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ABSTRACT
An extension to a non-linear offline method for generating
features for image recognition is introduced. It aims at gen-
erating low-level features automatically when provided with
some arbitrary image database. First, a general representa-
tion of prioritized pixel- neighbourhoods is described. Next,
genetic programming is used to specify functions on those
representations. The result is a set of transformations on
the space of grayscale images. These transforms are utilized
as a step in a classification process, and evolved in an evo-
lutionary algorithm. The technique is shown to match the
efficiency of the state-of-the-art on a medical image classi-
fication task. Further, the approach is shown to self-select
an appropriate solution structure and complexity. Finally,
we show that competitive co-evolution is a viable means of
combating over-fitting. It is concluded that the technique
generally shows good promise for the creation of novel image
features in situations where pixel-level features are complex
or unknown, such as medical images.

Categories and Subject Descriptors
I.5.4 [Computing Methodologies]: Pattern Recognition—
Computer Vision; 1.2.8 [Computing Methodologies]: Ar-
tificial Intelligence—Problem Solving, Control Methods, and
Search

General Terms
Algorithms, Design, Experimentation

Keywords
genetic programming, muscular dystrophy, image process-
ing, pattern recognition, co-evolution, TEF

1. INTRODUCTION
In this paper, we explore an approach to the automatic

generation of features for use in image classification prob-
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lems. Rather than applying only a general set of prede-
fined features, or devoting significant human effort to the
careful design of database-specific features, we instead use
machine learning to extract new features from a given im-
age database. We do so by finding transforms on the raw
pixel-space of a provided image database. These transforms
consist of graphs derived via genetic programming (GP) de-
fined on local pixel neighbourhoods. In this sense, they may
be viewed as a generalization of convolution masks. These
transforms temporarily increase the dimensionality of the
space, ideally in ways which emphasize important features
of the database. Next, a simple statistical description of each
transformed image is collected, and the resulting vectors are
used to train a classifier.

Overall, this approach can be considered feature extrac-
tion, since the system accepts a high-dimensional data source
as input (an image database) and outputs a low-dimensional
description. However, unlike many feature extraction tech-
niques, ours is highly non-linear, requiring a great deal of
processing to be undertaken by the transforms, leaving lit-
tle work left for the classifier.

The advantages of this approach are four-fold:

• the discovered transforms and their descriptions can be
computed quickly (although they are slow to train).
It takes a single pass over the image to extract the
requisite feature vector;

• the transform is simply represented as a mathemati-
cal expression, one which can be easily interrogated or
modified;

• we can evolve any number of distinct features in a
natural way, and, as we shall demonstrate, effectively
allow the system to automatically determine a good
number;

• placing the burden of the classification task on this
transformation stage allows for highly processed out-
put to be viewed as images, making the evolved so-
lutions easy to understand and present to a human
analyst.

In this iteration of the work, we introduce a new and less
constrained version of the system: firstly, all utilized fea-
tures will be emergent from the raw pixel-space, suggesting
greater applicability to poorly understood image databases;
secondly, the number of features generated is under the
system’s control, allowed to vary via specially-designed ge-
netic operators; thirdly, the neighbourhood cardinality is
also under the system’s fine-grained control, varying as a
component of the representation; finally, a competitive co-



evolutionary mechanism is utilized to control the over-fitting
that results with a näıve evolutionary algorithm.
We will show that our new approach, under co-evolution,

is capable of improving on our previous results, and match-
ing the current state-of-the-art. Further, it does so with
far less pre-processing (i.e., no pre-defined features) than
in all previous work. Also, we will show that the uncon-
strained system makes similar or better choices than the
previous structured solution, demonstrating the capacity of
the system to automatically determine appropriate solution
structure and complexity.

