relation. The pS column for the
first row has the value 0.2; it means that there is a probability of 0.2 that
there exists an employee with the following associated values: 3025 for
EMP#, 086-63-0763 for ssn, Lyons for IName, James for fName, clerk for
rank, 15K for salary, and toy for dept. All other rows are interpreted in a
similar fashion. The probability stamp of a tuple is, therefore, the joint
probability of the given realizations of all the attributes (in that tuple)
taken together. Probabilities of individual attributes can be derived by

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

A Probabilistic Relational Model . 345

appropriately marginalizing the distribution. For example, the first three
rows indicate that it is known with certainty that (i) there exists an
employee with EMP# 3025, and (ii) the ssn, IName and fName for this
employee are 086-63-0763, Lyons and James, respectively. Similarly, the
probability of an employee having EMP# = 3025 and rank = “cashier” is
0.8 (from the second and the third rows).

We do not allow two tuples with the same values for all non-probability
attributes—defined as value-equivalent tuples in Section 4—to be present
in a relation. Value-equivalent tuples are similar to duplicates in the
conventional relational model. Analogous to elimination of duplicates,
value-equivalent tuples must be coalesced.’® The coalescence operations are
formally defined in Section 4.

Ideally, probability stamps associated with a key value should add up to
one. In that case, the existence of the object (identified by that key value) is
certain and the joint probability distribution for all its attributes is
completely specified. However, the complete distribution is not necessary in
order to store probabilities about attributes. If the existence of the object
itself is uncertain, then the probability stamps associated with the key
value of that object should be less than one. The modified requirement is,
then, that the probability stamps associated with any given key value must
add up to no more than one. For instance, in the example shown in Table I,
the probability masses associated with EMP# 6723 adds up to 0.8; this
means that the existence of that employee is not certain and has a
probability of 0.8.

There are several reasons why our representation is an improvement
over the existing proposals in the literature:

—In existing proposals, the existence of an object is either certain [Barbara
et al. 1992], or uncertain [Cavallo and Pittarelli 1987; Raju and Majum-
dar 1988]. It is not possible, using these models, to represent certainty of
some objects and uncertainty about others. In our representation, cer-
tainty about an object is a special case where the probabilities associated
with the key value for that object add up to exactly one.

—In our representation, all relations are in first normal form (1NF)
Relations that are in INF do not pose the implementation problem
associated with the non-1NF relations of Raju and Majumdar [1988],
Barbara et al. [1992], and Tseng et al. [1993].

—Unlike Barbara et al. [1992] and Tseng et al. {1993], our definition of the
Join operation (to be discussed in Section 4) is not overly restrictive.

—Our algebra, like the traditional relational algebra, is unisorted because
the only valid object in our algebra is a relation. We provide a very
general definition of relations and relational operations.

3The notion of value-equivalent tuples and coalescing them was originally introduced by
Snodgrass [1987] in his work related to temporal databases.

ACM Transactions on Database Systems. Vol. 21, No. 3, September 1996

346 . D. Dey and S. Sarkar

Table II. A Probabilistic Relation after Projection

EMP# rank pS
3025 clerk 0.2
3025 cashier 0.8
6723 clerk 0.4
6723 cashier 0.4
6879 clerk 0.4
6879 cashier 0.6

There are several other advantages with the representation that we have
presented. First, this view is similar to the view of flat tables (1INF) of the
original relational model. Second, using this approach, it is possible to
specify the joint distribution among various data items, conditioned on the
existence of the object (i.e., its primary key value).* Finally, in our model,
prior knowledge of the dependence among attributes is not needed at
design time. If such a dependence is discovered after realization of the data
in the database, a relation can be decomposed based on that. As a related
point, the apparent data redundancy in the relation shown in Table I can
be eliminated easily by decomposing it into smaller relations. For example,
if rank and salary are the only mutually dependent attributes, and if ssn,
IName, and fName are deterministic, then it is possible to decompose it
into three relations on the following schemes:

EMPLOYEE: [EMP#, ssn, IName, fName],
EMP_SAL: [EMP#, rank, salary, pS],
EMP_DEPT: [EMP#, dept, pS).

3.2 The Projection, Selection, and Join Operations

Here we briefly describe the three major relational operations, namely,
projection, selection, and join. More formal definitions of each of these
operations and several others are provided in Section 4.

Projection. The projection operation provides us with the marginal
distribution of a subset of attributes. For example, in Table I, several
attributes of employees are presented. The user, however, may want to
view only the rank for all employees. This is accomplished by projecting
this relation onto the attributes EMP#, rank and pS, as shown in Table II.
The probability stamps for the resulting tuples are obtained by evaluating
the appropriate marginal distribution from the joint distribution stored in
the original relation. Thus, the three tuples associated with EMP# 3025 in
Table I result in the two tuples (corresponding to the ranks “clerk” and
“cashier”) shown in Table I1. The probability that an employee has EMP# =
3025 and rank = “cashier” is 0.8, which is consistent with the information

“This can be done by dividing the probability stamp of each tuple by the total probability mass
associated with the key value of that tuple. This means that the conditional distribution of
Barbari et al. [1992] is derivable from our representation as well.

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996,

A Probabilistic Relational Model . 347

Table 111. A Probabilistic Relation after Selection

EMP# ssn IName fName rank salary dept pS
3025 086-63-0763 Lyons James clerk 15K toy 0.2
6723 089-83-0789 Kivari Jack clerk 18K toy 0.4
6879 098-84-1234 Peters Julia clerk 25K toy 0.3
6879 098-84-1234 Peters Julia clerk 27K toy 0.1

stored in the original relation. Note that when using the projection opera-
tion, a candidate key should be included; otherwise, the pS-attribute may
not provide reliable probability measures.

Selection. The selection operation is used to identify tuples that satisfy
specified conditions on attributes and probability stamps. For instance, we
may want to view all tuples with rank = “clerk.” The result of this query on
Table T is shown in Table III.

We can include explicit conditions on the probability stamp itself, and
logical connectives may be used to combine multiple conditions. Such a
query, for example, could select tuples with rank = “clerk” and pS = 0.3.
The result of this query on Table I is shown in Table IV. Note that since the
selection operation is defined at the tuple level, just the selection operation
cannot provide a list of employees who are clerks with a probability of 0.3
or higher. In order to obtain such a list, it is necessary to combine the
projection and selection operations. This will be illustrated with the help of
some queries in Section 4.

Join. The join operation between two relations provides the joint distri-
bution of all the attributes in the participating relations. In the join
operation, every tuple in one relation is checked for a match (on attributes
common to both the relations) with every tuple in the other relation; if a
match is found, they are combined to form a new tuple in the resulting
relation. The probability stamp of the new tuple is simply the product of
the probability stamps of the participating tuples. An important implica-
tion of this is that the probability stamp for the resulting relation is a
reliable probability measure only when the attributes in the two participat-
ing relations are independent.

