# Web Server Workload Characterization: The Search for Invariants

Martin F. Arlitt Carey L. Williamson Department of Computer Science University of Saskatchewan

## Abstract

The phenomenal growth in popularity of the World Wide Web (WWW, or the Web) has made WWW traffic the largest contributor to packet and byte traffic on the NSFNET backbone. This growth has triggered recent research aimed at reducing the volume of network traffic produced by Web clients and servers, by using caching, and reducing the latency for WWW users, by using improved protocols for Web interaction.

Fundamental to the goal of improving WWW performance is an understanding of WWW workloads. This paper presents a workload characterization study for Internet Web servers. Six different data sets are used in this study: three from academic (i.e., university) environments, two from scientific research organizations, and one from a commercial Internet provider. These data sets represent three different orders of magnitude in server activity, and two different orders of magnitude in time duration, ranging from one week of activity to one year of activity.

Throughout the study, emphasis is placed on finding workload *invariants*: observations that apply across all the data sets studied. Ten invariants are identified. These invariants are deemed important since they (potentially) represent universal truths for all Internet Web servers. The paper concludes with a discussion of caching and performance issues, using the invariants to suggest performance enhancements that seem most promising for Internet Web servers.

## 1 Introduction

The popularity of the World Wide Web [1, 22] (also called WWW, or the Web) has made Web traffic the fastest growing component of packet and byte traffic on

SIGMETRICS '96 5/96 PA, USA

the NSFNET network backbone [14]. WWW traffic has increased from 74 Megabytes per month in December 1992 to 3.2 Terabytes per month in December 1994.

There are many reasons behind this explosive growth in Web traffic. These reasons include: the ease of use of the Web; the availability of graphical user interfaces (Web browsers) for navigating the Web; an emerging trend among researchers, educational institutions, and commercial organizations to make the Web the standard mechanism for disseminating information in a timely fashion; the machine-independent languages and protocols used for constructing and exchanging Web documents; and a continuing (exponential) increase in the number of Internet hosts and users [18].

The phenomenal (and alarming) growth in Web traffic has sparked much research activity on "improving" the World Wide Web. For example, researchers have proposed caching strategies for Web clients [3], caching strategies for Web servers [4], regional file caching strategies for large internetworks [8], and improved protocols for Web interaction [15, 20].

Much of this recent research activity has been aimed at improving Web performance and scalability. The key performance factors to consider are how to reduce the volume of network traffic produced by Web clients and servers, and how to improve the response time (i.e., latency) for WWW users.

Fundamental to the goal of improving Web performance is a solid understanding of WWW workloads. While there are several studies reported in the literature [3, 4, 6, 7, 12], most studies present data from only one measurement site, making it difficult to generalize results to other sites. Furthermore, most studies focus on characterizing Web clients, rather than Web servers.

The purpose of this paper, then, is to present a detailed workload characterization study of Internet Web servers, similar to earlier studies of wide-area network TCP/IP traffic [5]. Six different Web server access logs are used in this study: three from academic (university) environments, two from scientific research institutions, and one from a commercial Internet provider. The

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

<sup>© 1996</sup> ACM 0-89791-793-6/96/0005...\$3.50

| Invariant | Name               | Description                                                  |
|-----------|--------------------|--------------------------------------------------------------|
| 1         | Success Rate       | Success rate for lookups at server $\approx 88\%$            |
| 2         | File Types         | HTML and image files account for 90-100% of requests         |
| 3         | Mean Transfer Size | Mean transfer size $\leq 21$ kilobytes                       |
| 4         | Distinct           | Among all server requests, less than 3% of the               |
|           | Requests           | requests are for separate (distinct) files                   |
| 5         | One Time           | Approximately one-third of the files and bytes accessed      |
|           | Referencing        | in the log are accessed only once in the log                 |
| 6         | Size Distribution  | File size distribution is Pareto with $0.40 < \alpha < 0.63$ |
| 7         | Concentration      | 10% of the files accessed account for $90%$ of               |
|           | of References      | server requests and 90% of the bytes transferred             |
| 8         | Inter-Reference    | File inter-reference times are exponentially                 |
|           | Times              | distributed and independent                                  |
| 9         | Remote             | Remote sites account for $\geq 70\%$ of the accesses         |
|           | Requests           | to the server, and $\geq 60\%$ of the bytes transferred      |
| 10        | Wide Area          | Web servers are accessed by 1000's of domains,               |
|           | Usage              | with 10% of the domains accounting for $\geq 75\%$ of usage  |

Table 1: Summary of Invariants Found in Web Server Workloads

data sets represent three different orders of magnitude in server activity (ranging from 776 requests per day to 355,787 requests per day), and time durations ranging from one week of activity to one year of activity.

Throughout the study, emphasis is placed on finding workload *invariants*: observations that apply (or seem to apply) across all the data sets studied. These invariants are deemed important since they (potentially) represent universal truths for all Internet Web servers.

Our research to date has identified ten invariants for Web server workloads. These invariants are summarized in Table 1, for easy reference, and are described in more detail within the paper itself.

The remainder of this paper is organized as follows. Section 2 provides background material on the World Wide Web, Web clients, and Web servers. Section 3 describes the Web server logs used in this study, and presents summary statistics for the six data sets. Section 4 presents the detailed results of our workload characterization, identifying the main invariants. The paper concludes, in Section 5, with a discussion of caching and performance issues for Internet Web servers, drawing upon the invariants to identify the types of performance enhancements that we deem to be most promising for Internet Web servers.

## 2 The World Wide Web

#### 2.1 Web Overview

The World Wide Web is based on the client-server model. A client accesses documents on the Web via a Web browser. The browser sends a request to a Web server, which responds with the requested documents. Although the information may be stored in almost any location throughout the world, the Web provides the user with the illusion that the data is stored locally.