1.1 Review
Many forms of classification, especially image classifica-

tion, require a low-dimensional collection of features for pro-
cessing. Feature extraction refers to the extraction of a
lower-dimensional collection of features from a database, ide-
ally gaining parsimony but not sacrificing capacity for image
processing. Commonly, a measure of effectiveness, such as
the Fisher criterion, is used to evaluate the efficacy of a fea-
ture set, allowing for an analytic approach to the problem
via, say, PCA, LDA, or variants.
Here instead we concentrate on a wrapper approach, where

a collection of features is evaluated via their performance in
a classifier directly. The advantages to a wrapper approach
include the allowance of any sorts of features (i.e., no as-
sumptions regarding resulting data distributions), includ-
ing features consisting of non-linear combinations of source
data. The downside to the use of a wrapper-based approach
is that: (a) runs take a great deal of time to execute, since
a classifier must be trained for each evaluation; and (b) fea-
tures tend to be useful for the classifier used during training,
but not necessarily useful with other classifiers. This capac-
ity for non-linear combinations creates a greater range of
potential outputs, and even occasionally leads to situations
where dimensionality increase might improve efficacy. For
this reason, we prefer to refer to these techniques as feature
creation.
Feature creation is often undertaken via evolutionary ap-

proaches, typically by taking a collection of pre-defined fea-
tures and utilizing a GP process to define a new collection of
re-combined features. It is believed that GP is well suited to
cases where the interrelationship between variables is poorly
understood, or when the size or shape of the ultimate so-
lution is unknown [19]. A recent review lists successes in
all stages of the classification process, due largely to the
flexibility of the technique and the capacity for insertion of
heuristics or hybrid techniques, but at the expense of com-
putational expense for training and comprehensibility of so-
lutions [4].
GP and similar evolutionary algorithms are often used in

image processing tasks in particular, where dimensionality
is especially critical, and the capacity to extract mathemat-
ical descriptions is thus desirable [5, 9, 13, 15, 23, 24, 25].
Flexible representations are highly desirable in several par-
ticular areas, especially those in which techniques inspired
by human vision might be sub-optimal, for instance, in non-
standard visual tasks such as satellite, multispectral, hyper-
spectral, or medical imagery [8, 21, 18]. We are here partic-
ularly interested in Cartesian Genetic Programming (CGP)
[16], a form of GP which has shown success in naturally
producing parsimonious (i.e., more human-comprehensible)

solutions. CGP has been applied successfully to image pro-
cessing in several contexts [20, 22, 23].

Transform-based Evolvable Features (TEFs) were first in-
troduced by Kowaliw, Banzhaf, et al. [12]. In that previous
work, a single evolved TEF was evolved and added to a col-
lection of pre-defined image features, applied to a medical
cell task (the same task we explore again here). A later
application of the system explored the creation of features
for the recognition of artistic style, this time utilizing en-
tirely evolved features [14]. A key difference between this
approach and most others is that TEFs are extracted di-
rectly from the raw pixel-space of the images, rather than
operating on a space of pre-extracted features, meaning that
unexpected local-based patterns can be found.

An approach with similar motivations is the work by Shi-
rakawa, Nakano et al. [17, 23], where two different kinds of
GP networks of image operators are applied in a network to
images to produce more processed image transforms. Both
their work and our own works directly on the pixel space,
allowing GP to find transformations useful in highlighting
regions of interest. Shirakawa et al., however, apply their
work to image segmentation rather than classification.

2. CELLSDB
The CellsDB database was collected by the Centre hos-

pitalier de l’Université de Montréal (CHUM), where the
causes and associated symptoms for Oculopharyngeal Mus-
cular Dystrophy (OPMD) at the genetic and cellular level
have been studied extensively [1]. Intranuclear inclusions
(INIs) are tubular, about 8.5 nm in external and 3 nm in
inner diameters, up to 0.25 µm in length, and converged to
form tangles or palisades. Detection of INIs is expected to
lead to the detection of OPMD. Detecting INIs, as opposed
to other intranuclear patterns, is a difficult task requiring
training for human classification. CellsDB is pre-segmented
so that each image contains a single cell. The images are
taken at 10x, 20x, and 40x zoom, divided into two categories
associated with the presence or absence of INIs: “healthy”
and“sick”. CellsDB has previously been used for several im-
age processing tasks [6, 7, 10, 12]. Here we break into two
sets, randomly chosen for each experiment: 186 healthy and
200 sick cell images for training, and 200 healthy and 200
sick cell images for testing.

