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Abstract

The difference-bit cache is a two-way set-associative cache

with an access time that is smaller than that of a conven-

tional one and close or equal to that of a direct-mapped

cache. This is achieved by noticing that the two tags for a

set have to differ at least by one bit and by using this bit to

select the way. In contrast with previous approaches that

predict the way and have two types of hits (primary of one

cycle and secondary of two to four cycles), all hits of the

difference-bit cache are of one cycle, The evaluation of the

access time of our cache organization has been performed

using a recently proposed on-chip cache access model.

1 Introduction

Since the cycle time of a pipelined processor is usually deter-

mined by the cache access time [4], [1 O], [2], the best perfor-

mance is obt ained with a direct-mapped first-level cache [11],

[7], [5], even though for most programs the miss ratio of

this cache is somewhat greater than that of a set-associative

cache [13], [5], [6], [3]. A clear performance improvement

could be obtained if it is possible to have a cache with the

access time of the direct-mapped cache and the miss ratio

of the set-associative cache.

Cache organizations that modify a set-associative cache

to achieve an average access time close to that of a direct-

mapped cache are presented in [9], [14], [12], [1] and a de-

sign framework is presented in [16]. All these proposals are

based on the same idea, namely, a candidate line is selected
in a time corresponding to the direct access, while it takes

longer to determine whether it is the correct line. Becanse of

the speculative nature of the initial selection, these schemes

have two kinds of hits: primary hits having a latency of one

cycle, and secondary hits with a latency from two to four

cycles. As a consequence, the average hit time is somewhat
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larger than that of a direct-mapped cache. The proposals
mentioned differ in the function used to predict the candi-

date line. Other related approaches are the victim cache [8]
and the virtual lines [15]. In the victim cache the miss rate
is the same of the direct-mapped cache but there are two

kinds of misses, the normal ones and faster ones served by
a small fully-associative cache placed between the first and

the second level caches. The proposal of virtual lines ex-
tends the victim cache mainly by reducing the line size of

the main cache to increase the temporaJ locality and by in-
creasing the line size in the auxiliar cache to improve the

spatial locality. We further describe previous approaches in
Section 3.

In the organization presented here the hit time is faster
than that of a two-way set-associative cache and close or
equal to that of a direct-mapped cache, the actual value
depending on the technology. In contrast with previous ap-

proaches that predict the way and have two types of hits

(primary of one cycle and secondary of two to four cycles),

all hits of the difference-bit cache are of one cycle. Moreover,
the miss rate is equal to a two-way set-associative cache. On

the other hand, this proposal is only well suited for the two-

way case, whereas the previous ones do not have this limi-

t ation. However, the reduction in miss rate obtained by a
higher associativity is small [6], [2]. Furthermore, increasing

the degree of associativity in the other proposals increases
the number of secondary hits, worsening the average mem-
ory access time.

The organization presented requires a cache with virtual

addresses and tags, since the bits needed would not be avail-
able in time if the addresses or tags have to be translated.

1.1 Multiarray implementation

The organization we propose is based on the fact that an op-

timal (fastest) realization of the data part of a cache memory
consists of several subarrays as shown in Figure 1 [17], [18].
The number of subarrays and their size are a function of the
cache size and of technology characteristics and implementa-

tion restrictions 1. For this realization, in the direct-mapped

case (see Figure 2) the index bits are partitioned into two

parts: one part is used to access a row from each subarray

and the other to select the desired subarray. Moreover, the

word bits are used to select the word from the line.

1Shown in Figure 1 is only the partition of the bit line, although an
actual implementation would also partition the word line. We do not
show this partition because it does not have an effect in our proposal.
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Figure 1: Ideal memory array (a) and optimal aspect ratio for same memory (b),

The same partitioning of the index bits is used in the
w-way set-associative case (see Figure 3 for w = 2), with

the difference that w bits of the second part are obtained

from the tag comparisons, instead of from the index (after
decoding). The access time of the set-associative cache is

larger than that of a direct-mapped cache because usually
the critical path is through the tag part and includes the

access of tags and the comparisons [5], [18].

