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ABSTRACT
Various evolutionary multiobjective optimization algorithms
(EMOAs) have replaced or augmented the notion of domi-
nance with quality indicators and leveraged them in selec-
tion operators. Recent studies show that indicator-based
EMOAs outperform traditional dominance-based EMOAs.
This paper proposes and evaluates an ensemble learning
method that constructs an ensemble of existing indicators
with a novel boosting algorithm called Pdi-Boosting. The
proposed method is carried out with a training problem in
which Pareto-optimal solutions are known. It can work with
a simple training problem, and an ensemble of indicators
can effectively aid parent selection and environmental selec-
tion in order to solve harder problems. Experimental results
show that the proposed method is efficient thanks to its dy-
namic adjustment of training data. An ensemble of indica-
tors outperforms existing individual indicators in optimality,
diversity and robustness. The proposed ensemble-based evo-
lutionary algorithm outperforms a well-known dominance-
based EMOA and existing indicator-based EMOAs.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Algorithms

Keywords
Evolutionary multiobjective optimization algorithms, Qual-
ity indicators, Indicator-based ensemble selection, Boosting

1. INTRODUCTION
A recent research trend in the design space of evolution-

ary multiobjective optimization algorithms (EMOAs) is to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12, July 7-11, 2012, Philadelphia, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1177-9/12/07 ...$10.00.

adopt indicator-based selection operators that augment or
replace traditional dominance ranking with quality indica-
tors [4]. A quality indicator measures the goodness of each
individual. Recent research findings (e.g., [2, 18, 21]) show
that indicator-based EMOAs outperform traditional EMOAs
that use dominance ranking in selection.

Many quality indicators have been proposed with the in-
tention to capture different preferences in optimization [1,3,
19, 21]. Therefore, indicator-based selection operators tend
to have biased selection pressures that evolve individuals to-
ward particular regions in the objective space. For example,
the hypervolume indicator favors balanced individuals that
equally balance the trade-offs among all objectives, while
the weighted hypervolume indicator favors extreme individ-
uals that yield superior performance only in a limited num-
ber of objectives [19]. A research question in this context
is whether a set of existing indicators can create a single
indicator that outperforms those existing ones.

The authors of the paper have addressed this question
with the notion of indicator-based ensemble selection, which
means selection with an ensemble of indicators, and verified
that an ensemble of indicators outperforms each of those in-
dicators [15,16]. In [15,16], a traditional boosting algorithm
called AdaBoost [9] was used to construct ensembles.

This paper enhances the prior work by replacing AdaBoost
with a novel boosting algorithm called Pdi-Boosting (Prob-
abilistic data interpolation-Boosting). Pdi-Boosting inter-
polates data around misclassified data using a given proba-
bility density function, while AdaBoost labels misclassified
data with associated weights.

Designed with Pdi-Boosting, the proposed boosting method
constructs an ensemble of indicators for two types of se-
lection operators in EMOAs: (1) parent selection, which
chooses parent individuals from the population to reproduce
offspring and (2) environmental selection, which chooses a
set of individuals used in the next generation from the union
of the current population and its offspring. The proposed
boosting method is carried out with a training problem in
which Pareto-optimal solutions are known. It can work with
a simple training problem, and an ensemble of indicators can
effectively aid to solve harder problems.

This paper also proposes a new EMOA, called BIBEA-P,
which uses an ensemble selection operator constructed with
the proposed boosting method. It is designed as a variant
of an existing indicator-based EMOA: IBEA [21].

Experimental results show that the proposed boosting method
outperforms its previous AdaBoost-based method in opti-



mality, diversity and convergence metrics. It is 44% faster
than the AdaBoost-based method thanks to its dynamic ad-
justment of training data. Experimental results also demon-
strate that an ensemble of indicators outperforms existing
individual indicators in optimality and diversity. The en-
semble exhibits higher robustness than existing indicators
against different characteristics in different problems and
yields more stable performance to solve a wider range of
problems. Moreover, BIBEA-P outperforms a well-known
traditional EMOA (NSGA-II [5]) and existing indicator-based
EMOAs (IBEA [21] and SMS-EMOA [2]).

2. RELATED WORK
This paper extends the authors’ prior work [15,16], which

investigated indicator-based ensemble selection with AdaBoost.
As discussed in the previous section, this paper leverages a
new boosting algorithm, Pdi-Boosting, in order to construct
more efficient and effective ensembles of indicators.

Several existing work have integrated ensemble methods,
including boosting algorithms, with evolutionary algorithms
(EAs) although they have never used ensemble methods for
selection operators in EAs. For example, boosting algo-
rithms have been integrated with genetic algorithms (GAs)
to solve classification problems [12, 13]. The Boosting Ge-
netic Algorithm integrates boosting with a GA to discover
classification rules [12]. The GA is used as a base classifier
in which each individual represents a classification rule. A
boosting algorithm aggregates multiple base classifiers (i.e.,
GAs) to build a more accurate classifier than them.

