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The main  computat ional  work in interior-point  methods for l inear  programming (LP) is to 
solve a leas t -squares  problem. The normal  equations are often used, but  if the LP const ra int  
mat r ix  contains a nearly dense column the normal-equat ions matr ix  will be near ly  dense. 
Assuming t h a t  the  nondense pa r t  of the cons t ra in t  matr ix  is of full rank, the Schur 
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Schur-complement  method t ha t  relaxes this  assumption.  Encouraging numerical  resul ts  are 
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1. INTRODUCTION 

The most  time consuming part  in interior-point methods for linear pro- 
gramming (LP) is to find a solution of the following linear system: 

where A E ~ m X n ,  X ~ ,~'~n, b ~ ~n ,  and D ~ ~n×n is a positive diagonal 
matrix. The linear system (1) can be reduced to a system of normal 
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equations: 

A D A T x  = A D b .  (2) 

We will not discuss methods for solving (1), but only direct methods for (2). 
We will assume tha t  A has full row rank, so that  A D A  T is a positive 
definite symmetric matrix. Alternatives for solving this system are the Q R  
factorization of D1/2A T, an L U  factorization of A D A  T using row and 
column interchanges, or a Cholesky factorization of A D A  T. The latter is 
equal to the L U factorization choosing the pivots on the diagonal. The most 
successful in practice is the Cholesky factorization A D A  T = L L  T, e.g., see 
Saunders [1994]. The success of the Cholesky factorization in interior-point 
methods is due to its good numerical properties and the fact that  it can be 
implemented very efficiently. I f A D A  T is sparse, the rows of A can usually 
be reordered once such tha t  the Cholesky factorization of A D A  T is sparse. 
However a drawback of (2) and the normal-equations approach is tha t  if 
one or more columns of A is nearly dense, A D A  T and L will be very dense. 
Clearly such columns have to be handled in a special way. Several methods 
have been used to do this: 

(1) S c h u r  C o m p l e m e n t .  The Schur complement is used to eliminate dense 
columns from A, such that  the remaining part of (2) is sparse [Choi et 
al. 1990; Marxen 1989]. 

(2) P r e c o n d i t i o n e d  Con juga te  Gradien t .  A PCG method where the precon- 
ditioner is a Cholesky factorization of (2), without the dense columns 
[Adler et al. 1989; Gill et al. 1986]. 

(3) S p l i t t i n g .  "Stretch" the dense columns into two or more pieces [Vander- 
bei 1991]. 

According to Saunders [1994], splitting is the most efficient way of han- 
dling dense columns in the normal-equations system. The problem with the 
Schur complement has been lack of numerical stability [Lustig et al. 1991; 
1992], which is very important in interior-point methods. In Section 2 we 
describe a modified Schur complement, and Section 3 gives implementa- 
tions details. Finally we present results in Section 4. 

2. THEORY 

In the following we assume that  the Cholesky factorization is well known. 
Let 

A = [AE], 

where E is a subset of dense columns from A. We assume that  A has full 
row rank and tha t  there are few columns in E. We want  to solve 

A A T x  = A A r x  + E E T x  = b. (3) 
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equations:

ADATx =ADb. (2)

We will not discuss methods for solving (1), but only direct methods for (2).
We will assume that A has full row rank, so that ADA T is a positive
definite symmetric matrix. Alternatives for solving this system are the QR
factorization of Dl/ 2A T

, an LU factorization of ADAT using row and
column interchanges, or a Cholesky factorization of ADAT

. The latter is
equal to the L U factorization choosing the pivots on the diagonal. The most
successful in practice is the Cholesky factorization ADAT = LLT

, e.g., see
Saunders [1994]. The success of the Cholesky factorization in interior-point
methods is due to its good numerical properties and the fact that it can be
implemented very efficiently. If ADAT is sparse, the rows of A can usually
be reordered once such that the Cholesky factorization of ADAT is sparse.
However a drawback of (2) and the normal-equations approach is that if
one or more columns of A is nearly dense, ADAT and L will be very dense.
Clearly such columns have to be handled in a special way. Several methods
have been used to do this:

(1) Schur Complement. The Schur complement is used to eliminate dense
columns from A, such that the remaining part of (2) is sparse [Choi et
al. 1990; Marxen 1989].