From the multiarray organizations shown, the following

characteristics can be observed:

For the direct-mapped cache, the delay of the signals
to enable the tri-state gates is smaller than the time to

access the data from the memory. Consequently, the
time to obtain the resulting data line is equal to the

time in which the data is available at the output of the

subarray plus the delay of the tri-state gate. Moreover,
the tag comparator is not in the critical path since

the data can be transferred to the next stage of the
pipeline without knowing whether the access is a hit.

This information is only required before the use of the

data, usually to store it in a processor register.

To have a set-associative cache with the same word
access time w the direct-mapped cache of the same

capacity and line size, it is sufficient that the enable
signals of the tri-state gates are obtained with a delay

which is smaller than the access time of the diitri sub-

array, To achieve this, schemes [14], [9], [12] h a,ve been

proposed in which the correct way is predicte(i. How-
ever, because of the prediction, there are two types of

hits and the average hit time is somewhat larger than
that of a direct-mapped cache.

In this paper we describe a new cache organization which
achieves the hit time of the direct-mapped cache for a two-
way set-associative cache. That is,

. We determine the enable signals of the the tri-state

gates with a suitably small delay, and

● We do not perform prediction, but select the correct
word if there is a hit: The comparisons of the tags are

only used to determine whether there is a hit, but not
to choose the line. Consequently, all hits are of one

cycle.

2 The difference-bit cache

Our realization of a two-way set-associative cache is based
on the fact that the two stored tags that correspond to a
set have to differ in at least one bit. We call dHf-index the
position in the tag of the least-significant bit in which these

two tags differ and cliff-value the value of the bit in the

tag of way O of the set. These cliff-index and cliff-value are

used to determine the enable signals of the tri-state gates

as shown in Figure 4. To do this, the pairs (cliff-index, diff-
wdue) are stored in the Diff memory of size S x r, where S is

the number of sets of the two-way associative cache and the
value r depends on the code used to represent cliff-index. If
t is the number of bits of the tag, the minimum value of r is
[Zog,t] +1, with the binary code, and the maximum t +1,

wit h the l-out-of-t code; intermediate values are obtained
with other codes, as discussed later.

The enable signals of the tri-state gates are obtained as
follows:

1.

2.

3.

4.

The corresponding entry of the Diff memory is read,
simultaneously with the data (and with the tags, al-

though these are not in the critical path).

The obtained cliff-index is used to select the corre-

sponding bit of the tag portion of the address.

The selected bit and cliff-value are used to determine
the way: if the bits are equrd then way O of the set is
selected, whereas if they are different way 1 is selected.

The way bits (for way O and for way 1) are used to
drive the enable signal of the tri-state gates that pass
the corresponding word.
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Multi-array realization ofadirect-mapped cache (only thepartitioning of the data part

Note also that only one tag comparator is needed since

thetagto compare can deselected as shown in Figure4.

In a miss, it is necessary to determine the new cliff-index
and cliff-value. The simple hardware required is not shown
in the Figure. It consists of an array ofxor gates, to compare

the bits of the tags, andapriority encoder, for the particular

code used for the cliff-index. For the replacement policy,
there are the same choices as for the conventional two-way
set-associative cache, resulting in the same miss ratio.

2,1 Determination ofcritical path

We now determine thecritical path in order to argue that
it is plausible that the access time of the described two-
way set-associative cache is equal to that of a direct-mapped

cache of the same capacity and line size. The critical path

is

t.= max(t~a~a,t.na~~e)+~tri

as shown in Figure 4, Consequently, the access time corre-
sponds to that of a direct-mapped cache if

tenable< td~~~

As described above,

tenable 7 tdiff + t.$e~ect + tway + tdrive

where tdiff is the access time of the Diff memory.
The terms tdiff and t,elect are related and depend on

the code used to represent cliff-index. In general, if t he code
has more bits tditfis larger since the memory is wider but

t..i.ct is smaller because the decoding is simpler. The opti-

mal combination depends on the increase of tctijj with the
memory width and on the complexity of the corresponding
decoder.

is shown).