The join operation is illustrated using the relations in Table V. The
relations Employee and Department are joined to obtain the new relation
Emp_Dept. Closer examination of the Department relation reveals that the
total probability mass associated with each department is exactly one; this
means that the existence of each department is certain. In other words, we
can also interpret this relation as the conditional distribution of the
attribute “mgr” given the attribute “dept.” This is the reason why the join
operation is meaningful in this case. Symbolically,

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996,

348 . D. Dey and S. Sarkar
Table IV. A Probabilistic Relation after Selection with Composite Selection Condition
EMP# ssn IName fName rank salary dept rS
6723 089-83-0789 Kivari Jack clerk 18K toy 0.4
6879 098-84-1234 Peters Julia clerk 25K toy 0.3
Table V. Ilustration of Join Operation on Probabilistic Relations
Relation: Employee
EMP# dept pS
3025 shoe 0.6
3025 toy 0.4
6637 toy 0.3
6637 auto 0.5
Relation: Department
DEPT mgr pS
shoe Joe 0.8
shoe Bill 0.2
toy Bob 0.5
toy Bill 0.5
Relation: Emp_Dept
Employee > Department
EMP# dept mgr pS
3025 shoe Joe 0.48
3025 shoe Bill 0.12
3025 toy Bob 0.20
3025 toy Bill 0.20
6637 toy Bob 0.15
6637 toy Bill 0.15

Prlemp# = e, dept = d, mgr = m]

= Pr{emp# = e, dept = d] X Pr[mgr = m|dept = d]
_ Prlemp# = ¢, dept = d] X Prldept = d, mgr = m]

Pr(dept = d]

assuming “mgr” depends only on “dept.” However, since Pr{dept = d] = 1

for all d, the join would yield meaningful probability measures. If the
existence of a department were not certain, we could not use the join
operation directly to obtain the joint distribution of the combined at-
tributes. In that case, first we would have to find the conditional probabil-
ity of manager given the department name. Let us consider the relation
Department’ shown in Table VI. In this case, since there is uncertainty
about the existence of the departments themselves, we should not directly

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

A Probabilistic Relational Model . 349

Table VI. Relation: Department’

DEPT mgr pS
shoe Joe 0.4
shoe Bill 0.1
toy Bob 0.4
toy Bill 0.4

join this with the Employee relation. In order to make the join yield a
meaningful joint distribution, we need to first transform Department’ (to
relation Department, as in Table V) such that the distribution is condition-
alized on “dept”; it can then be joined with the Employee relation. In
Section 4, we introduce a new operation called conditionalization that
allows us to make such transformations.

3.3 Modifications of Existing Data

In a probabilistic database, arrival of néew information should lead to
revision of beliefs stored about the objects in the database. In the most
general case, this means that the database management system should,
based on the new information, recalculate the new probability distribution
of the relevant objects. However, that is a difficult task to accomplish.

In order to illustrate this, consider the relation “EMPLOYEE” shown in
Table 1. Suppose that we are informed, at this point, that there exists an
employee with EMP# = 6723 and rank = “clerk.” Clearly, the last tuple for
EMP# = 6723 should disappear. We could use Jeffrey’s probability kine-
matics {Jeffrey 19831 for revising our belief about the tuple (6723, clerk,
18K). Assuming the conditional distribution of all other attributes (i.e., ssn,
|Name, fName, salary, and dept), given employee number and rank, has not
changed, we know the probability associated with that tuple is 1. In a
similar fashion, it is also possible to use Jeffrey’s kinematics to handle
cases where the incoming information itself is probabilistic. In either case,
the belief revision involves combining the incoming information with the
stored data in a manner consistent with the axioms of probability theory.
However, since the incoming information may be specified in many differ-
ent ways, it is not possible to establish a single operation that can
accomplish the task of belief revision. For this reason, we feel it is not
appropriate to make belief revision a part of the algebra. The task of belief
revision may be relegated to an auxiliary support system that interfaces
with the database management system and helps the user specify new
distributions about objects in an interactive fashion. We are currently
investigating the issues associated with building such a system.

For the purpose of this paper, we assume that the user can, based on the
stored data and the incoming information, specify the new distribution of
an object. Once the new distribution is known, the updating is a simple
task of deleting the old tuples and inserting the new ones. Below we
redefine the union and the difference operations that can be used for this
purpose.

ACM Transactions on Database Systems, Vol. 21, Na. 3, September 1996,

350 . D. Dey and S. Sarkar

Table VII. Two Probabilistic Relations on the Same Scheme

Relation: EMP
EMP# - R dept pS
3025 shoe 0.6
3025 toy 0.3
6637 toy 0.8
6637 auto 0.1
Relation: EMP’
EMP# dept pS
3025 shoe 0.7
3025 toy 0.1
6637 toy 0.3
6637 shoe 0.5

Union. The union operation is useful in inserting new data into a
relation. When applied to two relations with the same set of attributes, it
builds a new relation consisting of all tuples appearing in either or both
relations. The only restriction is that if there are two value-equivalent
tuples, the one with the higher probability stamp is included in the new
relation; the other one is discarded. Consider the relations EMP and EMP’
shown in Table VII. The union operation between them will generate the
relation shown in Table VIII(a).

The union operation may lead to a semantically inconsistent probability distri-
bution for an object. In Table VIII(a), the total probability associated with EMP#
6637 is 1.4. This is a data integrity issue that is subsequently discussed in Section
4.2. Here we note that similar inconsistencies occur in the conventional relational
model as well. Consider, for example, two deterministic relations with the same
structure and assume that there are two tuples—one in each relation—with the
same primary key value. If the other attributes in these tuples have different
values, the conventional union operation on these two relations would yield a
relation with tuples where the primary key value is not unique. Thus, the union
operation should not be considered as a way to reconcile conflicts between the
data contained in two relations. When there are conflicts, we assume that the
user can—possibly with the help of an auxiliary support system—resolve them.
Once that is done, the user can use the union operation to insert the revised
distribution into the relation.

Difference. The difference operation is useful in deleting old data from a
relation. For example, the user can replace the old distribution by a revised
one (based on some new information) with the help of the difference and
union operations. The difference operation between two relations with the
same set of attributes builds a new relation consisting of all tuples
appearing in the first relation that are not value equivalent to any tuple in
the second relation. However, if a tuple in the first relation is value-
equivalent to a tuple in the second relation and has a higher probability

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996,

A Probabilistic Relational Model . 351

Table VIII. Illustration of Union and Difference Operations

(a) EMP U EMP’

EMP# dept pS
3025 shoe 0.7
3025 toy 0.3
6637 toy 0.8
6637 auto 0.1
6637 shoe 0.5

(b) EMP - EMP’

EMP# dept - pS
3025 toy 0.2
6637 toy 0.5
6637 auto 0.1

stamp, then a new tuple is included in the resulting relation; this new tuple
is also value-equivalent to the other two and has a probability stamp equal
to the difference in the probability stamps of the participating tuples. The
difference operation between the relations EMP and EMP’ (shown in Table
VII) will generate the relation shown in Table VIII(b).