(2) Preconditioned Conjugate Gradient. A PCG method where the precon­
ditioner is a Cholesky factorization of (2), without the dense columns
[Adler et al. 1989; Gill et al. 1986].

(3) Splitting. "Stretch" the dense columns into two or more pieces [Vander­
bei 1991].

According to Saunders [1994], splitting is the most efficient way of han­
dling dense columns in the normal-equations system. The problem with the
Schur complement has been lack of numerical stability [Lustig et al. 1991;
1992], which is very important in interior-point methods. In Section 2 we
describe a modified Schur complement, and Section 3 gives implementa­
tions details. Finally we present results in Section 4.

2. THEORY
In the following we assume that the Cholesky factorization is well known.
Let

A = [AE],

where E is a subset of dense columns from A. We assume that A has full
row rank and that there are few columns in E. We want to solve

(3)
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LV = E

Lp = b

(VTV + I)r = vT p

LTx = p-Vr

Fig. 1. The Schur-complement method.

(8)

(9)

(10)

(11)

(12)

Note that without loss of generality the diagonal matrix D can be omitted,
because it is only a scaling of the columns inA. Equation (3) is rewritten as

(4)

By assumption, AAT has full rank, so the Cholesky factorization LLT =

AAT exists, where L is lower triangular. The linear system (4) is replaced
by the system

If LV E andLp b we obtain

(5)

(6)

(7)

This way of finding a solution to (3) is known as a Schur-complement
method (or update), e.g., see Choi et al. [1990] and Heath [1982, 230-231].
The method is formally stated in Figure 1.

The vector r can be found cheaply from (11), because of the low dimension
of (VTV + I). Cholesky factorization of (VTV + I) is one possibility. Since
(11) is equivalent to the least-squares problem

an alternative is to use a QR factorization of the matrix
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For numerical accuracy and convenience we have tried a third approach,
based on an L U factorization of VTV + I with row and column inter­
changes for stability. (We use a similar factorization later.) To improve the
accuracy of rand L T x, we used iterative refinement [Golub and Loan 1989,
253-254] on (11)-(12) and on the full system (3). This appro~chwas tested
on LP problems with dense columns and proved to work well in most cases.
However, it failed as AAT approached a singular matrix. The other two
factorizations would eventually fail for the same reason.

In Lustig et al. [1991], L is replaced by the Cholesky factor of a modified
system,

where p is a positive scalar that ensures the Cholesky factor is well defined.
Iterative refinement is then used to compute each column of V. This is
computationally expensive, and again it does not provide a stable method
for solving (3).

Instead of introducing an arbitrary perturbation to the problem, we
propose to modify the linear system that is solved. The system has
the same solution as the original problem, but is better conditioned. We
know that we can make AAT of full rank if we add something to the
diagonal. Using this observation we rewrite (3) as

~I ~] [ :] = [~]. (8)

where F E R mxk is a matrix with only one element different from zero in
every column, so that the introduction ofF only changes the diagonal of
AAT. Therefore the revised matrix has a Cholesky factor with the same
sparsity structure as the old. Our modified Schur-complement method can
now be outlined as in Figure 2.

In the procedure for calculating the Cholesky factorization (14) we check
for rank deficiency by monitoring the size of the diagonal elements. If a
diagonal element is small we add something to it and introduce a new
column in F.

Dr. J. Gondzio has pointed out that Stewart [1974] describes how to
handle null pivots arising from a fixed (specified) pivot order on a square
matrix of full rank. The method described here is related to Stewart's
approach.