Is te~able < tda~a? This depends on the technology and
on the implementation restrictions. Although an implemen-
tation or circuit-level modeling is required to give a defini-

tive answer, we claim that this is reasonable because the Diff

memory is significantly smaller than one subarray of Data.
This is so because the data memory has a width of one line
(L bits), whereas the Diff memory has a width of T bits (and

r < -L). Consequently, in practical cases, the width of Diff

is several times smaller than the width of D at ~ for example,

for a processor with t= 30 and L = 256 resulting in a Diff
width of between 6 and 31 bits, depending on the code, and

a Data width of 256 bits. Moreover, the number of rows of
Diff is one half of that of Data. Finally, the optimal partition

of Data using [18] produces from two to eight subarrays, so

that Diff is significantly smaller than one Data subarray. As

a consequence, the access time of Diff is smaller than that of

a Data subarray, so that the way selection can be performed

in time.

To confirm that it is plausible to conclude that the result-

ing hit access time corresponds to that of a direct-mapped

cache, we evaluate the delay using the detailed analytical

access model for on-chip caches presented in [18] and apply

it to a cache of the characteristics similar of that of the Al-

pha processors (8 Kbytes, line of 32 bytes, tag of 31 bits)

and to caches with twice and four times this capacity. The

evaluation of the direct-mapped cache and the conventional

two-way set-associative cache are performed using tact i,

the software associated with [18], whereas the evaluation of

the difference-bit cache is obtained analytically using the

expressions given in [18].

Following the approach used in [18], in Figure 5 we de-

velop an implementation for the fully-decoded scheme of the

general idea shown in Figure 4 (we do not include the tag

memory and the tag comparators, since this does not af-

fect the data selection part). The word-selection part of the

implement ation has the following components:
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Figure 3: Multi-array realization of a conventional two-way set-associative cache (only the physical partitioning of the data

part is shown).

●

●

b

●

●

The Diff memory.

A decoder to decode the cliff-index (this decoder does
not appear in Fig 5 since it is not necessary for the

fully-decoded case).

A selector of the corresponding tag bit. This is im-
plemented as a column of a memory, with one bit line

and a sense amplifier. To obtain the bit and its com-

plement, two sense amplifiers are used.

A 2x2 crossbar to obtain the wayO and wayl bits. This

crossbar is controlled by the cliff-value.

The driver of the enable signals of the word tri-state
gates, As in [18], this is implemented in three levels
of gates. Moreover, we include here the delay of an

inverter that is part of the tri-state gate.

The evaluation of the critical path is done for lines of
4 words, words of 64 bits, addresses of 43 bits and the

technology parameters of the model presented in [18] (for
a .8,um CMOS technology )2. The only varying pimameter
is the cache capacity. Nevertheless, for the delay of the en-

able signals in the difference-bit cache, we have considered

three coding options: fully-encoded (5 bits), fully-decoded

(from 29 to 31 bits depending on the cache capacity) and

partially-encoded (6+6 = 12 bits and a decoding of one level

of two-input gates).

To simplify the presentation of the results, we divide

the delay of the enable signal into an invariant part (not

dependent on the capacity nor on the coding) and a variable

part. The components of the invariant part correspond to

the following times:

2 According to [18] numbers for a .5pm technology can be obtained

dividing all delays by 1.6, so that the conclusions remain the same.