4. RELATIONAL ALGEBRA

4.1 Basic Definitions

Let N = {1, 2, ..., n) be an arbitrary set of integers. A relation scheme R
is a set of attribute names {A,, A,, ..., A,l, one of which may be a
probability stamp pS. Corresponding to each attribute name 4,, ! € N,isa
set D; called the domain of A;. If A; = pS, then D, = (0, 1]. The multiset
D = (D, D,, ..., D,} is called the domain of R. A tuple x over R is a
function from R to D (x : R — D), such that x(A,) € D,, i € \N. In other
words, a tuple x over R can be viewed as a set of attribute name-value
pairs: x = [{(A,, v)|Vi € N (A, € R N v; € D). We write x(R) to denote
that x is a tuple on scheme R. Restriction of a tuple x over S, S C R,
written x(S), is the sub-tuple containing values for attribute names in S
only, i.e., x{8) = {{A, v) € x|]A € SI.

We now give a formal interpretation of a tuple. A tuple x over R
represents our belief about attributes (in R) of a real world object. If
pS € R, then we assign a probability of x(pS) > 0 to the fact that an
object has the values x(R — {pS]) for the corresponding attributes. In
other words, the attribute pS represents the joint distribution of all the
attributes taken together. Symbolically,

x(pS) = Pr[R - {pS} =x(R — {pSH].

If pS & R;i.e., if the relation scheme R is deterministic, then every tuple
on R is assigned a probability of one, and is not explicitly written. However,

ACM Transactions on Database Systems. Vol. 21, No. 3, September 1996.

352 . D. Dey and S. Sarkar

if x is a tuple on the scheme R, and pS & R, it will be implicitly assumed
that x(pS) = 1. This assumption—called the deterministic assumption
hereafter—allows us to provide generalized definitions of different compo-
nents of the model, for probabilistic as well as deterministic relation
schemes. When present in a scheme, renaming pS (using the rename
operation to be defined later in this section) would make it lose its special
meaning; renaming pS is allowed in this algebra, but not recommended.

Two tuples x and y on relation scheme R are value-equivalent (written
x = y) if and only if, for all A € R, (A # pS) > (y(A) = x(A)).
Value-equivalent tuples are not allowed in a relation; they must be coa-
lesced. We define two types of coalescence operations on value-equivalent
tuples:

(1) The coalescence-PLUS operation is used in the definition of the projec-
tion operation. Coalescence-PLUS (denoted by @) on two value-equiva-
lent tuples x and y is defined as:

=x@y @ (x=y)N\(z=x) AN (2(pS) =min{l, x(pS) + y(pS)}).

(2) The coalescence-MAX operation is used in the definition of the union
operation. Coalescence-MAX (denoted by ©) on two value-equivalent
tuples x and y is defined as:

z2=x0y & (x=y)N(z=2x) N (2(pS) = max{x(pS), y(pS)}).

The idea of value-equivalent tuples and coalescence operations need not
be confined to just two tuples. Given m tuples x,, x,, ..., x,,, all of which
are on the same relation scheme, they are said to be value-equivalent if
x; = x; for all i, j; 1 = i, j = m. Coalescence-PLUS, for example, on all
these value-equivalent tuples will recursively coalesce all the tuples
pair-wise, i.e.,

m

D x;i=(... (x;Dx)Dx3)D ... Dxp_y) Bx,.

i=1

We are now ready to define a relation. Let R be a relation scheme. A
relation r on the scheme R is a finite collection of tuples x on R such that
no two tuples in r are value-equivalent. We provide a few example relations
in Table IX. Note from this table that a relation can be either deterministic
(i.e., a relation on a scheme without probability stamps) or probabilistic
{i.e., a relation on a scheme with a probability stamp). The above definition
of a relation is general enough to include both possibilities, and, in what
follows, the relational operations are defined in such a manner that both
types of relations can be supported.

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

A Probabilistic Relational Model . 353

Table IX. Examples of Relations in an Employee Database

Relation: Employee

EMP# §sn IName fName;

3025 086-63-0763 Lyons James
6723 089-83-0789 Kivari Jack

Relation: Emp_Sal

EMP# rank salary pS
3025 clerk 15K 0.2
3025 cashier 20K 0.8
6723 clerk 18K 0.4
6723 cashier 20K 0.4
6723 cashier 21K 0.1

Relation: Emp_Dept

EMP# dept pS
3025 toy 0.2
3025 shoe 0.6
3025 auto 0.2
6723 toy 0.4
6723 auto 0.4

4.2 Primary and Foreign Keys

In the relational model, every tuple in a relation represents a unique object
(i.e., an entity or a relationship) from the real world; a superkey is a set of
attributes that uniquely identifies a tuple, and hence an object. A superkey,
in that sense, is an object surrogate, one that uniquely identifies every
object. A candidate key is a minimal superkey, minimal in the sense that no
attribute can be dropped without sacrificing the property of uniqueness.
For each relation, only one candidate key is chosen as the primary key of
that relation.

In the probabilistic extension, where every tuple has a probability stamp
that represents the joint probability of occurrence of the attribute values in
that tuple, each tuple cannot stand for a unique object. Associated with
every object there may be several tuples representing the complete joint
distribution of its attributes. This suggests that we must retain the object
surrogate interpretation of the primary key (i.e., unique identifier of real
world objects) and discard the notion of the primary key as a unique
identifier of tuples.

The term foreign key retains the usual meaning in this model. In other
words, a foreign key of a relation scheme R is a set of attributes F C R that
refers to a primary key K of some relation scheme S. Attributes in F and K
may have different names, but they relate to the same real-world property
of an object and come from the same domain. If r and s are relations on
schemes R and S respectively, we call r the referring (or referencing)
relation and s the referred (or referenced) relation. This is written symbol-

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

354 . D. Dey and S. Sarkar

ically as: r.F — s.K. The possibility that r and s are the same relation is
not excluded. Primary and foreign keys are useful in enforcing important
integrity constraints on probabilistic relations.

Intra-Relational Integrity Constraints: Let r be any relation on scheme
R with primary key K. The following intra-relational constraints are
imposed on r:

(1) The total probability associated with a primary key value must be no
more than one. In other words, for all x € r,

; y(pS) = 1.

yer
y(K)=x(K)

Since it has been implicitly assumed that the probability value for a
tuple on a deterministic scheme is always unity (the deterministic
assumption), the above constraint reduces to key uniqueness for each
tuple when deterministic relations are considered.

(2) For all x € r, no part of x(K) can be null. (Null values in probabilistic
relations are discussed in Section 6 of this paper.)

(3) Forall x € r,if pS € R, then x(pS) € (0, 1] and x(pS) is not null.

Referential Integrity Constraints: Let r and s be two relations on
schemes R and S respectively. Let K and K¢ be the primary keys of R and
S, and let r. ¥ — s.Kg for some F C R. The following referential
constraints are imposed on r and s:

(1) For all x € r, if there exists an attribute A € F such that x(A) is null,
then for all other attributes B € F, x(B) is also null. This ensures that
the foreign key value of a tuple is not partially null.

(2) For all x € r, either x(F) is null (fully), or there exists y € s such that

> z2pS)= T zps),
thRFz)S:’\;(KRFl z(Ksz)S;thD

where K, F is a shorthand for K U F. This ensures that the probabil-
ity assigned for a set of attributes must be consistent with the probabil-
ity of existence of the object that these attributes refer to. For example,
if 0.6 is the probability that an employee named James Lyons works in
the shoe department, then the probability of existence of the shoe
department must not be less than 0.6.