Liu et al. integrate boosting with a GA for feature se-
lection [13]. (Feature selection aims to identify the features
that strongly contribute to classification accuracy.) The GA
evolves a set of individuals, each of which encodes a feature
selection candidate, and seeks the optimal feature selection
that minimizes classification error. A feature selection can-
didate represents a set of boosted classifiers, each of which
considers a single feature to perform classification. Boosted
classifiers are constructed on a feature by feature basis.

Naujoks et al. propose an online statistical technique
to determine the termination condition (i.e., the maximum
number of objective function evaluations) for an indicator-
based EMOA: SMS-EMOA [14]. This paper does not focus
on dynamic adjustment of the termination condition, but
uses statically-fixed termination conditions.

3. QUALITY INDICATORS
This section describes 19 representative quality indicators

that the proposed boosting method uses.

3.1 Hypervolume Indicator
IH measures the volume of a hypercube that an individ-

ual dominates in the objective space [22]. The hypercube
is formed with the individual and the reference point rep-
resenting the highest (or worst) possible objective values
~r = (r1, r2, .., rn) where n denotes the number of objectives.
IH of an individual ~x is calculated as follows where fi(~x)
denotes the i-th objective function value of ~x.

IH(~x) =

n∏
i=1

|ri − fi(~x)| (1)

IH is intended to favor balanced individuals in the objec-
tive space rather than extreme ones [22].

3.2 Weighted Hypervolume Indicators
IW is an extension to IH in that IW places different weights

on different regions in the objective space while IH places
the uniform weight on all regions [19]. IW of an individual
~x = (x1, x2, ..., xn) is computed as follows.

IW (~x) =

∫ (r1,r2,...,rn)

(x1,x2,...,xn)

w(~a)dz (2)

where w(~a) =

∑n
i=1 e

ki(ri−ai)∑n
i=1 e

ki

w(~a) denotes the weight of a point ~a = (a1, a2, ..., an) in
the objective space. It is calculated by applying a weight dis-

tribution ~k = (k1, k2, .., kn). ki is the weight assigned to the
i-th objective. Given a greater ki value, IW favors extreme
individuals that are closer to the fi axis in the objective

space. Note that IW is equal to IH when ~k = (0, 0, .., 0).
This paper uses nine variants of IW (IW1 to IW9) based

on nine different combinations of k1 and k2 values (Ta-
ble 1). These value combinations follow the parameter set-
tings in [19]. Note that this paper considers two weight
values (k1 and k2) because it uses a training problem whose
objective space is two dimensional.

Table 1: Nine Variants of IW
IW variants k1 k2 IW variants k1 k2

IW1 10 10 IW6 0 20
IW2 10 0 IW7 30 30
IW3 0 10 IW8 30 0
IW4 20 20 IW9 0 30
IW5 20 0

3.3 HypE Indicator
IHypE is also an extension to IH . This indicator places

different weights on different portions in the hypervolume
that an individual dominates. The hypervolume is divided
into multiple portions based on how many other individuals
dominate it as well. IHypE of ~x is computed as follows [1].

IHypE(~x) =

µ∑
i=1

1

i
Hi(~x) (3)

µ denotes the population size (the number of individuals
in the population). Hi(~x) denotes the hypervolume that is
dominated by ~x and other (i − 1) individuals in the popu-
lation. H1 is the hypervolume that ~x dominates exclusively.
The highest weight (1) is given toH1. H2 is the hypervolume
that ~x and another individual dominate. The second highest
weight ( 1

2
) is given to H2. The lowest weight ( 1

µ
) is given to

Hµ, which all individuals in the population dominate.

3.4 Binary ε Indicators
Iε takes two individuals (~x and ~y) and measures the dis-

tance between them on a per-objective basis [21].

Iε(~x, ~y) = maxi∈{1,..,n}(fi(~x)− fi(~y)) (4)

This paper considers two methods to evaluate the qual-
ity of an individual (~x) against the other individuals in the
population P . The first method is to sum up Iε values.



Iε1(~x) =
∑

~y∈P\{~x}

Iε(~y, ~x) (5)

The second method amplifies the influence of dominating
individuals over dominated ones.

Iε2(~x) =
∑

~y∈P\{~x}

−e−Iε(~y,~x)/l (6)

l is a scaling coefficient. l = 0.05 in this paper, which is a
recommended value in [21].

3.5 Binary Hypervolume Indicators
IHD takes two individuals (~x and ~y) and measures the

hypervolume dominated by ~x but not by ~y [21].

IHD(~x, ~y) =

{
H(~x)−H(~y) if ~x dominates ~y
H(~x)−H(~x) ∩H(~y) otherwise

(7)
H(~x) denotes the hypervolume that ~x dominates.
Similar to Iε1 and Iε2, this paper considers two variants,

IHD1 and IHD2, to evaluate the quality of an individual (~x)
against the other individuals in the population. IHD1(~x) and
IHD2(~x) are computed by replacing Iε(~y, ~x) with IHD(~x, ~y)
in Equations 5 and 6, respectively.