Capacity Coding tdi f f tdecodetinvariunt t ~nable

Kb [ns] [ns] [ns] [ns] [ns]

5+1 1.8 0.7 2.9 5.4
8 12+1 2.0 0.3 2.9 5.2

31+1 2.2 0.0 2.9 5.1

5+1 2.1 0.7 2.9 5.7

16 12+1 2.2 0.3 2.9 5.4
30+1 / 2.5 0.0 2.9 5.4

II 5+1 I 2.4 0.7 2.9 I 6.0

32 II12+1 2.5 0,3 2.9 I 5.7
29+1 2.7 0.0 2.9 5.6

Table 1: Delay for 8, 16 and 32 Kbytes difference-bit caches
for the fully-encoded (5+1), partially-encoded (12+1 ) and
fully-decoded (31+1, 30+1 and 29+1) schemes.

● selection of the tag bit, teelect= 0.6 nsec.

● crossbar, tw.g= 0.2 nsec.

Q driver of enable signals, td~i~~ = 2.1 nsec.

This total invariant part is then of 2.9 nsec.
Table 1 gives the delay of the enable signal for different

capacities and coding schemes. Using this data, in table 2,
we compare the delay of the enable signal for a conven-

tional two-way set-associative cache and for the difference-
bit cache with the delay of the data part of the cache.

From these tables we conclude that the difference-bit cache
is considerably faster than the conventional two-way set-

associative cache and that, choosing a suitable encoding, it
is reasonable to argue that the access time of the difference-

bit cache is equal to that of a direct-mapped cache.
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Figure 4: The difference-bit cache.

Capacity Conv. two-way Best Diff Data

Kb [ns] [ns] [ns]

8 8.3 5,1 5.2
5.4 I 6.2 I

1 32 9.7 5.6 6.5 I

Table 2: Delay of the enable signal for a conventional two-
way set-associative cache and for the best difference-bit

cache and delay of the data subarray.

Table 3: Delay of the critical path for conventional two-way

set-associative caches (t~o~~ = tt~g + tcmp+ tdr;oe.)

To clarify further the difference between the two-way

conventional cache and the difference-bit cache, in Table 3

we give a breakdown of the times of the former,
The idea can be applied to any cache and line sizes. For a

given technology, the access time would be closer to that of a
direct-mapped cache for larger cache size since the invariant

part of the delay in the difference-bit cache becomes less
significant when the size increases. This is also the case for

longer lines (for the same capacity) since the number of sets
is reduced, resulting in a shorter Diff array.

---
1

!
1
I

I

I

2.2 Area increase

The area requirements of the new two-way set-associative
cache implementation are somewhat larger than those of the

conventional t we-way set-associative cache. This extra area

corresponds to the shaded portion of Figure 4. The main

contribution to this area is the Diff memorv of size S x T

bits. In comparison, the Data cache has

the line size in bits) and the tag memory
so that the fraction of increase is

2(LT+ t)

2S” x L bits (.L is

has area S x (2t)

For practical cases this fraction is small; for example for the
values used in the evaluation, similar to those of the Alpha

family of processors, it is between 0.01 and 0.06 depending
on the Diff implementation. Table 4 shows other typical
values.

Since the added area depends on the width of the Diff

memory, it is convenient to choose the minimum width that
achieves the required access time. From the access time data

given in Table 1, we would choose T = 13 for the 8K case (a
2% area increase) and r = 6 for the 16K and 32K cases (a
1% area increase).

3 Related work

As mentioned in the Introduction, several previous propos-
als have considered a set-associative cache with the access
time of a direct-mapped cache. The common denominator
among these proposals is that a prediction of the way is per-
formed and the corresponding word is selected. Later, after
the tag comparisons, the correct way is determined and a
new selection has to be performed if the prediction failed.

Consequently, there are two types of hits w follows:

s Primary hits, which occur when the prediction is cor-

rect. These hits are served in one cycle.
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; yftl + 1 2[/tl + 1 t+ll
256 128 256 128 256

t

20 0.02 0.01 0.04 0.02 0.07 ().04

I 31 II O.O2 I 0.01 I 0.04 I 0.02 I 0.10 I CL06 I

Table 4: Fraction of area increase of the difference-bit cache
compared with a direct-mapped cache with the same capac-
ity and line size.