Consider the relations Employee and Department in Table V; here
Employee is the referring relation and Department is the referred
relation. It can be easily verified that these relations follow the referen-
tial integrity constraints. Consider, on the other hand, the relation
Department’ in Table VI. This violates the above referential constraint;
the probability associated with dept = “shoe” is only 0.5 in Depart-
ment’, whereas the probability that EMP# = 3025 and dept = “shoe” is
given in the relation Employee as 0.6 (greater than 0.5).

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

A Probabilistic Relational Model . 355

Because of the deterministic assumption, this constraint conveniently
reduces to the conventional referential integrity rule in the determinis-
tic case.

4.3 Relational Operations

In this section, we redefine the basic relational operations and introduce
a new operation called conditionalization. The conditionalization opera-
tion is useful in deriving conditional joint distribution of different
attributes given other attributes. Note that the deterministic assump-
tion—stated as x(pS) = 1 for all tuples x on scheme R where pS &
R—allows us to provide generalized definitions for all the relational
operations: these definitions work well for both probabilistic and deter-
ministic relations.

(1) Union. Let r and s be relations on the same scheme R. Then the union
of these two relations is defined as:
rus ={x(RW((x € ri\(Vy € s(y#x)}i
Vilx € sy (Vy € riy#x)))

ViIdy € rdz € s(x =y ©z2).

It can be easily verified that union is commutative, associative, and
idempotent.®

(2 Difference. Let r and s be as above. Then the difference of these two
relations is given by:

r—s={x(R)jitx € NN (Vy € s(y#x)))

Vily € ridz € slx =y =2z) N (y(pS)>z(pS))

Nx(p8S) =y(pS) — z(pSNHNI.

(3) Projection. Let r be a relation on scheme R, and let S C R. The
projection of r onto S is defined as:

[Totrr =] x(S)x = D y(8).
yEr
_\'(AS')',X'

Note that if @ C S, then lly(Ilg(r)) = [l,(r).

(4) Selection. Let r be a relation on scheme R. Let © be a set of compara-
tors over domains of attribute names in R. Let P be a predicate (called

"An alternative definition of the union operation may be obtained by replacing = with © in the
above definition. In such a case, however, the union operation would not be idempotent.

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

356

(5)

(6)

(7)

. D. Dey and S. Sarkar

the selection predicate) formed by attributes in R, comparators in @,
constants in the domain of A for all A € R, and logical connectives. The
selection on r for P, written o,(r), is the set {x € r|P(x)}.

For two successive selection operations, the order is unimportant, i.e.,

U'PI(O'PZ(")) = UPZ(O'Pl(r)) = O'P,/\Pz(r)-

Natural Join. Let r and s be any two relations on schemes R and S
respectively, and let R’ = R — {pS} and S’ = § — {pS}. The natural
join of r and s is defined as:

reas={x(RUS)| 3y €r3z € s((x(R")=yR"))

N (x(8") = 2(S") N\ (x(pS) = y(pS)z(pS)))}.

Note that the attributes in R and S should be independent for the
natural join operation to yield meaningful results. It can be easily
verified that the natural join is commutative and associative, but it is
not idempotent.

Rename. The rename operation (p) is used to change the names of some
attributes of a relation. Let r be a relation on scheme R, and let A and
B be attributes satisfying A € R, B & R. Let A and B have the same
domain, and let S = (R — {A}) U (B]. Then r with A renamed to B is
given by:

pacs(r) ={y(S)|3x € r((y(S — B) = x(R — A)) N\ (y(B) = x(A))}.

Thus, the rename operation remains the same in this algebra. If pS is
renamed, it loses its special meaning and behaves like just another
user-defined attribute.

Conditionalization. Let r be a relation on scheme R, and § C R —
{ pS}. The conditionalization of » on S is given by:

N
Ys(r)={x(R)‘3y € r((x=y)/\(x(pS)=&~—)))},
nS,r(y)

where mg .(x) is a function defined on a tuple x € r if pS € R, and is
given by:

ns,r(x)=maX{1, 2 y(pS)].

¥
¥(8)=x(S)

The conditionalization operation on S revises the probability stamp
associated with each tuple by changing the marginal probability of the
values for attributes in S to unity. In other words, after conditionaliza-
tion, the relation can be interpreted as the joint conditional distribution
of all attributes in (R — § — {pS}), given the values of attributes in S.

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

A Probabilistic Relational Model . 357

As a result, this operation is useful, for example, in answering queries
about non-key attributes of a relation for a given key value, or before
performing the join operation to obtain meaningful results. Note that
for the conditional probabilities to be meaningful, it may be necessary
to include a candidate key as part of S.

Other relational operations such as intersection and Cartesian product
can be expressed in terms of the above basic operations:

—Intersection. Let r and s be relations on the same scheme R. Then the
intersection of these two relations is given by:

rf0s={xiR)|Iyerizesix=y=2)

AxipS) = min{y(pS), 2(pS)IH)).

It can be easily verified thaty N's =y — (y — s).

—Cartesian Product. The Cartesian product of two relations is a special
case of a natural join [Codd 1990}, where the relations do not have any
common attribute name (with the possible exception of pS). Let R and S
be two relation schemes satisfying (R N S) — {pS! = #. Let r and s be
relations on the schemes R and S, respectively. The Cartesian product of
r and s is a relation on scheme (R U S) given by: r x ¢ = r s.

—Theta-join. Let R, S, r and s be as above. Let © be a set of comparators
over domains of attributes in (R U S). Let P be any predicate formed by
attributes in (R U S), comparators in ®, constants in the domain of A for
allA € (R U S), and logical connectives. The theta-join between r and s
is given by: r s = oplr -1 s).

—Alpha-cut. The alpha-cut operation selects only those tuples from a
relation that have a probability of a or more. Let r be a relation on
scheme R. Let R° = R - {pS}. Then alpha-cut of r, denoted & (r), is
{xiRH(x € rv N (xtpS) = «a)}. It is easy to verify that & (r) =
Hpto,g . (r).

The relational algebra can now be defined formally in a fashion similar to
[Maier 1983]|:

Relational Algebra. Assume that U is a set of attribute names, called
the universe. U may have the probability stamp pS as only one of its
elements. Let v be a set of domains, and let dom be a total function from U
tos. Let R = {R,, R,, ..., Rl denote a set of distinct relation schemes,
where R, C U, for1 =i =p.Letd = {ry,r,, ..., r,} beaset of relations,
such that r, is a relation on R,, 1 = 1 = p. ® denotes a set of comparators
over domains in ‘5. The relational algebra over U, 7, dom, R, d, and © is
the 7-tuple # = (U, &, dom, R, d, ®, O), where O is the set of operators
union, difference, natural join, projection, selection, rename, and consolida-
tion, using attributes in U and comparators in ®, and logical connectives.
An algebraic expression over R is any expression formed legally (according

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

358 . D. Dey and S. Sarkar

to the restrictions on the operators) from the relations in d and constant
relations over schemes in U, using the operators in O.