3.6 Fuzzy Indicators
IF is computed based the relationship of the fuzzy Pareto

dominance between two individuals (~x and ~y) [10].

IF (~x, ~y) =

∏
imin(fi(~x), fi(~y))∏

i fi(~x)
(8)

Similar to Iε1 and Iε2, this paper considers two variants,
IF1 and IF2, to evaluate the quality of an individual (~x)
against the other individuals in the population. IF1 and IF2

are computed with Equations 5 and 6, respectively. l = 0.01
for IF in this paper.

3.7 Volume Indicators
IV is computed as follows [11].

IV (~x, ~y) =
H(~x)−H(~y)

H(~x) ∩H(~y)
(9)

IV also has two variants, IV 1 and IV 2, which are computed
as IF1 and IF2 are computed.

4. THE PROPOSED BOOSTING METHOD
Algorithm 1 shows the proposed boosting method, which

employs Pdi-Boosting. It takes M indicator-based selection
operators (S) and aggregates some of them as an ensem-
ble (S∗). This paper uses 19 tournament selection operators
that use 19 indicators described in Section 3 (M = 19).

The proposed boosting method is carried out through of-
fline training with a multiobjective optimization problem
in which Pareto-optimal solutions are known. This train-
ing problem is used to generate N0 initial training popu-
lations, {p1, p2, .., pN0}, each of which contains µ individu-
als (Line 1). These individuals represent randomly-chosen
points in the region that the Pareto-optimal solutions dom-
inate in the objective space.

Algorithm 1 The Proposed Boosting Method

Input: S = {s1, s2, .., sM}, M indicator-based selection op-
erators

Output: S∗, an ensemble of operators
1: Generate the initial N0 training populations: P =
{p1, p2, .., pN0}

2: t = 0, N = N0,S∗ = φ
3: repeat
4: t = t+ 1
5: Each operator sj performs individual selection Np

times on each training population pi.
6: Calculate the selection error rate (ej) for sj

ej =
∑N
i=1 Iji
N

where

Iji =

{
0 if sj ’s selection is successful on pi
1 otherwise

7: Choose an operator s∗t such that s∗t=arg minsj∈S ej
and s∗t /∈ S∗

8: S∗ = S∗ ∪ {s∗t }
9: d = N × (1− 2ej)

10: Let P ′ be a set of training populations on which s∗t ’s
individual selection is unsuccessful.

11: Let W be a set of HVR values that s∗t yields with
training populations in P ′

12: D = interpolateExtraPopulations(P ′, W, d)
13: P = P ∪ D
14: N = N + d
15: until et < 0.5
16: return S∗

The proposed boosting method iteratively executes a loop
(Line 3 to 15) and selects one operator into S∗ in each it-
eration. In each iteration, each of M operators selects an
individual Np times (i.e., Np individuals in total) from each
training population (Line 5). The quality of those Np in-
dividuals is evaluated with the hypervolume ratio (HVR)
metric [17]. HVR is computed as the ratio of the hypervol-
ume (HV ) of Np individuals (PS) to the hypervolume of µ
individuals in a training population pi.

HV R(PS) =
HV (PS)

HV (pi)
(10)

HV measures the union of the volumes that a given set
of individuals dominate in the objective space [22].

The selection of Np individuals is said to be successful if
HV R(PS) is greater than or equal to a threshold: θ < 1.
Given this condition, the selection error of each operator (ej)
is calculated as shown in Lines 6 and 7. Then, the proposed
boosting method chooses an operator (s∗t ) that has the low-
est selection error (Line 7) and includes the operator in the
output ensemble S∗ (Line 8).

In Line 9, d is computed as the difference between the
number of training populations on which individual selec-
tion is successful (N × (1 − ej)) and the number of train-
ing populations on which individual selection is unsuccess-
ful (N × ej). The proposed boosting method generates d
extra training populations that are similar to P ′, which is a
set of training populations on which s∗t ’s individual selection
is unsuccessful (Line 12, |P ′| = N × ej), and adds the extra
populations to P (Line 13).

This way, the proposed boosting method dynamically ad-
justs the number of training populations by interpolating d



populations around P ′ so that |P ′|+d becomes equal to the
number of populations on which s∗t ’s individual selection is
successful. As a result, in subsequent loop iterations, the
proposed method favors the operators that perform success-
ful individual selection on interpolated populations.