3. FEATURE CREATION
Our model — the evolutionary feature creator (EFC) —

operates on some provided database of images, divided into
a finite number of classes. The ultimate output of the system
will be a collection of easily computed features well-suited for
classification of the database by some particular classifier.
The EFC consists of two parts: an evolutionary algorithm,
and a collection of feature extracting individuals, or simply
individuals. The evolutionary algorithm — through which
good individuals are found — is discussed in Section 4; Here
we discuss the definition of individuals.

Individuals consist of a collection of transformations over
an image, a collection of moments, and a classifier. When
presented with an input image, an individual executes the
following process:

1. It computes a collection of transformations of the im-
age. These transformations are based on the appli-
cation of a mathematical function through a sliding
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Figure 1: An overview of a feature extracting indi-
vidual: First, the original image is transformed by
a collection of TEFs; Next, each is converted to nu-
merical values via the moments; Finally, that feature
vector is classified.

window. The sliding window operates on a variable-
cardinality neighbourhood, which we present as an im-
provement over the use of simple square neighbour-
hoods. The mathematical function is defined via a GP
graph.

2. It next converts the transformed images to a feature
vector via a collection of dimensionality reducing mo-
ment functions.

3. Finally, it feeds the feature vector to a classifier, which
returns a class label.

This process is illustrated in Figure 1.
Our primary interest at present is in the definition and

evaluation of the first item, the transformations, which we
term a TEF. Our use of GP at this stage is motivated by
the technique’s capacity to automatically discover appropri-
ate forms and sizes for solutions, which might allow for the
accommodation of unknown image databases.

3.1 Transform-based Evolvable Features
A TEF consists of a mathematical function applied to a

given image through a sliding window. Our definition de-
viates from previous work [12] through the usage of a new
form of input neighbourhood. Otherwise, our representation
of mathematical functions via CGP graphs is unchanged.
First, we present our custom notion of variable-cardinality
neighbourhoods, one we believe useful for many evolution-
ary computation representations. Next, we discuss the use
of GP graphs as a means of defining general mathematical
functions on those neighbourhoods.
There exist cases in evolutionary computation where two-

dimensional representations are believed necessary, but it
is not clear whether these cases will generalize to all two-
dimensional applications. Nor is it clear that a better one-
dimensional representation capable of performing the same
tasks has simply not yet been found. Of course, ceteris
paribus, one would prefer a one-dimensional representation,
since: (a) the design is more amenable to existing tech-
niques and analysis; (b) standard genetic operator design
may be used; and (c) two-dimensional representations tend
to grow quickly in cardinality (e.g. square mask sizes grow as
n2), or tend to have very large sets of representations of the
same size. For these reasons, we believe that an intelligently
chosen one-dimensional representation for neighbourhoods
is a preferable option for many applications in evolutionary
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Figure 2: Neighbourhoods of type (left) Cross-10
and (right) VN-24 are highlighted.

computation. The application described in this paper —
representations of pixel neighbourhoods for image process-
ing — is one such example; a second example might be the
design of a variable-length neighbourhood scheme for two-
dimensional cellular automata, using neighbourhood cardi-
nality as a measure of program complexity (as in [11]).

Here, we use variable-cardinality neighbourhoods of type
von Neumann and Cross1. The functions are illustrated in
Figure 2 and explicitly developed in Appendix A. They
have been designed to give complete coverage of a two-
dimensional space, or a cross-shaped subset, such that cen-
tral points are given more prominence. For each neighbour-
hood function, given an index value n we can specify a neigh-
bourhood of cardinality n+1, or select a unique point in that
neighbourhood.