A Web server can respond to requests from multiple Web clients. Communication is always in the form of request-response pairs, and is always initiated by the client. Web clients and servers communicate using the HyperText Transfer Protocol (HTTP). HTTP runs on top of TCP, a reliable bidirectional byte stream protocol at the transport layer [21].

Communication between a Web client and a Web server is carried out in the following manner. When a client has a request to make of a particular Web server, the client must contact that server. A TCP connection must be established between the client and server, over which the request and response can be exchanged. Once the connection has been established, the client sends its request to the server. The server parses the request, and issues a response. Once the response is complete, the TCP connection between the Web client and server is closed. This process is repeated each time a client wishes to retrieve a document from a Web server [15].

#### 2.2 Web Clients

A human user can gain access to the information on the World Wide Web by using a Web browser, such as netscape, mosaic, or lynx [22]. When the user selects a document to retrieve (usually by clicking a mouse on a hyperlink), the browser creates a request to be sent to the corresponding Web server. The request includes: the name of the requested document, expressed as a Uniform Resource Locator (URL) [2]; a set of Hyper-Text request headers, indicating which data formats the client will accept; and user authentication information, which tells the server which documents the client has permission to retrieve. Once the request has been sent to the Web server, the client machine waits for a response. When the response arrives, the browser parses the reply. Depending on the response, the client machine may make another request to the server, or display the document for the human user to view.

#### 2.3 Web Servers

The purpose of a Web server is to provide documents to Web clients that request them. Each Web *page* may consist of multiple documents (files). Each file is requested separately from the Web server.

A Web server operates as follows. The server listens on a designated port (usually port 80) for a request from a Web client to establish a TCP connection. Once a TCP connection has been opened and the client has made its request, the server must respond to that request. The response includes a status code to inform the client if the request succeeded. If the request was successful, then the response includes the requested document. If the request was unsuccessful, a reason for the failure is returned to the client [15]. Once the Web server has sent its response and terminated the TCP connection with the client, the server repeats the cycle and begins listening for its next request.

#### 2.4 Server Logs

Web servers can be configured to record information about all client requests. Four log files are common to NCSA httpd version 1.4: an *access* log, an *agent* log, an *error* log and a *referer* log. The access log records information about all the requests and responses processed by the server. The agent log records the type of browser that was used by the client to issue the request. The error log records unusual Web server events that might require the attention of a Web master or system administrator. The referer log contains information on which Web pages (local or remote) are linked to documents on the (local) Web server. Only the access logs are used in the workload study reported in this paper.<sup>1</sup>

Each line from the access log contains information on a single request for a document. The log entry for a normal request is of the form:

hostname - - [dd/mmm/yyyy:hh:mm:ss tz] request
status bytes

From each log entry, it is possible to determine the name of the host machine making the request, the time that the request was made, and the name of the requested document. The entry also provides some information

.

about the server's response to this request, such as if the server was able to satisfy the request (if not, a reason why the response was unsuccessful is given) and the number of bytes transmitted by the server, if any.

An example of a line from an access log is: alfonso.usask.ca - [15/Aug/1995:13:50:05 -0600] "GET / HTTP/1.0" 200 1265

This request came from the host alfonso.usask.ca at 1:50:05 pm CST on August 15, 1995. The requested document was the home page ("/") of the Web server. The status code of 200 means that the request was successfully completed by the server, and 1,265 bytes were transferred from the server to alfonso.usask.ca.

In this paper, the data from these access logs is then used to characterize Web server workloads.

#### 2.5 Performance Issues/Related Work

The overall performance of the World Wide Web is affected by the client, the server, and the capacity of the network links that connect the clients to the server. Efficient Web browsers (clients) can use caching of documents to reduce the loads that they put on Web servers and network links, thereby improving the performance of the Web. A recent study at Boston University [3] studied the effects of client-level caching on Web performance. Several other researchers have studied the use of file caching to reduce network traffic and server loads [4, 8, 10]. Web performance can also be improved by enhancing client-server communication [15, 20].

Although the primary focus of this paper is workload characterization for Web servers, several relevant issues affecting server caching and performance are discussed (in Section 5). Client and network performance issues are outside the scope of this paper.

## 3 Data Collection, Reduction, and Analysis

This section presents an overview of the six separate data sets used in our workload characterization study. Section 3.1 describes the data collection sites, Sections 3.2 and 3.3 present the "raw" log contents, Section 3.4 discusses the reduction of the raw data from the access logs into more manageable form, Section 3.5 analyzes document types and sizes, and Section 3.6 summarizes the statistical characteristics of the six data sets.

#### 3.1 Data Collection Sites

The access logs used in this research were obtained from six World Wide Web servers: a department-level Web server at the University of Waterloo (Department of Computer Science); a department-level Web server at the University of Calgary (Department of Computer Science); a campus-wide Web server at the University of Saskatchewan; the Web server at NASA's Kennedy

 $<sup>^{1}</sup>$ We used the error log from the University of Saskatchewan's Web server to study the aborted connections in the access log. Aborted connections are discussed in more detail in Section 4.3.

Table 2: Summary of Access Log Characteristics (Raw Data)

| Item                         | Waterloo | Calgary   | Saskatchewan | NASA      | ClarkNet  | NCSA      |
|------------------------------|----------|-----------|--------------|-----------|-----------|-----------|
| Access Log Duration          | 8 months | 1 year    | 7 months     | 2  months | 2 weeks   | 1 week    |
| Access Log Start Date        | Jan 1/95 | Oct 24/94 | Jun 1/95     | Jul 1/95  | Aug 28/95 | Aug 28/95 |
| Access Log Size (MB)         | 17.9     | 49.9      | 222.6        | 355.8     | 327.5     | 267.7     |
| Total Requests               | 188,636  | 726,739   | 2,408,625    | 3,461,612 | 3,328,587 | 2,490,512 |
| Avg Requests/Day             | 776      | 2,059     | 11,255       | 56,748    | 237,756   | 355,787   |
| Total Bytes Transferred (MB) | 2,071    | 7,577     | 12,343       | 62,489    | 27,647    | 28,268    |
| Avg Bytes/Day (MB)           | 8.5      | 21.5      | 57.7         | 1,024.4   | 1,974.8   | 4,038.3   |