Algorithm 2 Interpolate Extra Training Populations

Input: P ′ = {p1, p2, .., pm}, m training populations
Input: W = {w1, w2, .., wm}, m HVR values associated

with the populations in P ′
Input: d, the number of populations to be interpolated
Output: P∗ = {p∗1, p∗2, .., p∗d}, the populations to be inter-

polated
1: Sort the populations in P ′ in ascending order of their

HVR values
2: i = 1
3: while i ≤ d do
4: Create new empty population p∗i
5: for each individual x in pi do
6: Create new individual x∗

7: for j = 1 to the total number of objectives do
8: fj(x

∗) = fj(x) +N (0, σ2)
9: end for

10: Add x∗ to p∗i .
11: end for
12: Add p∗i to P∗
13: i = i+ 1
14: end while
15: return P∗

Algorithm 2 shows how to generate d training popula-
tions and interpolate them around P ′ = {p1, p2, .., pm} (in-
terpolateExtraPopulations() in Algorithm 1). The m
populations in P ′ are sorted in ascending order of HVR
values (Line 1). This ensures that the populations with
smaller HVR values are used more often for interpolation
than the populations with higher HVR values when d < m.
A new population (p∗i ) is generated by modifying the objec-
tive values of individuals in pi ∈ P ′ with a normal distribu-
tion N (0, σ2).

5. THE PROPOSED ENSEMBLE-BASED
EMOA: BIBEA-P

This section describes an EMOA, called Boosted Indicator
Based Evolutionary Algorithm (BIBEA-P), which leverages
the boosting method discussed in Section 4.

Algorithm 3 shows BIBEA-P’s algorithmic structure, which
is based on an existing indicator-based EMOA: IBEA [21].
In the 0-th generation, µ individuals are randomly generated
as the initial population (Line 2). In each generation (g), a
pair of individuals, called parents (p1 and p2), are chosen
from the current population with an ensemble of indicator-
based selection operators that Algorithm 1 produces (ensem-
bleBasedParentSelection(), Lines 6 and 7).

With the crossover rate Pc, two parents reproduce two off-
spring with the SBX (self-adaptive simulated binary crossover)
operator [6] (Lines 9). Each offspring performs polynomial
mutation [5] with the probability Pm (Lines 10 to 15). The
boosted parent selection, crossover and mutation operators
are repeatedly executed on Pg until µ offspring are repro-
duced (i.e., until |Og| = µ). The offspring (Og) are com-
bined with the population Pg to form Rg (|Rg| = 2µ),

which is a pool of candidates for the next-generation in-
dividuals (Line 19).

Environmental selection follows offspring reproduction. µ
individuals are selected from 2µ individuals in Rg as the
next-generation population Pg+1 (ensembleDrivenEnviSelec-
tion(), Line 20). Environmental selection performs a (µ+µ)-
elitism.

Algorithm 3 The Algorithmic Structure of BIBEA-P

1: g = 0
2: Pg = initializePopulation(µ)
3: while g < gmax do
4: Og = ∅
5: while |Og| < µ do do
6: p1 = ensembleBasedParentSelection(S∗, Pg)
7: p2 = ensembleBasedParentSelection(S∗, Pg)
8: if random() ≤ Pc then
9: {o1 , o2} = crossover(p1 , p2 )

10: if random() ≤ Pm then
11: o1 = mutation(o1 )
12: end if
13: if random() ≤ Pm then
14: o2 = mutation(o2 )
15: end if
16: Og = {o1 , o2} ∪ Og
17: end if
18: end while
19: Rg = Pg ∪ Og
20: Pg+1 =ensembleDrivenEnvSelection(Rg, S∗)
21: g = g + 1
22: end while

Algorithm 4 Ensemble-based Parent Selection Operator

Input: S∗ = {s∗1, s∗2, .., s∗T }, an ensemble of T indicator-
based selection operators

Input: P, a population of µ individuals
Output: an individual to be used as a parent for crossover
1: Each of T operators selects one individual from the pop-

ulation P with a v-way tournament. In total, T individ-
uals are selected: {x1,x2,...,xT }

2: Calculate the number of votes for each individual xi as
ϕi =

∑T
t=1 Iti

where Iti =

{
1 if s∗t selects xi
0 otherwise

3: return x∗ = argmaxxiϕi.

5.1 Ensemble-based Parent Selection
Algorithm 4 shows how the proposed ensemble-based par-

ent selection works (c.f. ensembleBasedParentSelection() in
Algorithm 3). It takes an ensemble of T indicator-based
selection operators S∗, which Algorithm 1 produces.

Each of T operators first selects one individual (i.e., par-
ent candidate) from the population P with a v-way tour-
nament (Line 1). In a v-way tournament, a selection op-
erator randomly draws v individuals from P and chooses
the best one based on a quality indicator that the opera-
tor uses. The count of votes ϕi (1 ≤ i ≤ T ) is assigned
to each of selected T individuals (Line 2). Finally, the pro-
posed ensemble-based parent selection operator chooses an
individual with the highest vote count as a parent. If more



than one individuals have the same highest vote number,
one of them is randomly chosen.