3. IMPLEMENTATION DETAILS

For general implementation details of a sparse l,;n.OlE~SK.Y .L ........ ""'v'V.L.LL.I ........ ,J.L>J.&.... " see
Andersen and Andersen [1996]. We will only give details
related to the modified Schur-complement method in Figure 2.
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LL T = AAT.. t . .  F F  T (14) 

L V = E  (15) 

L W = F  (16) 

C 

L p =  b 

V T 

C = 

W T 

W T p  J 
L T  x = p -  V r  - W s  

Fig. 2. 

[ ] , o  

V W  + 

0 - I  

The modified Schur-complement  method.  

(17) 

(18) 

(19) 

(20) 

Normally one would assume tha t  V is fully dense. This is t rue  if the 
columns in E are fully dense. However, as the problem size increases and 
as columns with more than  say 40 nonzeros are dropped, then  the columns 
in E may be sparse, but dense in comparison with the columns in A. Note 
tha t  the number  of nonzeros per column in an LP model is typically in the 
range 3-10. We have therefore chosen to t rea t  V as a sparse matrix.  V's 
symbolic s t ructure  is calculated only once, as for the Cholesky factor L. 
Assuming L is known, the nonzero s t ructure  of the i th  column of V can be 
found by solving L V  i = E i symbolically. This clearly gives a worst-case 
es t imate  of nonzeros in Vi. 

The matr ix  W is t rea ted the  same as V. 
To solve sy s t em (19) we find an L U  factorization of the matr ix  C using 

row and column interchanges for stability. A Q R  factorization of C can also 
be used, but  note tha t  the l inear system (19) cannot be formulated as a 
least-squares problem unless  W is empty.  In practice it is impor tan t  for 
satisfactory numerical  accuracy to use i terat ive ref inement  on (19)---(20). 

The number  of columns in F is restr icted to at most  the number  of 
columns in E. A column is added permanent ly  to F if  lii < t O l a d d ,  where l i i  
is the  i th  diagonal element  of L. This is found to work well in practice. 

Another  impor tan t  issue is to choose which columns should be in E. We 
keep the number  of columns in E relatively small to avoid possible 
numerical  instabi l i ty  and because it is inefficient to drop many  columns. 
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LLT = iiT + FFT (14)

LV = E (15)

LW = F (16)

Lp = b (17)

C =
[ :: ] [ V W ] + [ : :, ]

(18)

(]=[::] (19)

LTx = p-Vr-Wa (20)

Fig. 2. The modified Schur-complement method.

Normally one would assume that V is fully dense. This is true if the
columns in E are fully dense. However, as the problem size increases and
as columns with more than say 40 nonzeros are dropped, then the columns
in E may be sparse, but dense in comparison with the columns in A. Note
that the number of nonzeros per column in an LP model is typically in the
range 3-10. We have therefore chosen to treat V as a sparse matrix. V's
symbolic structure is calculated only once, as for the Cholesky factor L.
Assuming L is known, the nonzero structure of the ith column of V can be
found by solving LVi = E i symbolically. This clearly gives a worst-case
estimate of nonzeros in Vi'

The matrix W is treated the same as V.
To solve system (19) we find an LU factorization of the matrix C using

row and column interchanges for stability. A QR factorization of C can also
be used, but note that the linear system (19) cannot be formulated as a
least-squares problem unless W is empty. In practice it is important for
satisfactory numerical accuracy to use iterative refinement on (9)-(20).

The number of columns in F is restricted to at most the number of
columns in E. A column is added permanently to F if lii < toladd , where lii
is the ith diagonal element of L. This is found to work well in practice.