Space Center; the Web server from ClarkNet, a commercial Internet provider in the Baltimore - Washington D.C. region; and the Web server at the National Center for Supercomputing Applications (NCSA) in Urbana-Champaign, Illinois. The Web server for the University of Waterloo's Department of Computer Science is a SUNSparc2, running NCSA httpd version 1.3, and serving a population of 200 graduate students, faculty and staff. The Calgary server is a SUN 4/490, serving about 1300 faculty, staff, and students (graduate and undergraduate). The Web server at the University of Saskatchewan is a Decstation 5000/133, running NCSA httpd version 1.4 for approximately 21,000 students, faculty and staff. The NASA server consists of 4 DEC Alpha 2100 servers on an FDDI ring, each with 128 MB RAM and each running NSCA httpd 1.4. The ClarkNet Web server is a SUNsparc10 with two 60 MHz processors, providing Internet access for 5,000 people (as of August 1995). This machine is running Netscape's Commerce Server 1.1. The NCSA server consists of 8 HP 735 workstations, used in a round-robin fashion to provide Web service [12]. Each workstation has 96 MB RAM and a 130 MB local disk cache. The workstations all run NCSA httpd, and use AFS for file access over an FDDI ring.

#### 3.2 Raw Data

Table 2 summarizes the raw data from the six access logs. For ease of reference, the sites are presented in increasing order of server activity, based on the number of requests per day. The same ordering is maintained in all tables throughout the paper.

The six access logs provide information on servers with very different workloads. Table 2 shows that the Waterloo server had a very light workload, while the Saskatchewan server had an order of magnitude more requests to handle. The ClarkNet and NCSA servers had very heavy workloads, more than an order of magnitude greater than the Saskatchewan server. The level of server activity represented in the six logs varies by almost three orders of magnitude, so that our search for invariants covers light, medium, and heavy workloads. The logs also span different time durations, so that we can study short term, medium term, and long term aspects of Web server file referencing activity.

#### 3.3 Access Log Analysis

The first step in our data analysis was to study the response codes in the Web server access logs. There are many possible responses to client requests. These include: (1) Successful: a valid document, which the client has permission to access, was found on the server and returned to the client; (2) Not Modified: the client, which already has a copy of the document in its cache but wishes to verify that the document is up-to-date, is told that the document has not been modified at the server (thus no data bytes need to be transferred); (3) Found: the requested document is known to reside in a different location than was specified by the URL provided by the client, so the server responds with the new URL (but not the document); and (4) Unsuccessful: either no such document exists, the client did not have permission to access this document, or an error occurred (at the server or during network communication).

Table 3 provides an overall view of the response code frequencies observed in the access logs. From Table 3, we can identify the first invariant in Web server traffic. *Successful* responses made up approximately 88% of all responses in the logs. Cache related queries that result in *Not Modified* account for about 8%.

## 3.4 Data Reduction

Since the *Successful* responses are responsible for all of the documents transferred by the server, only these responses will be used for the remaining analyses in this paper. This simplification provides a reduction in the size of the data sets, and focuses the workload characterization on the most common events.

Table 4 provides a statistical summary of the reduced data sets. This table shows that the number of distinct documents requested from the server is significantly lower than the total number of documents requested, implying that some documents are requested many, many times. The mean size of the documents transferred is quite small (5-21 Kbytes), as might be

Table 3: Breakdown of Server Responses for All Data Sets

| Response Code | Waterloo | Calgary | Saskatchewan | NASA   | ClarkNet | NCSA   |
|---------------|----------|---------|--------------|--------|----------|--------|
| Successful    | 87.8%    | 78.4%   | 91.1%        | 89.6%  | 88.8%    | 93.1%  |
| Not Modified  | 8.2%     | 13.5%   | 6.3%         | 7.7%   | 8.1%     | 4.1%   |
| Found         | 1.6%     | 4.2%    | 1.7%         | 2.1%   | 0.9%     | 0.3%   |
| Unsuccessful  | 2.4%     | 3.9%    | 0.9%         | 0.6%   | 2.2%     | 2.5%   |
| Total         | 100.0%   | 100.0%  | 100.0%       | 100.0% | 100.0%   | 100.0% |

Table 4: Summary of Access Log Characteristics (Reduced Data)

| Item                         | Waterloo | Calgary | Saskatchewan | NASA      | ClarkNet  | NCSA      |
|------------------------------|----------|---------|--------------|-----------|-----------|-----------|
| Access Log Duration          | 8 months | 1 year  | 7 months     | 2 months  | 2 weeks   | 1 week    |
| Access Log Size (MB)         | 10.4     | 20.9    | 143.9        | 221.2     | 195.5     | 172.6     |
| Total Requests               | 163,112  | 567,795 | 2,165,415    | 3,087,043 | 2,940,712 | 2,289,510 |
| Distinct Requests            | 3,406    | 8,370   | 18,849       | 9,355     | 32,294    | 23,855    |
| Total Bytes Transferred (MB) | 2,071    | 7,577   | 12,330       | 62,483    | 27,591    | 28,268    |
| Mean Transfer Size (bytes)   | 13,313   | 13,997  | 5,970        | 21,224    | 9,838     | 12,947    |
| CoV of Transfer Size         | 3.45     | 8.01    | 11.19        | 3.62      | 3.84      | 6.92      |

expected. The table also shows that there is a high degree of variability (measured by the coefficient of variation, CoV) in the transfer size, particularly for the Saskatchewan data set.

#### 3.5 Document Types and Sizes

The high degree of variation in document size is due in part to the wide variety of document types accessed on the server (e.g., HTML, gif, postscript, audio, MPEG). The next step in our analysis was to classify documents by type, using the generic categories HTML, Images, Sound, Video, Formatted, and Dynamic files. For each of the data sets in Table 4, statistics on the type of document requested were calculated. The results for each log are given in Table 5.