5.2 Ensemble-driven Environmental Selection
Algorithm 5 shows how the proposed ensemble-driven en-

vironmental selection (ensembleDrivenEnvSelection() in Al-
gorithm 3) works. It takes an ensemble of T indicator-based
selection operators S∗, which Algorithm 1 produces. It first
identified an operator that Algorithm 3 selected in its first
loop iteration (s+) (Line 1). Then, with the indicator (I+)
that s+ uses, µ individuals are removed from 2µ individuals
inRg (Lines 2 to 6). Finally, the remaining µ individuals are
selected as the next-generation population (Pg+1) (Line 8).

Algorithm 5 Boosting-driven Environmental Selection Op-
erator
Input: Rg, a population of 2µ individuals
Input: S∗ = {s∗1, s∗2, .., s∗T }, an ensemble of T indicator-

based selection operators
Output: Pg+1, a population of individuals to be used in

the next generation
1: s+ = s∗1
2: while |Rg| > µ do
3: Rank all the individuals in Rg with I+, which is the

indicator that s+ uses.
4: Select an individual d that has the worst I+ value in

Rg
5: Rg = Rg \ {d}
6: end while
7: Pg+1 = Rg
8: return Pg+1

Although environmental selection depends on what the
proposed boosting method (Algorithm 3) produces, it does
not use all T operators in S∗ as parent selection does. It uses
only one operator (s∗1) in S∗ because it intends to minimize
the degree of randomization in environmental selection.

6. EXPERIMENTAL EVALUATION
This section evaluates BIBEA-P as well as the proposed

boosting method. Experiments were configured as shown in
Table 6 and conducted with jMetal [8] on a 3.4GHz 64bit
Core i7 processor.

Table 2: Experimental Configurations
Parameter Value

M (Algorithm 1) 19
N0 (Algorithm 1) 300

µ (Algorithms 1, 3 and 5) 100
Np (Algorithm 1) 20
θ (Algorithm 1) 0.87
σ (Algorithm 2) 0.05

gmax (Algorithm 3) 150, 200 or 500
v (Algorithm 4) 2, 3, 4 or 5
Crossover rate 0.9
Mutation rate 1/ (# of decision variables)

This evaluation study uses ZDT1 as a training problem
for the proposed boosting method. ZDT1 is the simplest
problem in the ZDT family problems [20]. It has a convex
Pareto-optimal front in a two dimensional objective space.

ZDT2, ZDT3, ZDT4 and ZDT6 are used as test problems.
Each of them has a two dimensional objective space. ZDT2
and ZDT6 are essentially same as ZDT1 in terms of problem
design and complexity; however, they have concave Pareto-
optimal fronts. ZDT3 and ZDT4 are harder problems than
ZDT1. ZDT3 has five discontiguous Pareto-optimal fronts.
ZDT4 posesses a large number of (209) local optima.

DTLZ family problems, DTLZ1, DTLZ2, DTLZ3, DTLZ4
and DTLZ7 [7], are also used as test problems. All of them
are harder problems than ZDT1 (i.e., the training problem
in this evaluation study). They have three dimensional ob-
jective spaces. DTLZ1 has a continuous and planar Pareto-
optimal front. DTLZ2, DTLZ3 and DTLZ4 have continu-
ous and spherical Pareto-optimal fronts. DTLZ7 has four
discontiguous Pareto-optimal fronts.

All ZDT and DTLZ problems are configured with the de-
fault settings of jMetal. Every experimental result is ob-
tained with 20 independent experiments for ZDT problems
and 10 independent experiments for DTLZ problems.

6.1 Evaluation Metrics
This paper uses two evaluation metrics: hypervolume ra-

tio (HVR) and coverage metric (C-metric). HVR is calcu-
lated as the ratio of the hypervolume (HV ) of non-dominated
individuals (D) to the hypervolume of Pareto-optimal solu-
tions (P ∗) [17].

HV R(D) =
HV (D)

HV (P ∗)
(11)

HVR quantifies the optimality and diversity of non-dominated
individuals D. A higher HVR indicates that non-dominated
individuals are closer to the Pareto-optimal front and more
diverse in the objective space.
C-metric compares two sets of non-dominated individu-

als [23]. Given non-dominated individual sets A and B,
C(A,B) measures the fraction of individuals in B that at
least one individual in A dominates:

C(A,B) =
|{b ∈ B | ∃a ∈ A : a � b}|

|B| (12)

6.2 Boosting Overhead
The left half of Table 3 shows a set of indicators that the

proposed boosting method chose from 19 indicators with
Pdi-Boosting. It also depicts how many training popula-
tions were used to choose individual indicators. Note that
the number of training populations is initially 300 (N0 = 300
in Algorithm 1. See Table 6.) and it gradually grows. There-
fore, the proposed boosting method uses different numbers
of training populations for selecting different indicators. In
total, it used 19,515 training populations.

The right half of Table 3 shows a set of indicators that
an AdaBoost-based method chosen [15,16]. In this method,
the number of training populations is fixed. In total, it used
80,000 training populations. (10,000 per indicator was the
minimum number of training populations for the AdaBoost
method to obtain the best experimental results.)