● Secondary hits, when the prediction fails. In this case,

another selection has to be performed, so that the hit
requires from two to four cycles.

The proposals differ in the function used for selection and
on the replacement policy. In cent rast, the difference-bit

cache proposed here achieves the miss rate of a two-way set-
associative cache and the hit time of a direct-mapped cache
with all the hits being primary hits.

We now describe in somewhat more detail these previous

proposals.
In the MRU cache [14] the predicted line is the most-

recently used one of the set. Secondary hits require two cy-
cles, This scheme can be used for any degree of associativity
but as the associativity increases the probability to have a
primary hit decreases, worsening the average hit time.

In the column-associative cache [1] two hashing functions
are applied to an address. The data is accessed using the

first hashing function (similar to direct mapping). If this
firtit function misses, a second function is used for a sec-

ondary hit. If the second function is a hit, the lines corre-
sponding to these two functions are swapped. In a miss, the
last line referenced is placed according to the first hashing

function. A secondary hit requires three cycles. Moreover,

due to the sequential application of two hashing functions,

the miss cycle time is increased in three cycles.

Another propos.d is the DASC cache [12]. This is a set-
s.wociative cache in which the prediction is done assuming a
direct-mapped cache. If the tag side detects a hit in another

position of the set, the data use is aborted and the line in the

accessed position and in the correct position are swapped.

A secondary hit requires four cycles, In case of miss, the line
is written according to the replacement algorithm and then

is swapped with the line that is accessed in a direct-mapped
cache. Again it can be used for any degree of associativity

but the probability of first-time hit decreases.
The last proposal is the PAD cache [9]. The tag side

is divided into two parts. The first part holds the k least-

significant bits of the tags and the other part keeps the re-
maining bits. The way is predicted comparing the tags of
the first part. In case of more than one hit in this part, any

of the ways (for example the most-recently used) is accessed
while the second part of the tags are compared to determine

if the correct way was predicted. The penalty of secondary

hits is of one additional cycle. It can be used for any degree

of associativity but the probability of primary hit decreases.

4 Conclusions

We have presented the difference-bit cache, a new organiza-

tion of a two-way set-associative cache with the access time

of a direct-mapped cache of the same capacity and line size.

This access time is obtained by separating the selection of
the proper way from the detection of a hit, and selecting the
way using the least-significant bit in which both tags of a
set differ. The performance obtained with the difference-bit

cache is better than the performance obtained with a direct-
mapped cache, a conventional two-way set-associative cache

and with any of the previous proposals that cause two types

of hits.

Our proposal has been evaluated using the implemen-
tation approach and the detailed cache model of [18]. The

results of this evaluation show that the desired access time is
achieved for parameters corresponding to practical first-level

caches.

The additional area of the selection mechanism is small
and has been estimated at about 3’ZO of the cache area.

The difference-bit cache can be directly used for virtual-

indexed/virtual-tagged caches. It requires a cache with vir-

tual tags, since the delay of the address translation would

not allow a selection oft he way in time. Moreover, the index

has to be virtual to permit a fast data access. However, these

virtuaLindexed/virtual-tagged caches have two drawbacks:

a) a context switch may invalidate all cache lines unless the

cache lines are tagged with identifiers of their address space,

and b) two or more virtual addresses can map to the same

real address introducing synonym problems [19].

Virtual-indexed but real-tagged (V/R) caches are pre-

ferred because they do not suffer from the context-switching

problem. Moreover, the synonyms problem is minimized.

We are investigating the possibility of adapting the difference-

bit cache to V/R caches. Notice that the translated tag is

not needed until the bit selection so that the translation can

overlap with the access to the Diff memory. It is not clear at

this point whether this overlap is sufficient to get a suitable

access time.

The difference-bit idea can be applied to any degree of

associativity but the additional area required increases sig-

nificantly and also the access time.
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