Once a neighbourhood type and cardinality are specified,
we can present these to a CGP graph. We shall write the
output of an arbitrary CGP transform T applied to a list
of n values as T (x1, ..., xn). Given some location p ∈ I,
we apply T to pixel p and neighbourhood of cardinality n,
denoted p̄ = {p0, p1, ..., pn}, as follows:

T (f(p̄)) = T (f(p0), f(p1), ..., f(pn)) (1)

where f(q) = −1 if q is outside of the image bounds. and
where if T (f(p̄)) 6∈ [0, 1], we will replace it by the closest
boundary value. Note that we need only query those pixels
as are used by the graph, so n is a maximum neighbourhood
cardinality, and, in practise, the number of inputs which
need to be queried is smaller. An example of one such CGP
graph can be seen in Figure 3.

Given some image f(I), we can define a new image, T (f(I))
as follows: Let I ′ be an image space of the same dimensions
as I. For each pixel p′ ∈ I ′, let f(p′) = T (f(p̄′)). Hence,
every CGP graph T can be viewed as a function on the space
of images. We will refer to such a transform as a TEF.

3.2 Feature Extracting Individuals
A feature extracting individual is a (k + 2)-tuple, I =

(n, k, T1, ..., Tk), where n is the maximum neighbourhood
cardinality, k is the number of transforms, and Ti is a TEF.
An individual is applied to an image by collecting input
lists of cardinality n for each pixel in the image f(I), then
considering the transforms T1(f(I)), ..., Tk(f(I)).

Once our transforms have been computed, a dimensionality-
reduction step is performed. Our hope is that a good choice
of moments — one well-suited to the particular database —

1Source code for performing these mappings is available at
http://kowaliw.ca/projects/nbhd.html
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Figure 3: Example of a CGP graph with a VN-5 neighbourhood as input (circles) and seven computation
nodes (squares), i.e., ngraph = 7. This graph corresponds to the Laplacian convolution mask: output = 4 · i0 −
i1 − i2 − i3 − i4. Note the neutral code, e.g., node D is not connected to the output.

can be used to relay meaningful information in the trans-
formed images. Our aim is for the TEFs to find and mark
useful patterns in the image source, and for the moments
to return a measure of the level of incidence and location
of those patterns in some particular image. In this case, we
expect little value to information regarding the location of
the inclusions, since it seems they appear uniformly over the
cell area. Thus, we will use only the first geometric moment:

M00 =
1

|I|
∑
p∈I

f(p) (2)

where |I| is the size of the image, and f(p) is the pixel inten-
sity at pixel p ∈ I. Thus, following the above steps, given
an image f(I), an individual will return a collection of 1×k
numeric values, {M00(T1(f(I))), ..., M00(Tk(f(I)))}.

4. EVOLUTIONARY ALGORITHM
Our system is driven by a standard evolutionary algo-

rithm, as described by Eiben and Smith [3]. An initial pop-
ulation of size NinitPop is created. A run consists of a fixed
number of generations, during which a new population of
size Npop is generated through:

(a) passing the best individual into the next population
unchanged (single-member elitism);

(b) in some runs, selecting individuals for crossover, merger,
and pruning with probability pcross, pmerge and pprune

respectively;
(c) creating all other population members via mutation,

using a mutation probability of pmut.

Selection is accomplished through a three-member tourna-
ment. There are several additional system parameters: the
graph size of the CGP transforms, ngraph; the maximum
number of TEFs per individual, nTEF (set to 50 in all cases);
and the type of neighbourhood used, either VN or Cross.

4.1 Initialization and Variation
An individual can be initialized by first initializing a value

for n and k randomly and uniformly, and then initializing k
TEFs. As in previous work, each TEF can be represented
as a list of 4× ngraph integers, and initialized by generating
integers in the appropriate range uniformly and randomly.
These representations are varied via the familiar mutation

and crossover operators. We also utilize two additional op-
erators, merge and prune. The purpose of these operators,
primarily, are to enlarge or shrink the individuals, respec-
tively, with respect to the number of transforms k. The
use of a merge operator is a cooperative technique — one

which serves to create larger individuals out of a combina-
tion of smaller ones — previously shown to be useful in some
evolutionary image classification tasks [9]. We define these
genetic operators in Appendix B.