Using Table 5, we can identify a second invariant in Web server workloads. Across the six data sets, HTML and Image documents accounted for 90-100% of the total requests to the server.<sup>2</sup> This observation is consistent with results reported by Sedayao [19] and by Cunha, Bestavros and Crovella [7]. Both of these papers reported that over 90% of client requests were for either HTML or image documents.

Table 5 also indicates that most transferred documents are quite small, which is a third invariant. This phenomenon was also observed by Braun and Claffy [4] for requests to the NCSA's Web server. Despite the fact that Web browsers provide support for the use of multimedia objects like sound and video, documents of these types accounted for only 0.01-1.2% of the requests in the six data sets. However, these types of files account for 0.2-30.8% of the bytes transferred, since these files tend to be much larger than other file types. Future growth in the use of video and audio files could thus change Invariant 2 and Invariant 3.

The large variation in the mean file sizes for the different document types helps to explain the large coefficient of variation (CoV) values reported in Table 4. The CoV values per document type are much lower in Table 5.

Finally, Table 6 presents a breakdown of the distinct documents requested from each of the servers. Distinct documents are determined by looking at the URL in the access log entries.

Table 6 illustrates two additional workload invariants. First, only 0.3-2.1% of the requests and 0.4-5.1% of the bytes transferred are for distinct documents. This observation implies that caching documents (at the server, at the client, or within the network) could greatly improve the performance of the server, as has been pointed out by Claffy and Braun [4]. Second, in all six data sets, approximately one-third (e.g., 22.6-42.1%) of all the distinct documents are requested only once, and one-third (e.g., 14.3-42.5%) of the distinct bytes are transferred only once. This observation is somewhat surprising given that the six data sets represent time durations ranging from one week to one year. This "one time" referencing behaviour has obvious implications on the maximum possible effectiveness of document caching policies. Further discussion of these implications is deferred until Section 5.

 $<sup>^{2}</sup>$  In our data sets, there is no invariant for HTML documents alone, or for Image documents alone. In fact, the usage of HTML and Image document types differs dramatically for the Saskatchewan and ClarkNet data sets.

| Waterloo Data          |        |        |           |           |                     |           |            |  |
|------------------------|--------|--------|-----------|-----------|---------------------|-----------|------------|--|
| Item                   | HTML   | Images | Sound     | Video     | Dynamic             | Formatted | Other      |  |
| % of Requests          | 38.7   | 50.1   | 0.01      | 0.0006    | 0.3                 | 3.7       | 7.184      |  |
| % of Bytes Transferred | 35.0   | 18.9   | 0.10      | 0.10      | 0.2                 | 25.2      | 20.5       |  |
| Mean Transfer Size     | 12,036 | 4,961  | 120,973   | 2,232,051 | 6,465               | 90,444    | 42,130     |  |
| CoV of Transfer Size   | 1.82   | 3.45   | 1.10      | 0.00      | 1.46                | 1.83      | 1.89       |  |
| Calgary Data           |        |        |           |           |                     |           |            |  |
| Item                   | HTML   | Images | Sound     | Video     | Dynamic             | Formatted | Other      |  |
| % of Requests          | 47.1   | 50.3   | 0.1       | 0.3       | 0.04                | 1.0       | 1.16       |  |
| % of Bytes Transferred | 13.2   | 50.2   | 1.3       | 11.4      | 0.01                | 21.7      | 2.19       |  |
| Mean Transfer Size     | 3,929  | 13,971 | 258,196   | 496,992   | 4,702               | 305,444   | 27,112     |  |
| CoV of Transfer Size   | 1.86   | 3.95   | 1.49      | 1.60      | 1.26                | 2.77      | 4.09       |  |
|                        |        | Sasl   | katchewan | Data      |                     |           |            |  |
| Item                   | HTML   | Images | Sound     | Video     | Dynamic             | Formatted | Other      |  |
| % of Requests          | 55.6   | 36.5   | 0.1       | 0.004     | 6.7                 | 0.02      | 1.076      |  |
| % of Bytes Transferred | 50.7   | 36.6   | 1.5       | 2.6       | 4.4                 | 0.1       | 4.1        |  |
| Mean Transfer Size     | 5,447  | 5,980  | 84,154    | 3,602,176 | 3,969               | 36,055    | $22,\!441$ |  |
| CoV of Transfer Size   | 2.19   | 2.77   | 2.62      | 2.29      | 2.91                | 0.08      | 11.30      |  |
|                        |        |        | NASA Da   | ta        |                     |           |            |  |
| Item                   | HTML   | Images | Sound     | Video     | Dynamic             | Formatted | Other      |  |
| % of Requests          | 30.7   | 63.5   | 0.2       | 1.0       | 2.6                 | 0.01      | 1.99       |  |
| % of Bytes Transferred | 18.8   | 48.1   | 1.1       | 29.7      | 0.3                 | 0.07      | 1.93       |  |
| Mean Transfer Size     | 12,981 | 16,059 | 110,311   | 439,151   | 2,817               | 136,436   | 26,349     |  |
| CoV of Transfer Size   | 2.71   | 2.37   | 0.80      | 0.84      | 0.68                | 1.85      | 2.55       |  |
|                        |        | C      | larkNet D | ata       |                     |           |            |  |
| Item                   | HTML   | Images | Sound     | Video     | Dynamic             | Formatted | Other      |  |
| % of Requests          | 19.9   | 78.0   | 0.2       | 0.007     | 1.2                 | 0.01      | 0.683      |  |
| % of Bytes Transferred | 15.0   | 76.6   | 2.4       | 2.4       | 0.8                 | 0.04      | 2.76       |  |
| Mean Transfer Size     | 7,433  | 9,669  | 135,082   | 3,514,759 | 6,630               | 36,199    | $37,\!138$ |  |
| CoV of Transfer Size   | 2.14   | 1.66   | 1.24      | 0.35      | 3.31                | 1.03      | 4.25       |  |
|                        |        |        | NCSA Da   | ta        | - APR, 1.0 - 01-0-1 | ······    |            |  |
| Item                   | HTML   | Images | Sound     | Video     | Dynamic             | Formatted | Other      |  |
| % of Requests          | 51.1   | 48.1   | 0.2       | 0.1       | 0.01                | 0.006     | 0.484      |  |
| % of Bytes Transferred | 51.1   | 36.0   | 3.5       | 6.2       | 0.06                | 0.2       | 2.94       |  |
| Mean Transfer Size     | 12,950 | 9,679  | 197,605   | 594,796   | 6,535               | 369,590   | 103,783    |  |
| CoV of Transfer Size   | 3.56   | 2.46   | 5.79      | 2.18      | 6.69                | 2.60      | 4.38       |  |