The relational algebraic expressions and their schemes over R are defined
recursively (according to the restrictions on the operators) as follows:

(1) Let @ = (C4, C,, ..., C,} C U be any relational scheme, and let
¢, €dom(C;), 1 =i <k.Then{{c; : Ci,cy : Cq, ..., ¢, : Cp)lisa
relational expression over scheme @ called a constant.

(2) Each r; € d is a relational expression over the scheme B;, 1 = { = p.

(3) If E, and E,, are relational expressions over the same scheme §, then
so are the following: Q) E, U E,, (il) E; — E,, and (iii) 0p(E), where P
is a selection predicate.

(4) If E is a relational expression over the scheme @, and S C @, then
[14(E) is a relational expression over the scheme S.

(5) If E, and E, are relational expressions over schemes ¢, and @5, then
so is B, =1 E, over the scheme @, U @,.

(6) If E is a relational expression over @, and A and B are attributes with
the same domain, then p,. g(E) is a relational expression over (§ —
{A}) U {B}.

(7) If E is a relational expression over €, then so is Y (E), for all
S C (@ — {pShH.

4.4 Relational Algebra as a Query Language

The relational operations described above could be used in formulating
different queries about the probabilistic data stored in the form of rela-
tions. In order to illustrate how this can be done, we adopt the relations
shown in Table IX. For convenience, we will use the following abbreviations
in the queries:

E = Employee ES = Emp_Sal ED = EMP_Dept
E# = EMP# 1 = IName f = fName
r = rank $ = ssn d = dept

Let us now consider the following queries and their formulation using the
relational algebra:

Query 1. Find rank and salary information about employees with rank =
“clerk.”

o-r=“clerk"(ES) .
Query 2. What is the joint distribution of EMP#, rank, salary, and
department for employee number 3025?

O gs-a025(ES) > O'E#:3025(Y{E#}(ED))y or, UE#:3025(Y(E#}(ES)) > T py-3095(ED).

Note that for the join to be meaningful, one must use conditionalization
before performing the join.

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

A Probabilistic Relational Model . 359

Querv 3. List employee numbers of all employees who have rank =
“clerk” with probability greater than or equal to 0.8.

I l:m:“ﬂ pS 081 i clerk”) “{E#,r.,m(ES’) .

Note that the inner projection operation is necessary to calculate the
marginal distribution before the selection operation is performed on
the marginal probabilities.

Query 4. What is James Lyons’ rank?

]] AN I:,)N}(\ }F}#}(ES’ TNt James™ "L‘\rms“\(E)).

Query 5. Find the conditional distribution of salary given EMP# = 6723.
Yieal Tliee sl Ten sraa(ESH .

5. PROPERTIES OF RELATIONAL ALGEBRA

In this section, several properties of the proposed probabilistic relational
algebra are described. This algebra is closed, meaning that all of the
algebraic operators produce valid objects, in this case, relations. It is also a
consistent extension of the conventional relational algebra and reduces to
the latter when the probability stamp is not part of the relation schemes.

We have stated some basic equivalencies of algebraic expressions in
Section 4. In the next theorem we state a few others.

THEOREM 5.1. Let @ and R be two relation schemes. Let g be a relation
on scheme Q, and let r, r,, r, be relations on scheme R. Let P be any
selection predicate involving attributes of R. Then, the following are identi-
ties:

(a) ¢ (ryJUry) =I(q ri Ulg r.),

(b) ¢ (ry - ry) = (g ry) — (g - r.,

(¢} optr,Urs) = oplr) U ap(ryl),

(d) oplry —ry) = optry) — aplry),

(e} aplg " r)—gq op(r), if P does not involve attributes in Q.

Proor. Straightforward from the definitions of the operators. |
THEOREM 5.2. The proposed relational algebra is closed.

Proor. We must show that all the basic operations in this algebra
result in a relation as defined in the algebra. A relation must satisfy three

ACM Transactions on Database Systems. Vol 21, No. 3. September 1996,

360 . D. Dey and S. Sarkar

criteria: (i) the values must come from an appropriate domain, (ii) no two
tuples in a relation are value-equivalent, and (iii) it must be a finite
collection of tuples.

For all attributes other than pS, it is easy to see that the first criterion is
satisfied. For pS, the domain is (0,1]. We will show that if the pS values
come from (0,1] before a relational operation is applied, then they would
also be in (0,1] after the operation. If pS-values are all greater than zero in
the participating relations, then they would clearly be so when the union,
projection, selection, natural join, rename, or consolidation operation is
applied. The difference operation is defined in such a fashion that a tuple
may be generated from two value-equivalent tuples where the pS-value of
the new tuple is the difference between the pS-values of the participating
tuples. The definition, however, explicitly verifies that the resulting pS-
value is strictly greater than zero. For example, {(3025, 0.4)} — ({3025, 0.5)}
would evaluate to an empty relation (“null set” of tuples) in our algebra,
and not to {{(3025, ~0.1)). Similarly, if pS-values are all less than or equal
to one in the participating relations, then they would clearly be so when the
difference, selection, natural join, rename, or consolidation operation is
applied. That the same applies for the union and projection operations as
well is ensured in the definition of coalescence, which does not allow the
pS-value of a tuple to become greater than one.

The fact that no two value-equivalent tuples are produced when the basic
operators are used is explicitly ensured in the definitions of the operators.
If there is a possibility of generation of value-equivalent tuples, then those
tuples would be automatically coalesced in this algebra.

One can prove that the third criterion is satisfied by constructing the
resulting relation from the operands. Let us consider the union operation.
Assume that r; and r, are relations on the same scheme. For every tuple x
€ r,, there are two possibilities. Either there is only one value-equivalent
tuple y € r,, in which case (x © y) € (r; U ry); or there is no such tuple
in ry, in which case x € (ry U r,). A similar observation is also true about
every tuple in r,. It is then clear that the total number of tuples in (r; U
r,) is no more than (|r,| + |r,|), where [r| denotes the number of tuples in
a relation r. It can be shown in an analogous manner that (a) the number of
tuples in (r; — ry) cannot exceed |r,|, (b) the number of tuples in (r, >< ry)
cannot exceed |r;| X |ry|, (¢) the number of tuples in [Ig(r) cannot exceed
Ir{, (d) the number of tuples in op(r) cannot exceed |r|, and (e) the number
of tuples in py. g(r) or in Yg(r) is exactly equal to |r|. Therefore, if the
participating relations were finite, so must be the resulting relations. [J

This algebra is a consistent extension of the conventional relational
algebra, and reduces to the latter when there is no uncertainty associated
with attribute values. Before these properties can be proven, we need to
define two operators. These operators are not part of the algebra, but allow
us to transform deterministic relations to probabilistic relations and vice
versa. For these definitions and the related discussion, we use “prime” (')

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

A Probabilistic Relational Model . 361

probabilistic
transform
r PT r=PT(+)
deterministic analog.(?us.
operator probabilistic
y operator
op i
p(r’ . PT(ap(r')) = of
op(r’) probabilistic (9p(r')) = op(7)
transform
PT

Fig. 1. Outline of an equivalence proof.

for deterministic relations and relation schemes, and “hat” (*) over conven-
tional deterministic operations exclusively.