4.2 Fitness
The use of a wrapper approach to evaluation necessitates

the use of a fast classifier and an off-line learning approach:
in our experience, a 1-nearest neighbour (1-NN) classifier is
a good choice due to its speed and efficiency. In previous
work we have found that the use of this classifier forces an
assumption of the use of Euclidean distance onto the result-
ing feature space: that is, the resulting features work best
with other classifiers which use Euclidean distance as a ba-
sis, as opposed to classifiers which use other distance metrics,
such as the Mahalanobis distance metric [14]. Regardless,
re-evaluation through other more computationally-intensive
classifiers is often successful, and sometimes provides supe-
rior performance, as is the case here with the simple logistic
classifier.

Any particular individual is evaluated by converting a col-
lection of images to feature vectors, and then evaluating a
classifier’s capacity to distinguish between the pattern types.
The evaluation method changes between training and test
runs: During training runs, the training set T is broken
into two equally sized sets: one used for training proper,
and the other for evaluating the trained individual. The
split is randomized with each evaluation, making all eval-
uations stochastic. Test runs are evaluated using 10-fold
cross-validation on the test set of images, V . There is no
feedback from the results of the test runs to either the clas-
sifier or the evolutionary algorithm; Testing is used only to
evaluate the success of the individuals on an independent
set, and to track over-fitting. We evaluate our individuals
using the test set every five evolutionary generations.

The classifier will return a false positive rate, FPR, for
all classes c ∈ C, which we combine into the sensitivity-
specificity :

SSS = (1− FPR(“healthy”))(1− FPR(“sick”)) (3)

where S is the set used for evaluation, either T or V . Note
that the values of SST and SSV will be stochastic, due to
choice of folds and randomized order of images. In our ex-
perience the variance of SSV is quite low (< 0.01). Using
SS in the definition of fitness is done since the evolution-
ary process is forced to find features which are useful for all
classes simultaneously, which eliminates some common local
minima in the search landscape.

Preceding work with CellsDB has revealed that some“sick”



examples are more easily recognized than others, and the
possibility exists for a classifier to obtain a fair accuracy
simply recognizing these few instances. To prevent this, we
have authored a new fitness function for evaluating an indi-
vidual I:

fit(I) = min
1≤m≤3

SSP (m)(I) (4)

where P (m) ⊂ T is a randomized subset of the training set,
with |P (m)| = 100. This particular choice was selected from
several possible forms on the basis of speed of computation.
The ultimate evaluation of an individual will involve the

familiar SSV measure, of course; To compare with SSV for
the purposes of tracking over-fitting, we also report the av-
erage training SST value as a more accurate measure of
expected performance of the individual:

〈SST (I)〉 =
1

3

∑
1≤m≤3

SSP (m)(I) (5)

We also report a more common measure of success, the
proportion of correct ly classified images:

PCS(I) =
|{f ∈ S|I correctly classifies f}|

|S| (6)

5. EXPERIMENTS
On the basis of 200 randomly generated data points, a

parameter set believed to maximize fit was selected:

NinitPop 100 Npop 60
pcross 0.55 pmut 0.025
pmerge 0.035 pprune 0.15

max. nbhd. card. 41 ngraph 200
nbhd. type Cross

Twenty runs using this parameter set were executed. At
the end of the 100th generation, the best individual was de-
clared the output of the system. We obtained the following
results:

measure mean s.d.

SSV 0.672 0.052

PCV 0.819 0.032

nfeat 10.22 3.04

max. nbhd. card. 16.39 3.40

However, we found that typically the average training
score, 〈SST 〉, was approximately 0.1 larger than the test
score. This large difference implies that the model is in
some cases “memorizing” the training instances, or learn-
ing some other inappropriate pattern. This mimics previous
work with CellsDB, where over-fitting was also an issue [12].
As such, we elected to try again using a more robust means
of optimization.

5.1 Experiment with Competitive Co-Evolution
In this section, we consider the effects of using compet-

itive co-evolution to augment the evolution of our feature-
extracting individuals. Competitive co-evolution has been
successfully used in evolutionary image classification in the
past to eliminate over-fitting by artificially increasing the
difficulty of the pattern database [13]. Here we will use
co-evolution as a means of selecting samples for individ-
ual evaluation, purposefully choosing collections of images

from our training set which challenge the current popula-
tion. (Note that [13] went further, allowing images to “cam-
ouflage” themselves, which we will not do here for fear of
interfering with presently unrecognized cell image informa-
tion.)