The number of training populations impacts the overhead
of a boosting algorithm (i.e., how long it takes for the al-
gorithm to complete its boosting process.) The boosting
overhead was 10 minutes in the proposed boosting method
with Pdi-Boosting while it was 18 minutes with AdaBoost.



Thanks to Pdi-Boosting’s dynamic adjustment of the num-
ber of training populations, the proposed boosting method
is 44% faster than an AdaBoost-based method.

Table 3: The Number of Training Populations used
by Pdi-Boosting and AdaBoost

Indicator # of training Indicator # of training
populations populations

in Pdi-Boosting in AdaBoost

Iε2 300 Iε2 10,000
IHD2 450 IHD2 10,000
IF2 686 IHypE 10,000
IHypE 889 IW0 10,000
IW0 1,193 IW3 10,000
IW3 1,619 IW6 10,000
IW6 2,171 IH 10,000
IH 2,895 Iε1 10,000
IHD1 3,930
IV 1 5,382

Total 19,515 Total 80,000

Overhead 10 (mins) Overhead 18 (mins)

6.3 Evaluation of Ensemble Selection
This section evaluates a boosted indicator that aggregates

the ten indicators listed in Table 3 in terms of optimality and
diversity. Table 4 shows the average HVR values that five
algorithms yield at the last generation in 10 different test
problems. The total number of generations in each exper-
iment (gmax in Table 6) is 150 in ZDT problems, 500 in
DTLZ3 and 200 in the other DTLZ problems. In Table 4, a
number in parentheses indicates a standard deviation among
different experiments. IB represents BIBEA-P that uses an
ensemble indicator aggregating the ten indicators listed in
Table 3. (BIBEA-P uses Iε2 for its environmental selec-
tion.) Each of the other four algorithms represents a variant
of IBEA [21] that performs parent and environmental selec-
tion with an indicator listed in Table 3. For example, IHD2

represents a variant of IBEA that uses IHD2 for parent and
environmental selection. v in Table 4 indicates the size of
a tournament in parent selection. In each test problem, 2-
way to 5-way tournament selections are examined. A bold
number indicates the best result among five algorithms on
a per-row basis. The results of other six selected indica-
tors (i.e., IW0, IW0”

IW2, IW6, IH , IHD1 and IVD1) are not
shown due to the space limitation Their results are signifi-
cantly worse than the top four selected indicators.

In five of ten test problems (i.e., ZDT2, ZDT4, ZDT6,
DTLZ1 and DTLZ3), IB outperforms the other indicators
when v = 5. In three other problems (i.e., ZDT1, ZDT3
and DTLZ2), IB and Iε2 tie when v = 5 if HVR values
are truncated to two decimal places. Table 4 demonstrates
that the proposed boosting method can work with a simple
training problem (i.e., ZDT1) and IB can effectively operate
to solve harder test problems.
Iε2 works well in ZDT1, ZDT3, DTLZ2, DTLZ4 and DTLZ7;

however, its performance is marginal in DTLZ1 and DTLZ3.
In both problems, Iε2 never yields 0.19 or higher HVR. The
other three (existing) indicators exhibit similar performance
inconsistencies among different problems. For example, IF2

performs well in ZDT1 and ZDT2, while it performs poorly
in DTLZ4. (It never yields 0.05 or higher HVR in DTLZ4.)

In contrast, IB ’s HVR performance is much more consis-
tent among different problems. Its worst HVR is 0.68 (DTLZ4)
while Iε2’s worst is 0.09 (DTLZ1), IHD2’s is 0.44 (ZDT4) and
IF2’s is 0.01 (DTLZ4).

In summary, Table 4 demonstrates that IB performs bet-
ter than, or equally to, existing indicators in HVR (i.e., in
optimality and diversity) in all test problems and IB is more
robust and stable than existing indicators under different
characteristics in different problems.

6.4 Comparative Evaluation of BIBEA-P
Tables 5 shows the average HVR values that BIBEA-P

and five other EMOAs (BIBEA, IBEA-ε2, IBEA-HD2, NS-
GAII and SMS-EMOA) yield at the last generation in 10
different test problems. BIBEA (Boosted Indicator Based
Evolutionary Algorithm) is a variant of IBEA that uses an
ensemble selection operator constructed with AdaBoost [16].
IBEA-ε2 and IBEA-HD2 are variants of IBEA that perform
parent and environmental selection with Iε2 and IHD2, re-
spectively [21]. NSGAII is a traditional EMOA that uses
dominance ranking in its parent and environmental selec-
tion [5]. SMS-EMOA is a steady state EMOA that uses the
hypervolume indicator in its environmental selection [2]. All
algorithms use a 5-way tournament in parent selection.

In Tables 5, a number in parentheses indicates a stan-
dard deviation among different experiments. A bold num-
ber indicates the best result among six algorithms. A double
star (**) or a single star (*) is placed when a HVR result is
significantly different from BIBEA’s result based on a single-
tail t-test. A double and a single stars are placed with the
confidence level of 99% and 95%, respectively.