Definition 5.1. (Probabilistic transform) Let R and R’ be relation
schemes satisfying pS € R’ and R = R’ U {pS}. Let r' be any relation on
R'. The probabilistic transform of r', written PT(r’), is a relation r on R
given by:

r=PT(r') ={x(R)(x(R") € r'YN\ (x(pS) = 1)}.

Definition 5.2. (Deterministic transform) Let R and R’ be as above. Let
r be any relation on R. The deterministic transform of r, written DT(r), is a
relation r’ on R’ given by:

r'=DT(r) ={x(R")|(x € r) N(x(pS) = 1)}.

THEOREM 5.3. The probabilistic relational algebra is a consistent exten-
sion of the conventional algebra.

ProoOF. A probabilistic algebra is a consistent extension of the conven-
tional algebra if any relation or algebraic expression that can be repre-
sented in the conventional algebra has a counterpart in the probabilistic
algebra. In other words, the algebra should be at least as powerful as the
conventional algebra. Figure 1 gives an outline of the equivalence proof for
a unary operator. We show the proof for the binary operation natural join.
The others follow in an analogous manner.

Let R and S’ be two relation schemes such that pS € R’ and pS € S’,
and let ' and s’ be relations on R’ and S’, respectively. Alsolet R = R' U
{pStand S = 8§’ U {pS]. We need to show that: PT(r') > PT(s') = PT(r’

~1 8").

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

362 . D. Dey and S. Sarkar

deterministic
transform
r DT 'rl = DT(T)

o analogous
probabilistic determignistic
operator operator
op Y

op
op(r —— D = op(r’
p(r) deterministic T(op(r)) = op(r")
transform
DT

Fig. 2. Outline of a reduction proof.

If a tuple x € PT(+') = PT(s’), then there exist y € PT(r') and z €
PT(s’) such that y(R') = x(R') and 2(8') = x(S"’). Clearly, y(R') € r’' and
z(S’) € s'. As aresult, x(R' U §') € (r' = s'). Also note that x(p8S) =
y(pS) X z(pS) = 1. This implies that x € PT(r' v g').

Alternatively, if x € PT(r’ v< s'), then x(R’' U 8') € (r’' 2 s'). There
must exist y' € r’' and z’' € s’ such that y’' = x(R’) and 2’ = x(S’). This,
of course, implies that (y', 1) € PT(r’) and (z’, 1) € PT(s’). Since
x(pS) = 1, we conclude that x € PT(r’) < PT(s"). [J

THEOREM 5.4. The probabilistic relational algebra reduces to the conven-
tional algebra.

PROOF. A probabilistic relational algebra reduces to the conventional
algebra if the semantics of the algebra is consistent with that of the
conventional algebra. The reduction proof for any unary operator is out-
lined in Figure 2. Again we prove the case of the binary operation natural
join, and leave the other cases for the reader to verify.

Let R and S be two relation schemes such that pS € R and pS € S, and
let r and s be relations on R and S, respectively. Also let R’ = R — {pS]
and 8’ = § — {pS}. We must prove that: DT(r) < DT(s) = DT(r > s).

If a tuple x' € DT(r) < DT(s), then there must exist tuples y' € DT(r)
and z’ € DT(s) such that x'(R') = ¥’ and x'(S’) = z'. This implies that
{y',1) € rand (z’, 1) € s. In other words, (x', 1) € (r > s). Clearly then,
x' € DT(r > s).

On the other hand, let us assume that x’ € DT(r < s). So, (x', 1) € (r
< g). This implies the existence of y € r and z € s satisfying y(R')
x'(R"), 2(8") = x'(8"), and y(pS) = z(pS) = 1. Clearly, then y(R')
DT(r) and 2(S') € DT(s). This means x' € DT(r) t< DT(s). O

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

€

A Probabilistic Relational Model . 363

Table X. EMPLOYEE: A Probabilistic Relation with Null Values

EMP# rank salary dept pS
3025 clerk 15K toy 0.2
3025 cashier 20K shoe .6
3025 cashier 15K auto 0.2
6723 clerk 18K toy 0.4
6723 cashier 20K auto 0.4
6723 ® * " 0.1
6879 clerk 25K tov 0.3
6879 clerk toy 0.1

g g .6

6879 cashicr

6. INCOMPLETE DISTRIBUTION AND NULL VALUES

We now turn our attention to the case where the joint probability distribu-
tion of the attributes of an object is partially specified. For example, it is
possible that the existence of an employee is certain f(i.e., the marginal
probability of the kev EMP# is one), but the marginal distribution of the
salary of that employee is not completely specified. This scenario is illus-
trated in the relation shown in Table X, where the existence of an employee
with EMP# = 6879 is known with certainty; the marginal distribution of
rank is completely specified for this employee, but the marginal distribu-
tion for salary and department information is not completely available.
Similarly, the probability of existence of an employee with EMP# = 6723 ix
0.9, but only 0.8 out of this total probability mass of 0.9 is specified for all
the other attributes.

The relation in Table X models this type of incompleteness with the help
of a null value “+." This null value is similar to the null value in the
traditional relational model; it means that a portion of the probability mass
is associated with a value that is unknown. For example, out of a total of
1.0, only 0.3 is associated with a known value of salary for EMP# = 6879;
the remaining 0.7 is given to the null value.

It should be noted that the admission of null values into a relation
increases the complexity of the model significantly. This is because if« is a
constant, neither (a =) or (a # =) can be guaranteed to hold. As a result,
operations on a relation with null values may yield inaccurate results or
may lose some semantic information available in the original relation. For
this reason, we do not consider null values as a part of our basic algebra.

Of course, the occurrence of null values could be attributed to the fact
that several independent attributes are represented together. For example,
if we assume that the attributes “rank,” “salary,” and “dept” are all
independent, we may decompose the EMPLOYEE relation in Table X into
smaller relations on four different schemes (EMP#, p S|, (EMP#, rank, pS},
{EMP#, salary, pSt, and (EMP#, dept, pS). With such a decomposition, it is
possible to remove the null values completely, while retaining the actual
meaning of the original relation. Although that may be an acceptable
solution in some cases, one must note that, in general, the original relation

ACM Transactions on Database Systems. Vol 21, No. 3, September 1996

364 . D. Dey and S. Sarkar

(with nulls) cannot be recreated from the smaller relations. If the overall
view of the relation is important, such a decomposition may not be without
loss.

Date [1986] discusses the problems associated with representing null
values in the traditional relational model. These problems persist when we
try to represent nulls in the probabilistic relational model. Date also
describes a practical approach of extending the relational operations. We
extend Date’s approach in this section as a practical method of handling
nulls, and note that semantic loss of information may result in some cases.