The pattern population is a collection of lists of images,
P = {P (1), ..., P (Nprey)}, where Nprey is the size of the

pattern population, and P (j) = {i(j)1 , ..., i
(j)
m } is a list of

images, i
(j)
k ∈ T . The idea is that each pattern individ-

ual P (i) is optimized to challenge the population of pat-
tern recognizers, that is, they are evolved to select images
which classifiers have difficulty recognizing. We used values
of Nprey = Npop = 60 and m = 60 for all experiments.

At the outset, each pattern individual is initialized ran-
domly from the total set of training images: P (j) = {urand(T ),
..., urand(T )}. Note that it is possible for ik = il for some
k 6= l. We consider this a means for evolution to specify that
a particular image is important enough to gain extra weight-
ing in evaluation. For each evaluation of a feature-extracting
individual, a random pattern population member is selected
and used in that individual’s evaluation. Once the classifier
has been computed, the fitness value is associated with the
pattern individual. Let the number of times that a partic-
ular pattern individual, P (j), has been evaluated in a total
generation be nE(j). Pattern fitness is defined as

fitpatt(P
(j)) =

{
1 ; if nE(j) = 0

1
nE(j)

∑nE(j)
k=0 fit(k) ; ow.

(7)

for all fit(k) associated with P (j).
At the end of every generation, we select pattern indi-

viduals for the next pattern population in a standard ge-
netic algorithm. We use deterministic tournament selection
with a tournament size of three, selecting the individual who
minimizes fitpatt. Given two pattern individuals, P (1) and
P (2), a new pattern individual is generated via crossover :

P (3) = {urand(i(1)1 , i
(2)
1 ), ..., urand(i

(1)
m , i

(2)
m )}. Given a sin-

gle pattern individual P (1), a new pattern individual can

be generated via mutation: P (2) = {urand(i(1)1 , urand(T )),

..., urand(i
(1)
m , urand(T ))}. That is, mutation re-initializes

each point with probability 0.5. This large value was chosen
so as to prevent over-specialization by the pattern popula-
tion. Otherwise, all evolutionary parameters were set to be
identical to the parameters of the main evolutionary run.

5.2 Co-evolutionary Results
We ran twenty trials of the co-evolutionary model using

the same parameter set as for the original experiments. We
obtained the following results:

measure mean s.d.

SSV 0.730 0.054

PCV 0.854 0.031

nfeat 5.420 2.11

max. nbhd. card. 16.60 4.74

Welch’s t-test shows that the hypothesis that the co-evolutionary
model has better expected SSV than the non-co-evolutionary
model is valid (p < 0.003), as illustrated in Figure 4. The
smaller value for nfeat suggests that a less complex solution
has been found, implying that the co-evolution has indeed
compensated for a too-complex initial model.
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Figure 4: Comparison of SSV values between the
standard and co-evolutionary runs.

Since our features are general purpose, there is no need
to use the same classifier for evaluation as was used as a
wrapper during evaluation. After some experimentation, we
found that superior classification results were obtained via
a simple logistic classifier:

measure mean s.d.

SSV (simple logistic) 0.773 0.057

PCV (simple logistic) 0.896 0.041

5.3 Best Discovered Individual
The best individual overall was extracted from one of the

co-evolutionary runs. Evaluated via a simple logistic clas-
sifier, this individual attains a SSV = 0.865, encompassing
true positive rates of 0.973 and 0.890, or a PCV = 0.922.
Table 1 illustrates this individual’s transforms and their ac-
tions on some sample images. Note that the original indi-
vidual had five transforms, two of which were excluded due
to triviality. These features were further ordered by their
rank as determined by information gain, such that T0 is the
most significant.
The T0 feature recovers a similar strategy to the one found