Table 5: Breakdown of Document Types and Sizes for All Data Sets

Table 6: Statistics on Distinct Documents for All Data Sets

| Item                              | Waterloo | Calgary | Saskatchewan | NASA  | ClarkNet | NCSA  |  |  |  |
|-----------------------------------|----------|---------|--------------|-------|----------|-------|--|--|--|
| Distinct Requests/Total Requests  | 2.1%     | 1.5%    | 0.8%         | 0.3%  | 1.1%     | 1.0%  |  |  |  |
| Distinct Bytes/Total Bytes        | 5.1%     | 3.8%    | 2.1%         | 0.4%  | 1.5%     | 2.7%  |  |  |  |
| Distinct Files Accessed Only Once | 29.1%    | 22.6%   | 42.0%        | 42.1% | 31.9%    | 35.0% |  |  |  |
| Distinct Bytes Accessed Only Once | 22.8%    | 19.8%   | 42.5%        | 14.3% | 24.7%    | 39.1% |  |  |  |

#### 3.6 Summary

This section has summarized the statistical characteristics of the six data sets used for our workload characterization study. While the six access logs differ greatly in duration and server activity, five workload invariants have been identified. These invariants are summarized in the first five rows of Table 1. The next section presents an in-depth study of file referencing patterns and file size distributions for Internet Web servers, looking for further invariants.

## 4 Workload Characterization

This section presents a detailed analysis of file referencing behaviours on Internet Web servers, as well as a look at file sizes, the effect of user aborts, and the presence of self-similarity in Web server workloads. We begin with an analysis of file size distributions.

#### 4.1 File Size Distribution

Figure 1 shows the (cumulative) size distribution of the distinct documents (files) referenced at each site. While there are a few very small files (< 100 bytes) at each of the sites, most files appear to be in the range of 100 - 100,000 bytes, while a few files (< 10%) are larger than 100,000 bytes. This distribution is consistent with the file size distribution reported in [4].

A more rigourous study shows that the observed file size distributions match well with the Pareto distribution [11, 17], for  $\alpha < 1$ . This observation has been noted in the literature [6, 16], and is confirmed in all six of our data sets. In particular, the tails of the distributions (for file sizes larger than 1024 bytes) are Pareto with  $0.40 \le \alpha \le 0.63$ . This characteristic is present in all six data sets, and is thus added to Table 1.

#### 4.2 File Referencing Behaviour

This subsection looks at a number of different characteristics in the file referencing patterns at Internet Web



Figure 1: Distribution of File Sizes, by Server

servers. The analysis focuses on five general characteristics: frequency of reference, concentration of references, temporal locality, inter-reference times, and geographic distribution of references.

#### 4.2.1 Frequency of Reference

Our first analysis focuses on the frequency of reference for different Web documents. Clearly, not all Web documents are created equal. Some are extremely "hot" and popular documents, accessed frequently and at short intervals by many clients at many sites. Other documents are accessed rarely, if at all.

We illustrate this non-uniform referencing behaviour, which we call *concentration*, by sorting the list of distinct files into decreasing order based on how many times they were accessed, and then plotting the cumulative frequency of requests versus the fraction of the total files referenced. The resulting plot for all six data sets is shown in Figure 2.

Figure 2 illustrates the non-uniform pattern of file referencing behaviour: 10% of the distinct documents were responsible for 80-95% of all requests received by the server, at each of the six sites. The NCSA data set shows the most concentration, while the Calgary data set shows the least.

This concentration phenomenon is another invariant in our Web server logs, and is thus added to Table 1. Braun and Claffy have reported similar results for NCSA's Web server in an earlier study [4].



Figure 2: Concentration of References

#### 4.2.2 Mean Inter-Reference Times

Our next analysis focuses on the inter-reference time for documents that are accessed more than once. The inter-reference times are computed for each distinct document, and then combined together to form the cumulative distribution of inter-reference times for all documents that are accessed more than once. The cumulative frequency distributions are shown in Figure 3.



Figure 3: Distribution of Inter-reference Times

Figure 3 clearly illustrates the different workload levels for the six servers. On the lightly-loaded Waterloo server, documents tend to be accessed at long intervals (hours to days). Documents on the busy NCSA server are accessed on a seconds or minutes basis.

A separate statistical analysis (not shown in this paper) suggests that file inter-reference times are exponentially distributed and independent. This observation applies for all six data sets, and is added to Table 1 as an invariant. Clearly, however, the mean inter-reference time depends on the server workload.

#### 4.2.3 Temporal Locality

Access logs were analyzed to look for temporal locality in the file referencing behaviour. Temporal locality refers to the notion of the same document being rereferenced frequently within short intervals.

Temporal locality can be measured using the standard LRU (Least Recently Used) stack-depth analysis. When a document is initially referenced, it is placed on top of the LRU stack (i.e., position 1), pushing other documents down in the stack by one location. When the document is subsequently referenced, its current location in the LRU stack is recorded, and then the document is moved back to the top of the stack (pushing other documents down, as necessary). When the entire log has been processed in this fashion, temporal locality in referencing behaviour is manifested by a high probability of references to locations at or near the top of the LRU stack.