Another important issue is to choose which columns should be in E. We
keep the number of columns in E relatively small to avoid possible
numerical instability and because it is inefficient to drop many columns.
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Let n be the number  of columns in A and define t3 = l A f l n ,  where 1AI is the 
number  of nonzeros in A. Let Aj be the j t h  column in A, and define n) = 
tAil. E is obtained in the following way: 

E 1 = { A j  { n j  > 3t3,  n j  e -y, i = 1 . . . .  , n}  

E 2 = {Aj 1 •j > 10/3, n j  ~ 7 ,  i = 1 . . . .  , n}  

if (columns in E 1) < 
E = E 1 

else 
E = E 2 

where 7 ensures tha t  every column in E has a certain amount  of nonzeros, 
and ~ ensures tha t  the number  of columns is not too large. The result  is 
tha t  only relatively dense columns are dropped, and only i fA is sparse. 

The parameters  we have used are 7 = 40, ~ = t0, and t o l a d  d = 10 ~1° 

4. RESULTS 

The ideas presented in Section 2 have been implemented and are par t  of 
the APOS system (which is a joint  work with E. D. Andersen). The codes 
are OPTMZE, a primal-dual  interior-point code for l inear programming 
(this code is par t  of the XPRESS modeling system from Dash Associates 
Ltd.), and GOPT (Global Optimizer), a Newton method for minimizing the 
sum of L1 or L2 norms subject to l inear constraints  [Andersen 1995]. Both 
codes use the same Cholesky factorization, described in Andersen and 
Andersen [1996]. The codes are wri t ten in ANSI C and have been ported to 
several different computers including PCs, an HP 9000/715 workstation,  a 
SUN SPARCstation 10, different SGI workstations, and a CONVEX C3240 
vector computer.  

All testing presented here  was done on a CONVEX C3240 at Odense 
University. The method was tested on all problems with dense columns 
tha t  we had access to. This includes some problems from the netlib test  set 
[Gay 1985] and some from another  source. The method was also tested on 
two min imum sum of norms (MSN) problems using GOPT. These are 
problems "ssu" and "c1399." 

The resul ts  are shown in Tables I and II. IAAT]/2 is the number  of 
nonzeros in A A  T on and below the diagonal; ILl is the number  of nonzeros 
in L; tVI is the number  of nonzeros in V and W; "V col" is the number  of 
columns in V including columns in W; [WI is the number  of columns in F; m 
is the number  of rows in A; NSU stands for No Schur Update and WSU for 
With Schur Update; CPU is total t ime in CPU seconds including cross-over 
[Andersen and Ye 1994] to a basic feasible solution and presolving 
[Andersen and Andersen 1995]; and ITER is the total number  of iterations. 
We see in Table I tha t  V is sparse. For p2, the upper bound on the number  
of nonzeros in V :is 15,763 x 51 = 803,913, but there  are only 29,646 
nonzeros, a density of 4%. Storing V sparsely will clearly give a large 
reduction in memory. If we look at L and ignore the storage for V (it is 
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Let n be the number of columns in A and define {3 = IAI/n, where jAj is the
number of nonzeros in A. Let Aj be the jth column in A, and define n
IAJ E is obtained in the following way: J

E 1
= (A j I n j > 3{3,

E 2
= {Aj I nj > 10{3,

if (columns in E 1) :S 7J

E E1

else
E E2

nj 2: y,

n j 2: y,

1, , nl
1, , nl

where y ensures that every column in E has a certain amount of nonzeros,
and 7J ensures that the number of columns is not too large. The result is
that only relatively dense columns are dropped, and only if A is sparse.

The parameters we have used are 'Y = 40, 7J =: 10, and tol add = 10'10.

4. RESULTS

The ideas presented in Section 2 have been implemented and are part of
the APOS system (which is a joint work with E. D. Andersen). The codes
are OPTMZE, a primal-dual interior-point code for linear programming
(this code is part of the XPRESS modeling system from Dash Associates
Ltd.), and GOPT (Global Optimizer), a Newton method for minimizing the
sum of L1 or L2 norms subject to linear constraints [Andersen 1995]. Both
codes use the same Cholesky factorization, described in Andersen and
Andersen [1996J. The codes are written in ANSI C and have been ported to
several different computers including PCs, an HP 90001715 workstation, a
SUN SPARCstation 10, different SGI workstations, and a CONVEX C3240
vector computer.