6.1 Interpretation of Partial Distribution

An important question is the interpretation of the probability stamp when
the joint probability distribution is not fully specified. How we interpret the
probability stamp has to do with the interpretation given to the portion of
the total probability mass (associated with a key value) that is not
specified, called the missing probability in Barbari et al. [1992]. There are
two possible interpretations that may be given to the missing probability.
The first is that the missing probability is associated with realizations of
those values of attributes that are not already included in the relation.
Thus, in Table X, the missing probability of 0.1 for EMP# 6723 could be
distributed in any manner over those joint realizations for rank, salary,
and department that are not already included in the table. With this
interpretation, the probability stamps for tuples that do appear in the
relation are construed as point estimates of the conditional probabilities for
given values of the attributes. Therefore, the probability that EMP# =
6723, rank = “clerk,” salary = 18K and dept = “toy” is interpreted to be
0.4. Similarly, the probability that EMP# = 6879 and dept = “toy” is 0.4.

The second interpretation for the missing probabilities is that they could
be distributed over the entire set of realizations of the attributes, including
the ones that already appear in the relation. In that case, the uncertainty
associated with the attribute values for tuples that appear in the relation
are represented by probability intervals, and not point estimates. The
probability stamp associated with a tuple is then the lower bound of the
probability interval for that tuple (as in Barbarad et al. [1992]). Consider the
previous example of EMP# 6723; this key value has a missing probability of
0.1. Since this probability mass could be assigned to any value, including
those that have already appeared, the probability that EMP# = 6723,
rank = “clerk,” salary = 18K, and dept = “toy” lies in the interval [0.4, 0.5].
Similarly, the probability that EMP# = 6879 and dept = “toy” lies in the
interval [0.4, 1.0]. When the distribution is completely specified, the
interval clearly reduces to a point.

6.2 Extended Relational Operations

In this section, the basic algebraic operations are extended to incorporate
the null values as possible attribute values. An important feature of this
extension is that the semantics associated with each of the above two

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

A Probabilistic Relational Model . 365

interpretations is preserved as a result of all the basic relational opera-
tions; i.e., the extended operations can handle both interpretations of
missing probabilities. Consequently, depending on their preference, users
can represent uncertainties regarding attribute values either as point
estimates or as intervals. The result of the relational operations will be
consistent with the user’s interpretation of the original tables. First, a few
definitions similar to Maijer’s [1983] are necessary.

Let x be any tuple on scheme R. IfA € R and x(A) is not null, x is called
definite on A, written x(A) | .For S C R, x(8S) | ifx(A) | forallA € 8.
A tuple x is said to subsume a tuple y, both on scheme R, written x = y, if
for all A € R, y(A) | implies x(A) = y(A).

We now redefine the concept of value-equivalent tuples for those that
might have null values. Let R be a relation scheme and let R" = R — {pS}.
For any two tuples x and y on R,

(x=y) & (x(R') =y (RN (y(R')=x(R")).

Again, value-equivalent tuples are not allowed to co-exist in a relation; they
must be coalesced. The coalescence-PLUS and the coalescence-MAX opera-
tions as defined in Section 4 can also be used here.

We can now redefine the basic relational operations for relations contain-
ing null values. The definitions of the union, difference, and projection
operations from Section 4 can be used with the extended definition of
value-equivalent tuples.® The rename operation also remains the same for
relations with nulls. Thus, only the selection, natural join, and conditional-
ization operations have to be redefined.

Selection. Let R, r, &, P be as in the definition of the selection
operation in Section 4. Let S C R be the set of attributes involved in P.
Then, op(r) = {x € rlx{S)| N P(x)}. In other words, tuples with null
values for attributes involved in the selection predicate are not considered.

Natural Join. Let r and s be any two relations on schemes R and S
respectively. Let @ = R NS, R' =R — {pStand S" = § — (pS}. Then,

rios={x(RUSH|ly € r 3z € s(y(@)) "z(Q)]
A{x(R) =y(R'NA(x(S8") =2(8")) Nix(p8S) = y(pS)z(pS)))}.

In other words, the join operation matches tuples on non-null attribute
values only.

%These definitions of the relational operations, despite their similarity to the previous
definitions in Section 4, are essentially different from the latter because the definition of
value-equivalent tuples has been extended. Qur approach is similar to the one taken by Date
{1986] for the conventional relational operations; his definition of algebraic operations relies
on redefining the concept of duplicate tuples to incorporate null values. Our algebra is based
on generalizing the concept of duplicate tuples to value-equivalent tuples, and hence, value-
equivalent tuples are redefined for the case where null values may exist.

ACM Transactions on Database Systems, Vol. 21. No. 3, September 1996,

366 . D. Dey and S. Sarkar

Conditionalization. Let r be a relation on scheme R, and S C R -
{pS}. The conditionalization of r on S is given by:

(pS)
Ys(r)z[x(R)‘E'y S r(y(su A(x=y)A(x<pS)=yp))}
nS.r(y)

where 75 ,(y) is as defined in Section 4. Again, tuples with null values for
attributes in S are excluded in performing the conditionalization operation.

Finally, we would like to introduce a new operation called the N-th
moment. This operation allows us to obtain interesting aggregate proper-
ties of different attribute names based on the original distribution of those
attribute names represented in the form of a relation. Before we define this
operation, let us first define the N-th moment of a distribution from a
statistical point of view and discuss its usefulness. Let ¢ be a random
variable with domain ¥ and probability density function f,(x), x € V.
Then, its N-th moment, u, (i), is defined as:

un(y) = E[y"] = f xfy(x)da.

eV

Moments of a distribution are useful in obtaining aggregate properties of a
distribution such as mean, standard deviation, skewness, and kurtosis. For
example, the standard deviation of the random variable ¢ can be easily
obtained from its first and second moments:

stdv(y) = yua(¥) — (u1(¥)2

These aggregate properties are useful not only in understanding the overall
nature of a distribution, but also in comparing two different distributions.
This is why moments are a very important tool in statistical analysis. The
N-th moment operation helps to form an overall opinion about the nature of
real-world objects, as well as allowing various statistical analysis to be
performed on the stored data.

N-th Moment. Let r be a relation on scheme R. Let R’ = R — {pS} and
S C R’. The N-th moment of r given S, written pg 5(r), is defined as:

psn(r) ={x(R")|3y € r(y(S) | N (x(S) = ¥(S))

N(VA € (R’ = S} (x(A) = ms, My, AN},

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

A Probabilistic Relational Model . 367

Table XI. EMPLOYEE Relation after First Moment Operation

EMP# rank salary dept
3025 {] 18K 9]
6723 Q 19K)
6879 Q 25K 8]

where,
m S_r,}\'(X, A)

XY e (y(ADYy(pS)
\‘(121 - \':HV

S s , ifpS € Rand A € R’ is numeric,
- 2, yer y(p)

viA]
MST-xiS8)

Q, otherwise

A few comments are in order about the N-th moment operation. First,
note that it is really a family of operations; this is because we get a
different operation for each positive integer N. For example, to obtain the
expected value of different attributes, we can use the first moment, i.e.,
N = 1. If we apply the first moment operation on the EMPLOYEE relation
shown in Table X with S = (EMP#}, we would get the expected value of all
other attributes given the attribute EMP#; this is illustrated in Table XI.
Second, it is possible to define other operations—such as standard devia-
tion, skewness and kurtosis—based on the above class of operations. Third,
as can be seen from the definition, null values (*) are not considered in
calculating moments. In other words, only the explicitly specified part of
the distribution is considered in the calculation of moments. Finally, we do
not consider the N-th moment as a part of our basic algebra due to the
possibility of generation of a special kind of null value (Q2) for non-numeric
attributes.