in previous evolutionary work with CellsDB: a selection for
variation between pixels close together, and a simultaneous
rejection of pixels of different intensity too far apart. This
strategy detects inclusions of a range of sizes against a dark
background. The similarities to the transform discovered in
previous work are striking: firstly, both utilize a neighbour-
hood of width 6 pixels and height 5 pixels (although this is
represented more parsimoniously in the new representation);
secondly, both mathematical expressions are dominated by a
maximum operator, contrasting the left-right and up-down
directions.
The T1 feature recovers a partial measure of the circum-

ference of the cell, and the T2 feature recovers a loose mea-
sure of the area of the cell. Interestingly, comparing to pre-
vious work [12], these two features correspond to the two
pre-defined features included in previous evolutionary work
which were, by information gain, ranked as most useful. In-
deed, it appears that the unconstrained evolution of a vari-
able number of features has re-created not only the evolved
feature from previous work, but has also found improve-
ments on the most useful two pre-defined features. Further,
evolution has also recovered the appropriate neighbourhood
size as was discovered in previous work (adjusting for differ-
ent neighbourhood types), this time using a less constrained
neighbourhood representation. Thus, we conclude that the
system has successfully self-selected an appropriate solution
structure and complexity for the problem at hand.

5.4 Comparison to Previous Work
In earlier work, CellsDB was evaluated using both a col-

lection of pre-defined cell features, and those same features
augmented by a single evolved transform under a collection
of statistical descriptors. In that work, the predefined fea-
tures alone attained an SSV score of 0.580, and the addi-
tion of a single evolved TEF attained a mean performance
of SSV = 0.676 (s.d. 0.052) as evaluated by a 1-NN classi-
fier. The maximum performance was SSV = 0.801, achieved
by evaluating the best features with a J48 Decision Tree2

[12]. This new work is approximately an 8% improvement
in expected performance. We should point out that this was
accomplished using entirely evolved features, whereas the
previous approach included several predefined cell-specific
features. Moreover, the best discovered individual attained
SSV = 0.865, also approximately an 8% improvement in SS
over previous maximal performance.

Further work has been undertaken by Guo et al. [6, 7],
who report the proportion correct on a test set. Their tech-
nique consisted of initially pre-processing images into a his-
togram region of interest (HROIT), then calculating a collec-
tion of common features over the HROIT: entropy, density
measures, moments, and more. Initially, the success rate
is computed on the raw features unsing an SVM. Next, a
hybrid genetic programming and expectation-maximization
process is used to construct a single composite feature, which
is similarly evaluated and found to have better efficacy. It
should be noted that the test set utilized by Guo et al. is
larger than that used here (500 versus 400 cell images, due
to the choice of train-test split).

Below, we summarize the results from four approaches
in terms of the PCV measure: firstly, from the use of pre-
defined cell based features under the best explored choice
of classifier, 5-NN, extracted from [12]; secondly, from the
use of an SVM to classify pre-defined features based on a
HROIT, extracted from [7]; thirdly, from the use of the hy-
brid GP-EM algorithm to classify those same HROIT-based
features, also extracted from [7]; finally, the present tech-
nique based on evolved TEF features and a simple logistic
classifier:

max mean s.d. #runs

cell + 5-NN NA 0.775 0.015 40

HROIT + SVM 0.810 0.786 0.041 10

HROIT + GPEM 0.920 0.902 0.035 10

TEF + logistic 0.922 0.896 0.041 20

The work by Guo et al. and the present approach are both
clearly superior to näıve techniques on pre-defined features.
The mean outcome of that approach is slightly higher than
the present technique, but within error. The maximal value
of our technique is highest, but very close to the value ob-
tained by Guo et al.. We conclude that the present technique
is of approximately equal merit as the previous state-of-the-
art on CellsDB.

2Note that some data inconsistencies existed in the CellsDB
database at the time that this work was undertaken, and
that since, a few images have been re-categorized. This will
not change test scores by more than 1%.



Table 1: Visualization of the best discovered individual; (left) the TEFs; (right) the action of the TEF on
samples from CellsDB.