As shown in Table 5, BIBEA-P yields the best HVR in
four of ten test problems (i.e., ZDT2, ZDT4, ZDT6, DTLZ3.
BIBEA yields the best HVR in three problems (i.e., DTLZ1,
DTLZ4 and DTLZ7). BIBEA-P outperforms BIBEA in four
problems. Of one of the four problems (i.e., ZDT6), BIBEA-
P outperforms BIBEA with the confidence level of 99%.

BIBEA-P outperforms IBEA-ε2 significantly in ZDT4, ZDT6,
DTLZ1 and DTLZ3 with the 95% or higher confidence level.
It significantly outperforms IBEA-HD2, NSGA-II and SMS-
EMOA in seven, six and five problems, respectively. BIBEA-
P significantly outperforms all the other five EMOAs in
ZDT6. In ZDT3, DTLZ1 and DTLZ4, BIBEA-P’s average
HVR is not the best among six EMOAs; however, it is not
outperformed significantly by the others.

Table 6 compares BIBEA-P with the other five algorithms
with C-metric. The first two rows compare BIBEA-P and
BIBEA. A bold font face is used to indicate a higher C-metric
value between C(BIBEA-P, BIBEA) and C(BIBEA, BIBEA-
P). C(BIBEA-P, BIBEA) > C(BIBEA,BIBEA-P) in eight
of 10 problems. This means that BIBEA-P outperforms
BIBEA in those eight problems. In DTLZ1 and DTLZ3,
BIBEA outperforms BIBEA-P; however, they yield very sim-
ilar C-metric values. The differences are 5.4% in DTLZ1 and
0.1% in DTLZ3.

Note that Table 6 shows BIBEA-P outperforms BIBEA
in DTLZ4 and DTLZ7 while BIBEA outperforms BIBEA-P
in the average HVR (Table 5). This conflict occurs due to
high standard deviations in HVR (Tables 4 and 5).

BIBEA-P outperforms IBEA-ε2, IBEA-HD2 and SMS-
EMOA in eight, nine and eight problems, respectively. Even
when BIBEA-P is outperformed, the difference in C-metric
values is not significant.



Table 4: Comparison of IB and Other Top Four Selected Indicators with HVR
v IB Iε2 IHD2 IHypE IF2

ZDT1

2 0.99038(0.00078) 0.99108 (0.00051) 0.99053(0.00065) 0.99019 (0.00081) 0.98815(0.00069)
3 0.99114(0.00059) 0.99124 (0.0005) 0.99108 (0.00052) 0.9872 (0.00133) 0.9863(0.00069)
4 0.99078(0.00054) 0.9914 (0.00044) 0.99131 (0.00061) 0.98373 (0.003) 0.98976 (0.0006)
5 0.99085(0.00055) 0.9914 (0.00053) 0.99124 (0.00057) 0.98007 (0.00306) 0.99013(0.0007)

ZDT2

2 0.9683(0.02064) 0.96861 (0.01234) 0.67788 (0.26256) 0.97276 (0.00368) 0.94773(0.04736)
3 0.97863(0.00248) 0.97635 (0.00258) 0.80336 (0.22041) 0.96998 (0.00451) 0.96932(0.01206)
4 0.97873(0.00219) 0.97757 (0.00224) 0.88847 (0.17961) 0.95958 (0.01163) 0.97486(0.00272)
5 0.97864(0.00211) 0.97816 (0.00141) 0.85718 (0.22804) 0.94279 (0.02943) 0.97541(0.00569)

ZDT3

2 0.97186(0.03306) 0.98468 (0.01757) 0.97633 (0.02599) 0.98584 (0.01706) 0.82823(0.00073)
3 0.98678(0.01748) 0.98923 (0.00069) 0.97772 (0.02378) 0.98843 (0.01018) 0.82899(0.0008)
4 0.98481(0.01768) 0.98906 (0.00091) 0.98537 (0.00082) 0.98908 (0.00689) 0.82913(0.00052)
5 0.98279(0.0251) 0.9892 (0.00125) 0.98569 (0.00098) 0.98277 (0.02218) 0.82927(0.0006)

ZDT4

2 0.89002(0.06255) 0.82759 (0.09139) 0.4487 (0.27688) 0.95183 (0.03788) 0.82026(0.10946)
3 0.91844(0.0632) 0.89975 (0.06417) 0.61921 (0.19496) 0.94363 (0.06164) 0.87938(0.09757)
4 0.96153(0.01557) 0.92762 (0.03617) 0.52386 (0.25191) 0.94837 (0.03878) 0.93339(0.05858)
5 0.96446(0.01789 ) 0.93968 (0.03962) 0.59782 (0.23131) 0.93607 (0.07498) 0.89258(0.10842)