7. CONCLUSIONS

Although relational databases enjoy a very widespread popularity in mod-
ern business information systems, they lack the power to model uncer-
tainty in data items. In this paper, we present an extension of the
relational model and an algebra that uses classical probability theory to
express uncertainty about object properties. This model overcomes some of
the major problems associated with existing proposals in the literature.
We discuss the basic structure of probabilistic relations, and formally
define the necessary operations. Our representation of relations abides by
first normal form (1NF), and hence is easier to implement. The associated
relational algebra is shown to be closed. It is also a consistent extension of
the conventional relational algebra and reduces to the latter. We feel that
the conventional relational operations (having been redefined for the

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

368 . D. Dey and S. Sarkar

extended structure) and the two new operations, namely, conditionalization
and N-th moment, are enough to express the majority of queries that may
be asked about the probabilistic data. The N-th moment operation can be
used to compare two different distributions; as a result, we do not need
operations such as e-join or e-select [Barbara et al. 1992]. Another strength
of this model is that it can support more than one interpretation of the
probability stamp in the case of partially specified distributions. If the
relational operations are applied to relations with a particular interpreta-
tion of the probability stamp, that meaning is preserved after the opera-
tions as well.

An issue of practical significance is how to obtain the probabilistic data.
Several methods have been presented in the literature for this purpose.
Pearl [1986] discusses how the probability values could be assigned based
on the user’s confidence. It is also possible to assign probability values
based on sampling, where a portion of the population is sampled to
estimate the distribution [Barbara et al. 1992]. Yet a third method, based
on maximizing the entropy, subject to a set of known constraints, is
described in the classical work by Jaynes [1968].

Our representation considers only discrete joint probability distributions;
this may be restrictive in some situations. However, business data are
often collected and represented in the form of discrete distributions. More-
over, when the underlying distribution is continuous, usually it can be
represented as a discrete distribution at a desired level of granularity. The
issues of storage and query evaluation for data with continuous distribu-
tion are significantly more complex and need to be addressed in future
research.

There are several other directions for future research. Issues such as
storage structure, access paths, and query optimization need to be ad-
dressed for successful implementation of the model. It is also necessary to
develop a non-procedural query language (like SQL or Quel) for this model.
Belief revision of probabilistic data is another important area of research.
We are currently examining these issues so that a prototype probabilistic
database management system can be developed.

ACKNOWLEDGMENTS

The authors wish to thank Terence M. Barron, Amit Basu, Debashis Ghosh,
Aditya N. Saharia, and Veda C. Storey for their helpful comments. Thanks
are also in order for the associate editor, Hector Garcia-Molina, and the
four anonymous reviewers of ACM Transactions on Database Systems; this
paper has greatly benefited from their careful reading and constructive
criticisms.

REFERENCES

BARBARA, D., GARCIA-MOLINA, H., AND PoRTER, D. 1992. The Management of Probabilistic
Data. IEEE Trans. Knowl. Data Eng. 4, 5 (Oct.), 487-502.

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

A Probabilistic Relational Model . 369

BuckiLes, B. P. AND PETRY, F. E. 1983. Information-Theoretical Characterization of Fuzzy
Relational Databases. IEEE Trans. Syst. Man Cybern. 13, 1 (Jan./Feb.), 74-77.

Buckiis, B. P. AND PETRY, F. E. 1984. Extending the Fuzzy Database with Fuzzy Numbers.
Inf. Sci. (New York) 34, 145-155.

CavaLLo, R. AND PiTTaRELL], M. 1987. The Theory of Probabilistic Databases. In Proceed-
ings of the 13th VLDB Conference. Brighton, Eng., 71-81.

Conn, E. F. 1979. Extending the Database Relational Model to Capture More Meaning.
ACM Trans. Database Syst. 4, 4 (Dec.), 397~434.

Copop, E. F. 1990. The Relational Model for Database Management: Version 2. Addison-
Wesley, Reading, Mass.

Datg, C. J. 1986. Relational Database: Selected Writings. Addison-Wesley, Reading, Mass.

Dey, D.. BarroN, T. M. AND SaHARIA, A. N. 1995. Logical Design of Temporal Databases: A
Decision Theoretic Approach. Working paper. Louisiana State University.

JAaynEs, E. T. 1968. Prior Probabilities. IEEE Trans. Syst. Sci. Cybernetics. 4, 3 (Sept.),
227-241.

JEFFREY. R. 1983. The Logic of Decision. University of Chicago Press, Chicago, Ill.

Kuir, G. J. aND FoLGer, T. A. 1988. Fuzzy Sets, Uncertainty, and Information. Prentice
Hall, Englewood Cliffs, N.J.

Lipski, W., Jr. 1979. On Semantic Issues Connected with Incomplete Information Data-
bases. ACM Trans. Database Syst. 4, 3 (Sept.), 262-296.

Maier, D. 1983. The Theory of Relational Databases. Computer Science Press, Rockville,
MD.

MENDELSON, H. AND SaHARIA, A. N. 1986. Incomplete Information Costs and Database
Design. ACM Trans. Database Syst. 11, 2 {June), 159-185.

PEearL, J. 1986. Fusion, Propagation, and Structuring in Belief Networks. Artif. Intell. 29,
241-288.

PeARrL, J. 1989. Probabilistic Semantics for Nonmonotonic Reasoning: A Survey. In Proceed-
ings of the First Conference on Principles of Knowledge Representation and Reasoning.
Morgan Kaufmann, 505-516.

Prape, H. aNnD TEsTEMALE, C. 1984. Generalizing Database Relational Algebra for the
Treatment of Incomplete or Uncertain Information and Vague Queries. Inf. Sci. (New York)
34, 115-143.

Rasu, K. V. 8. V. N. aND MaJuMmpar, A. K. 1988, Fuzzy Functional Dependencies and
Lossless Join Decomposition of Fuzzy Relational Database Systems. ACM Trans. Database
Syst. 13, 2 (June), 129-166.

SnonGrass, R. T. 1987, The Temporal Query Language TQuel. ACM Trans. Database Syst.
12, 2 (June), 247-298.

TsenG, F. S. C, CHEN, A, L. P. anp Yang, W.-P. 1993. Answering Heterogeneous Database
Queries with Degrees of Uncertainty. Distributed and Paralle! Databases: An International
Journal. 1, 3 (July), 281-302.

WonG, E. 1982, A Statistical Approach to Incomplete Information in Database Systems.
ACM Trans. Database Syst. 7, 3 (Sept.), 470488,

ZEMANKOVA, M. anD KanNDEL, A. 1985. Implementing Imprecision in Information Systems.
Inf. Sci. (New York) 37, 107-141.

Received March 1994; revised October 1995; accepted November 1995

ACM Transactions on Database Systems, Vol. 21, No. 3, September 1996.