All testing presented here was done on a CONVEX C3240 at Odense
University. The method was tested on all problems with dense columns
that we had access to. This includes some problems from the netlib test set
(Gay 1985] and 80me from another source. The method was also tested on
two minimum sum of norms (MSN) problems using GOPT. These are
problems "ssu" and "cl399."

The results are shown in Tables I and II. jAATI/2 is the number of
nonzeros in AAT on and below the diagonal; IL I is the number of nonzeros
in L; IVI is the number of nonzeros in V and W; "V col" is the number of
columns in V including columns in W; IWI is the number of columns in F; m
is the number of rows inA; NSU stands for No Schur Update and WSU for
With Schur Update; CPU is total time in CPU seconds including cross-over
[Andersen and Ye 1994] to a basic feasible solution and presolving
[Andersen and Andersen 1995]; and ITER is the total number of iterations.
We see in Table I that V is sparse. For p2, the upper bound on the number
of nonzeros in V is 15,763 X 51 =: 803,913, but there are only 29,646
nonzeros, a density of 4%. Storing V sparsely will clearly give a large
reduction in memory. If we look at L and ignore the storage for V (it is
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Table I. Problem Sizes with WSU and without NSU Schur Update 

~AATI/2 ILl IV~ V col W col 

Name NSU WSU NSU WSU NSU/WSU WSU WSU WSU m 

f i t ld  291 291 296 296 1 0 0 0 24 
f i t lp 196878 627 196878 627 314 8215 24 0 627 
fit2d 321 321 324 324 1 0 0 0 25 
fit2p 4501500 3000 4501500 3000 1500 36784 25 0 3000 
israel 10963 4273 11224 4442 2.5 435 3 0 163 
pilot 59844 56641 197346 186783 1.1 4729 12 3 1362 
p l  492797 48077 1112409 199145 5.6 5916 6 3 4901 
p2 232686 65826 1339156 163840 8.2 29646 51 1 15763 
p3 2381 1823 3208 2615 1.2 666 12 3 203 
seba(max) 51165 949 53492 1035 51.7 3762 14 0 446 
ssu (MSN) 405450 18188 405450 45732 8.9 900 2 1 900 
c1399 (MSN) 3103949 3024548 57678407 30001436 1.9 12924 2 1 319466 

actually very small in comparison with the nonzeros in L), the reduction in 
nonzeros is between 2 and 10 for most of the problems where dense 
columns occur. We see tha t  the reduction in CPU time (see Table II) for the 
same problems is in the range 1.2 to 6. Clearly for these problems it is 
beneficial to handle the dense columns separately. Only for two problems 
did the CPU time increase (pilot and p3), which is consistent with the fact 
tha t  the reduction in nonzeros in L is low. In all cases s tandard  accuracy is 
achieved, and only on p l  and ssu did it cost more i terations to get the same 
accuracy; see Table II. We further  observe in Table I tha t  the number  of 
columns in W is very low. The c1399 problem is interest ing because the 
column tha t  is dropped has a density of only (401/319,466) * 100 - 0.13%, 
but it  is dense in comparison with the other columns in the problem. The 
reduction in L is somewhat small (belOw a factor of 2). However, a 
reduction in nonzeros from 57 million to 30 million would make a critical 
difference on many computers. 

The method was also used on f i t ld  and fit2d because they are dual 
problems of f i t lp  and fit2p. We see tha t  the time for f i t ld  and fit2d is 
nearly the same as for f i t lp  and fit2p using the Schur complement. This 
means tha t  for some LP problems the dense columns can be avoided by 
finding a solution to the dual problem. However, this cannot be done in 
general for nonlinear  problems such as the two M S N  examples. 