ZDT6

2 0.91442(0.0142) 0.89694(0.01971) 0.86634 (0.02646) 0.90851 (0.01496) 0.90671(0.00992)
3 0.95499(0.00717) 0.93181 (0.00818) 0.93458 (0.01476) 0.94867 (0.00984) 0.9459(0.00824)
4 0.97157(0.0051) 0.94592 (0.01112) 0.95305 (0.01261) 0.96787 (0.00669) 0.96024(0.00577)
5 0.979(0.00362) 0.95166 (0.00771) 0.96303 (0.00709) 0.97581 (0.00445) 0.96884(0.00482)

DTLZ1

2 0.92785(0.01461) 0.16563 (0.16349) 0.87292 (0.1565) 0.93612 (0.00366) 0.72269(0.31834)
3 0.9337(0.00307) 0.18356 (0.12278) 0.86789 (0.16297) 0.93523 (0.0037) 0.91004(0.03724)
4 0.84968(0.2651) 0.13599 (0.16671) 0.82699 (0.15773) 0.93057 (0.00657) 0.91907(0.02753)
5 0.93431(0.00477 ) 0.09898 (0.08299) 0.85456 (0.14999) 0.90112 (0.09922) 0.86101(0.18988)

DTLZ2

2 0.8967(0.00127) 0.89671 (0.00165) 0.8817 (0.0013) 0.89665 (0.00171) 0.8713(0.003)
3 0.89635(0.00135) 0.89722 (0.00055) 0.8815 (0.00075) 0.89561 (0.00174) 0.87548(0.0045)
4 0.8961(0.00183) 0.89624 (0.00185) 0.88098 (0.00107) 0.86899 (0.01116) 0.8785(0.00315)
5 0.89533(0.0014) 0.8967 (0.00087) 0.88071 (0.00115) 0.75846 (0.0847) 0.87945(0.00234)

DTLZ3

2 0.8751( 0.01467) 0.15156 (0.11169) 0.67875 (0.21244) 0.88077 (0.01817) 0.8496(0.02864)
3 0.87677(0.03506) 0.12678 (0.09993) 0.79458 (0.13355) 0.8793 (0.00867) 0.84667(0.03259)
4 0.88044(0.01828) 0.18072 (0.13898) 0.81021 (0.12525) 0.77406 (0.06568) 0.86444(0.01944)
5 0.88113(0.0124 ) 0.13781 (0.05099) 0.81664 (0.06968) 0.67406 (0.10538) 0.8524(0.02157)

DTLZ4

2 0.73641(0.34721) 0.88301 (0.20706) 0.55533 (0.3879) 0.88276 (0.20657) 0.04929(0.06082)
3 0.73536(0.25797) 0.8827 (0.2069) 0.56097 (0.38541) 0.78462 (0.25305) 0.01464(0.03364)
4 0.7354(0.41662) 0.88293 (0.20701) 0.61755 (0.39914) 0.83329 (0.23659) 0.00656(0.02075)
5 0.68672(0.34287) 0.7853 (0.25371) 0.61014 (0.40272) 0.73481 (0.2574) 0.00211(0.00669)

DTLZ7

2 0.80116(0.08808) 0.90849 (0.04448) 0.74587 (0.17607) 0.80901 (0.09467) 0.84283(0.05248)
3 0.80705(0.11318) 0.90558 (0.04829) 0.71182 (0.1039) 0.80016 (0.11071) 0.85851(0.05549)
4 0.83449(0.08327) 0.92182 (0.00907) 0.70199 (0.16297) 0.80508 (0.10569) 0.84186(0.04963)
5 0.82417(0.07712) 0.89312 (0.06185) 0.68389 (0.14252) 0.78243 (0.11719) 0.82051(0.07021)

BIBEA-P outperforms NSGA-II in all ten problems. In
ZDT6, DTLZ2 and DTLZ7, no individuals of NSGA-II can-
not dominate BIBEA individuals. A very limited number of
NSGA-II individuals can dominate BIBEA individuals; for
example, 0.5% in ZDT1, ZDT2 and ZDT3, 0.4% in DTLZ3,
and 0.3% in DTLZ4.

In summary, Tables 4 and 5 demonstrate that Pdi-Boosting
is superior than AdaBoost in that it allows BIBEA-P to out-
perform BIBEA in optimality and diversity. They also illus-
trate that ensemble indicator based EMOAs outperform ex-
isting indicator-based EMOAs and dominance ranking based
EMOAs.

7. CONCLUSIONS
This paper proposes and evaluates an ensemble learning

method that constructs an ensemble of quality indicators
with a novel boosting algorithm called Pdi-Boosting. The
proposed method is efficient thanks to its dynamic adjust-
ment of training data. It can work with a simple train-
ing problem, and an ensemble of indicators can effectively
aid parent selection and environmental selection in order to
solve harder problems. An ensemble of indicators outper-
forms existing individual indicators in optimality, diversity
and robustness. The proposed ensemble-based evolution-
ary algorithm outperforms a well-known dominance-based
EMOA and existing indicator-based EMOAs.
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