Figure 4 shows the results of our LRU stack-depth analysis for all six data sets. The Calgary data set shows the highest degree of temporal locality, while the ClarkNet data set shows the least. There is thus no invariant evident in these data sets for temporal locality.

Our speculation is that the level of multiplexing in a busy Web server is large enough to mask any evidence of temporal locality in the access logs. Client-side caching



Figure 4: Temporal Locality Characteristics

mechanisms may also serve to remove temporal locality from the reference stream seen at the server, as was demonstrated in [9].

#### 4.2.4 Geographic Distribution

Our final analysis of file referencing behaviour examines the geographic distribution of document requests. This analysis makes use of the IP addresses of the requesting hosts in the access log. In particular, the network component of the IP address (based on a Class A, Class B, or Class C address) is used to determine if a requesting host is *local* or *remote* (relative to the Web server). The network identifier in each IP address is further used to classify requesting hosts into *domains* (not to be confused with *domain names*) that have the same network address.

Table 7 shows the geographic distribution of requests and bytes transferred at the six sites. For example, 77.7% of all the requests to the Waterloo server came from remote hosts, while local hosts generated the remaining 22.3% of the requests. In terms of bytes transferred, 81.7% of the requested bytes were transferred to remote hosts, with 18.3% to local hosts. The rest of the table is organized in a similar manner.

On all six Web servers, remote hosts send the most requests and receive the most data. Remote hosts account for over 75% of requests on all but one server (Calgary), and well over half of the total bytes transferred on all servers. This observation is reported in Table 1 as another invariant.

The local access patterns at the Saskatchewan and Waterloo servers are quite similar. This is likely caused by the use of the Web in teaching and research activities. The access pattern at NCSA, NASA, and ClarkNet is substantially different, with remote accesses accounting for almost all of the requests and transferred data. The likely explanation for this behaviour is that there are very few "local" hosts for these organizations.

| Local Hosts    |          |         |              |      |          |      |  |  |  |
|----------------|----------|---------|--------------|------|----------|------|--|--|--|
| Item           | Waterloo | Calgary | Saskatchewan | NASA | ClarkNet | NCSA |  |  |  |
| % All Requests | 22.3     | 46.4    | 24.9         | 6.3  | 1.9      | 1.2  |  |  |  |
| % All Bytes    | 18.3     | 36.6    | 24.8         | 2.7  | 1.6      | 0.5  |  |  |  |
|                |          | Ren     | note Hosts   |      |          |      |  |  |  |
| Item           | Waterloo | Calgary | Saskatchewan | NASA | ClarkNet | NCSA |  |  |  |
| % All Requests | 77.7     | 53.6    | 75.1         | 93.7 | 98.1     | 98.8 |  |  |  |
| •              |          | 00.0    | 10.1         | 00   | 00.1     | 00.0 |  |  |  |

Table 7: Geographic Distribution of Requests for All Data Sets



Figure 5: Distribution of References by Domain

Figure 5 shows the distribution of references by the number of domains accessing the Web server.<sup>3</sup> A small number of domains account for a significant portion of the requests, while the remaining requests are received from several thousand domains. In all six data sets, 10% of the domains accounted for at least 75% of the requests (Invariant 10 in Table 1).

#### 4.3 Aborted Connections

In most Web browsers, users can abort the transfer of a Web document at any time. We analyzed the error log from the University of Saskatchewan data set to assess the impact of aborted connections on our results.

Table 8 summarizes information about aborted connections. While the number of aborted connections is quite low, the number of bytes transferred by aborted connections is somewhat larger. Furthermore, remote users are more likely to abort a connection than are local users, as expected.

Table 8: Aborted Connections (Saskatchewan Data)

| Item                     | Local | Remote | All |
|--------------------------|-------|--------|-----|
| % of Connections Aborted | 0.9   | 1.2    | 1.1 |
| % of Bytes Transferred   | 4.0   | 5.7    | 5.1 |

<sup>3</sup>The Calgary data set is not shown since the "sanitized" logs that we received did not show host names or IP addresses.

#### 4.4 Self-Similarity

Recent work has suggested that World Wide Web traffic may be self-similar [6]. We conducted several tests (as described in [13]) to check for long range dependence and self-similarity in the Web server workload. In short, we found a slight degree of self-similarity (a Hurst parameter value of  $H \approx 0.65$ ) in the ClarkNet data set, very little ( $H \approx 0.53$ ) in the Saskatchewan data set, and none at all in the Waterloo data set.

Self-similarity does not appear to be an invariant in all Web server workloads, though it does appear to be a property when Web traffic is heavy, as reported in [6].

#### 4.5 Summary

This section has presented a detailed study of Web server workload characteristics. Results were presented for file size distributions, file referencing patterns, aborted connections, and self-similarity in Web server workloads.

From the analyses reported in this section, five additional workload invariants have been identified. These invariants appear in the last five rows of Table 1.

## 5 Performance Implications

We conclude our paper with a discussion of performance issues (particularly caching issues) for Internet Web servers. Despite the low temporal locality seen in most Web server workloads, caching still appears to be a promising approach to improving Web performance because of the large number of references to a small number of documents (Invariant 4 from Table 1), the concentration of references within these documents (Invariant 7), and the small average size of these documents (Invariant 3). We intentionally leave unspecified the location of the cache (e.g., at the client, at the server, or in the network) and the size of the cache (e.g., Megabytes or Gigabytes), focusing instead on the use of our workload invariants to estimate the maximum performance improvement possible with Web server caching. For simplicity, the discussion assumes that all Web documents are read-only (i.e., never modified), and that filelevel (not block-level) caching is used. Misses due to "cold start" are also ignored.

## 5.1 A Basic Tradeoff: Requests versus Bytes Transferred

There are two main elements that affect the performance of a Web server: the number of requests that a server must process, and the number of data bytes that the server must transfer (i.e., disk I/O's, packets).