5. CONCLUSION 

In this article we propose a modified Schur-complement approach for 
handl ing dense columns when a least-squares problem is solved using the 
normal equations. As noted by other authors,  this approach can be used to 
handle a few dense columns in large sparse LP problems efficiently. 
However, our modified Schur-complement approach handles the numerical  
rank  or near  rank deficiency better than  the original approach at a minor 
cost. This conclusion is confirmed by our (limited) numerical  results.  
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Table I. Problem Sizes with WSU and without NSU Schur Update

IAAT I/2 ILl 1V1 V col Weal
------

Name NSU WSU NSU WSU NSUIWSU WSU WSU WSU ill

fitld 291 291 296 296 1 0 0 0 24
fitlp 196878 627 196878 627 314 8215 24 0 627
fit2d 321 321 324 324 1 0 0 0 25
fit2p 4501500 3000 4501500 3000 1500 36784 25 0 3000
israel 10963 4273 11224 4442 2.5 435 3 0 163
pilot 59844 56641 197346 186783 1.1 4729 12 3 1362
pI 492797 48077 1112409 199145 5.6 5916 6 3 4901
p2 232686 65826 1339156 163840 8.2 29646 51 1 15763
p3 2381 1823 3208 2615 1.2 666 12 3 203
seba(max) 51165 949 53492 1035 51.7 3762 14 0 446
ssu (MSN) 405450 18188 405450 45732 8.9 900 2 1 900
cl399 (MSN) 3103949 3024548 57678407 30001436 1.9 12924 2 1 319466

actually very small in comparison with the nonzeros in L), the reduction in
nonzeros is between 2 and 10 for most of the problems where dense
columns occur. We see that the reduction in CPU time (see Table II) for the
same problems is in the range 1.2 to 6. Clearly for these problems it is
beneficial to handle the dense columns separately. Only for two problems
did the CPU time increase (pilot and p3), which is consistent with the fact
that the reduction in nonzeros in L is low. In all cases standard accuracy is
achieved, and only on p1 and ssu did it cost more iterations to get the same
accuracy; see Table II. We further observe in Table I that the number of
columns in W is very low. The cl399 problem is interesting because the
column that is dropped has a density of only (4011319,466) * 100 = 0.13%,
but it is dense in comparison with the other columns in the problem. The
reduction in L is somewhat small (below a factor of 2). However, a
reduction in nonzeros from 57 million to 30 million would make a critical
difference on many computers.

The method was also used on fit1d and fit2d because they are dual
problems of fitlp and fit2p. We see that the time for fitld and fit2d is
nearly the same as for fitlp andfit2p using the Schur complement. This
means that for some LP problems the dense columns can be avoided by
finding a solution to the dual problem. However, this cannot be done in
general for nonlinear problems such as the two MSN examples.

5. CONCLUSION

In this article we propose a modified Schur-complement approach for
handling dense columns when a least-squares problem is solved using the
normal equations. As noted by other authors, this approach can be used to
handle a few dense columns in large sparse LP problems efficiently.
However, our modified Schur-complement approach handles the numerical
rank or near rank deficiency better than the original approach at a minor
cost. This conclusion is confirmed by our (limited) numerical results.
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Table II. Run-Times and Number  of Iterations with WSU and without NSU Schur Update 

CPU ITER 

Name NSU WSU NSU/WSU NSU WSU 

fi t ld 10.7 11.5 0.93 21 21 
f i t lp 115.7 12.2 9.48 16 16 
fit2d 104.0 111.1 0.94 22 22 
fit2p 11770.2 83.2 141.47 20 20 
israel 7.7 6.0 1.28 24 24 
pilot 283.5 317.5 0.89 43 43 
p l  2720.3 438.4 6.20 43 48 
p2 2056.7 944.8 2.18 29 28 
p3 3.9 4.3 0.91 16 16 
seba(max) 33.5 10.1 3.31 21 21 
ssu (MSN) 298.7 37.6 7.9 17 23 
c1399 (MSN) 100084 36003 2.8 40 35 
Total 117491 37979 3.1 
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