There is thus a choice to be made between caching designs that reduce the number of requests presented to Internet Web servers, and caching designs that reduce the volume of network traffic<sup>4</sup>. Both approaches represent possible avenues for improving Web server performance, but optimizing one criterion does not necessarily optimize the other. The choice between the two depends on which resource is the bottleneck: CPU cycles at the server, or network bandwidth.

We illustrate this tradeoff in Figure 6. While the discussion here focuses only on the ClarkNet data set, similar observations apply for the other data sets.

The topmost graph (Figure 6(a)) illustrates the relationship between the size of files on a Web server (from Figure 1), the number of references to those files, and the number of data bytes that references to these files generate (i.e., the "weighted value" obtained from the product of file size and number of times that a file is referenced). This graph shows that 80% of all the documents requested from the ClarkNet server were less than 10,000 bytes in size. 76% of all references to the server were for files in this category. Thus, caching a large number of small files would allow the server to handle most of the requests in a very efficient manner. However, Figure 6 also points out that the references to files less than 10,000 bytes in size generate only 26% of the data bytes transferred by the server. Furthermore, looking at the tail of the distribution, documents over 100,000 bytes in size are responsible for 11% of the bytes transferred by the server, even though less than 0.5% of the references are to files in this category (Invariant 6). What this means is that in order to reduce the number of bytes transferred by the server as much as possible, a few large(r) files would have to be cached. That is, the server must sacrifice on "cache hits" for many (small) requests in order to save on bytes transferred for large requests.

The remaining two plots in Figure 6 illustrate the tradeoff in more detail. The middle plot (Figure 6(b)) show the results for a cache designed to maximize cache hits for requests (i.e., to reduce the number of requests to the server). In this graph, the top line represents the cache hit rate for requests, the bottom line represents the cache size, and the middle line represents the poten-



Figure 6: Comparison of Caching and Performance Issues for ClarkNet Data

tial savings in bytes transferred by the server when the cache is present. In this design, for example, caching 10% of the server's distinct files (namely, the most frequently accessed documents) for the ClarkNet data set results in a cache hit rate of 90% (the top line in the graph). The documents in the cache, which represent the potential savings in bytes transferred, account for 84% (the middle line in the graph) of the bytes transferred by the server, and the cache size would need to hold 8.3% (the bottom line in the graph) of the total distinct bytes referenced in the server access log.

The bottom plot (Figure 6(c)) represents the results for a cache designed to reduce bytes transferred. In this graph, the top line represents the savings in bytes transferred, the bottom line represents the cache size,

<sup>&</sup>lt;sup>4</sup>Clearly, reducing the number of requests also reduces the volume of network traffic, but the main focus of the two approaches is different, as will be shown.

and the middle line represents the cache hit rate. In this design, for example, caching 10% of the server's files (namely, the 10% of the documents that account for the most bytes transferred) results in an 82% cache hit rate (the middle line). The documents in the cache would account for 95% (the top line) of the bytes transferred, but the cache would have to be large enough to contain 52% (the bottom line) of the distinct bytes represented in the server access log. Clearly there is a tradeoff to be made in cache size, cache hit rate, number of server requests, and number of bytes transferred by the server.

#### 5.2 Other Issues

Our final comments concern "one timers", cache replacement strategies, and thresholding approaches to cache management. The points raised here are purely speculative at this time. We are currently investigating these caching issues using our server workloads.

First, the "one time" referencing (Invariant 5) of Web documents is a concern.<sup>5</sup> This one-time referencing behaviour means that, on average, one-third of a server cache could be cluttered with useless files. Techniques to expunge such files from a cache, such as timeouts on cached files, are desirable. Invariant 8 may be useful in setting proper timeout values for documents in the cache. Another approach would be to cache only on the *second* reference to a file within a specified time period, rather than the first.

Second, the fact that temporal locality was not present in all data sets suggests that LRU as a cache replacement policy may not work well for all servers. Policies such as Least Frequently Used (LFU) may be more attractive because of the concentration of references (Invariant 7), and also because LFU easily deals with one-timers.

Third, there may be merit in using "size thresholds" in cache management, to better cope with the "heavy tailed" Pareto distribution of file sizes (Invariant 6), and the issues raised in Section 5.1. For example, two such threshold policies might be "never cache a document larger than X bytes" (because it uses up too much cache space, and adversely impacts hit rate), or "never cache a document smaller than Y bytes" (because it does not save much on bytes transferred by the server). We are currently investigating such caching refinements.

Finally, as a small but practical matter, Web servers should avoid doing name lookups for *each* incoming client request when producing the access log, particularly when successive requests are from the same requesting host. That is, servers should exploit whatever temporal locality exists in the incoming reference stream of requesting hosts (not analyzed in this paper) to avoid the (slow) name lookup whenever possible. A small cache (e.g., 20 entries) of the results of recent name lookups should suffice (e.g., 75% hit rate). This small refinement alone may help improve response times for heavily loaded Web servers. Turning off the name server lookup feature is another option.

## 6 Conclusions

This paper has presented a detailed workload characterization study for Internet World Wide Web servers. The study used logs of Web server accesses at six different sites: three from university environments, two from scientific research organizations, and one from a commercial Internet provider. The logs represent three different orders of magnitude in server activity, and span two different orders of magnitude in time duration.

From these logs, we have been able to identify ten invariants in Web server workloads. These invariants were summarized in Table 1 at the start of the paper. These invariants are deemed important since they (potentially) represent universal truths for all Internet Web servers.

The invariants were used to identify two possible strategies for the design of a caching system to improve Web server performance, and to determine bounds on the performance improvement possible with each strategy. The performance study identified the distinct tradeoff between caching designs that reduce network traffic, and caching designs that reduce the number of requests presented to Internet Web servers. While the two approaches are somewhat at odds with each other, both represent possible avenues for improving Web server performance.

## Acknowledgements

The authors are grateful to the following people for making their Web server access logs available for our study: Jamie Hodge, Department of Computer Science, University of Waterloo; Robert Fridman, Department of Computer Science, University of Calgary; Earl Fogel, Department of Computing Services, University of Saskatchewan; Jim Dumoulin, NASA (Kennedy Space Center); Stephen Balbach, ClarkNet; and Robert McGrath, NCSA.

Funding for this research was provided by NSERC Research Grant OGP0120969, and by an NSERC Postgraduate Scholarship. Part of this work utilized the Mass Storage System at the National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign.

The authors thank Rick Bunt (U of S), John Dilley (HP), and the anonymous referees for their constructive comments and suggestions, which helped to improve the clarity of the final paper.

This research was motivated by a discussion with Vern Paxson in May 1995. Vern Paxson was also instrumental in establishing the Internet Traffic Archive.

<sup>&</sup>lt;sup>5</sup>The advent of Web crawlers may change Invariant 5 to be "N timers", for some small integer N. However, the argument that we make here still applies.

## References

- M. Andreessen, "NCSA Mosaic Technical Summary", National Center for Supercomputing Applications, 1993.
- [2] T. Berners-Lee, L. Masinter and M. McCahill, "Uniform Resource Locators", RFC 1738, December 1994.
- [3] A. Bestavros, R. Carter, M. Crovella, C. Cunha, A. Heddaya and S. Mirdad, "Application-Level Document Caching in the Internet", Proceedings of the Second International Workshop on Services in Distributed and Networked Environments (SDNE '95), Whistler, BC, Canada, pp. 166-173, June 1995.
- [4] H. Braun and K. Claffy, "Web Traffic Characterization: An Assessment of the Impact of Caching Documents from NCSA's Web Server", *Electronic Proceedings of the Second World Wide Web Conference '94: Mosaic and the Web*, Chicago, Illinois, October 1994.
- [5] R. Cáceres, P. Danzig, S. Jamin and D. Mitzel, "Characteristics of Wide-Area TCP/IP Conversations", *Proceedings of ACM SIGCOMM '91*, Zürich, Switzerland, pp. 101-112, September 1991.
- [6] M. Crovella and A. Bestavros, "Explaining World Wide Web Traffic Self-Similarity", Proceedings of the 1996 ACM SIGMETRICS Conference, Philadelphia, PA, May 1996.
- [7] C. Cunha, A. Bestavros and M. Crovella, "Characteristics of WWW Client-Based Traces", Technical Report BU-CS-95-010, Boston University Computer Science Department, 1995.
- [8] P. Danzig, M. Schwartz and R. Hall, "A Case for Caching File Objects Inside Internetworks", Proceedings of ACM SIGCOMM '93, San Francisco, California, pp. 239-248, September 1993.
- [9] K. Froese and R. Bunt, "The Effect of Client Caching on File Server Workloads", Proceedings of the Twenty-Ninth Hawaii International Conference on System Sciences, January 1996.
- [10] S. Glassman, "A Caching Relay for the World Wide Web", First International Conference on the World Wide Web, Geneva, Switzerland, May 1994.
- [11] N. Johnson and S. Kotz, Editors-in-Chief, Encyclopedia of Statistical Sciences, Volumes 6 and 9, John Wiley & Sons, Inc., New York, 1988.
- [12] T. Kwan, R. McGrath, and D. Reed, "NCSA's World Wide Web Server: Design and Performance", *IEEE Computer*, Vol. 28, No. 11, pp. 68-74, November 1995.

- [13] W. Leland, M. Taqqu, W. Willinger and D. Wilson, "On the Self-Similar Nature of Ethernet Traffic (Extended Version)", *IEEE/ACM Transactions* on Networking, Vol. 2, No. 1, pp. 1-15, February 1994.
- [14] NSFNET Statistics. Data available by anonymous ftp from nic.merit.edu/statistics/nsfnet.
- [15] V. Padmanabhan and J. Mogul, "Improving HTTP Latency", Electronic Proceedings of the Second World Wide Web Conference '94: Mosaic and the Web, Chicago, Illinois, October 1994.
- [16] V. Paxson, "Empirically-Derived Analytic Models of Wide-Area TCP Connections", IEEE/ACM Transactions on Networking, Vol. 2, No. 4, pp. 316-336, August 1994.
- [17] V. Paxson and S. Floyd, "Wide-Area Traffic: The Failure of Poisson Modeling", *Proceedings of ACM* SIGCOMM '94 London, England, pp. 257-268, August 1994.
- [18] V. Paxson, "Growth Trends in Wide Area TCP Connections", *IEEE Network*, Vol. 8, No. 4, pp. 8-17, July/August 1994.
- [19] J. Sedayao, "Mosaic Will Kill My Network!", Electronic Proceedings of the Second World Wide Web Conference '94: Mosaic and the Web, Chicago, Illinois, October 1994.
- [20] M. Spasojevic, M. Bowman and A. Spector, "Using a Wide-Area File System Within the World-Wide Web", Electronic Proceedings of the Second World Wide Web Conference '94: Mosaic and the Web, Chicago, Illinois, October 1994.
- [21] A. Tanenbaum, Computer Networks, Second Edition, Prentice Hall, Englewood Cliffs, New Jersey, 1988.
- [22] World Wide Web Frequently Asked Questions, URL: http://www.io.org/faq/www/index.html

## For More Information

An extended version of this paper is available via URL http://www.cs.usask.ca/faculty/carey/. Martin Arlitt's M.Sc. thesis is available via URL http://www.cs.usask.ca/projects/discus/. The C programs used in this study to process Web server logs are available on an "as is" basis from the same site. The email addresses of the authors are mfa126@cs.usask.ca and carey@cs.usask.ca.

We hope to make one or more of our Web server access logs available to other researchers via the Internet Traffic Archive (ITA), located at http://town.hall.org/Archives/pub/ITA/