TEF expression healthy sample healthy sample sick sample sick sample

original Id

T0 max
{
243.97(i9−i0),max

{
i15
i4

, i10
}}

T1
i
i12
3
i2i4

T2 thresh(i11, i
i3
5 )

√
i15

6. CONCLUSIONS
We have improved over previous results on a medical cell

classification task, and matched the results of the current
state-of-the-art. This new work is also distinguished by be-
ing significantly less constrained than our previous work and
most other existing approaches: all features emerge from
the raw pixel-space, and the system self-selects an appropri-
ate solution structure and complexity. In conjunction with
evidence obtained from previous experiments with another
poorly understood image database [14], we present our evo-
lutionary feature creator as a viable method of automati-
cally generating features from raw pixel spaces, especially in
contexts in which low-level patterns are complex or poorly
understood.
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APPENDIX
A. NEIGHBOURHOOD FUNCTIONS

The von Neumann neighbourhood is meant as a generalization
of the two-dimensional cellular automaton neighbourhood of the
same name, designed by modifying a diagonalizing function nor-
mally used in set theory [2]. It is easier to first understand the
inverse, unVNify. Given some point, (x, y), we can place it into
a partition by (discrete) magnitude, m = |x| + |y|. The number

of points of smaller magnitude is S = 1 + 4
(

(m)(m+1)
2

)
. Given

this information, it suffices to index points by their x-value:

unVNify(x, y) =


0 ; if x, y = 0

x+m+ S ; if y ≥ 0

3m+ x+ 1 + S ; ow

. (8)

To obtain the function VNify, we perform the inverse: Given some
index n, first we find the maximal m ∈ N such that 2m(m−1) <

n; For n > 1, this is equivalent to setting m =
⌈
−1+

√
1+2n

2

⌉
; Note

that m is now the value of |x|+ |y| from the previous calculations.
Next, let n′ = n − 2m(m − 1) − 1. Finally, we use the x-axis as
an index to reference the point:

VNify(n) =



0 ; if n = 0

(n′ −m,n′) ; if n′ ≤ m

(n′ −m, 2k − n′) ; if n′ ≤ 2m

(3m− n′, 2m− n′) ; if n′ ≤ 3m

(3m− n′, n′ − 4m) ; ow

. (9)

The Cross neighbourhood is defined through the following func-
tion:

Cross(n) =

{
(0, (−1)b

n mod 4
2

cdn
4
e) ; if n mod 4 even

((−1)b
n mod 4

2
cdn

4
e, 0) ; ow

(10)

with inverse

Uncross(x, y) =


4 · |max{x, y}| − 3 ; if x > 0

4 · |max{x, y}| − 2 ; if y < 0

4 · |max{x, y}| − 1 ; if x < 0

4 · |max{x, y}| ; ow

(11)

Although we do not use it in our experiments, for completeness
we also introduce the Moorify function. It is convenient to think
of the Moorify function as mapping the index to the perimeter of
a square. Let k ∈ N be the largest k such that (2k + 1)2 ≤ n,
and let S = (2k+1)2. S is the number of points contained in the
square beneath the location to which we will map our index. We
let n′ be n−S, the index on the perimeter of the square to which
we will map. We let the diameter of our current square perimeter
be d = 2(k + 1) + 1, and the radius r = k + 1. Then, we have:

Moorify(n) =


(n′ − r, r) ; if n′ ≤ d

(r, r − (n′ − d+ 1)) ; if n′ ≤ 2d− 1

(r − (n′ − 2d+ 2),−r) ; if n′ ≤ 3d− 2

(−r, (n′ − 3d+ 3)− r) ; ow

. (12)

B. GENETIC OPERATORS
Merge: This operator combines two individuals, provided some

conditions are met. For any two individuals, I(1) and I(2), a
third child individual is created through the union of the parents’
features,

I(3) =
(
max

{
n(1), n(2)

}
, k(1) + k(2),

T
(1)
1 , ..., T

(1)

k(1) , T
(2)
1 , ..., T

(2)

k(2)

) (13)

This third child is returned provided that it is not too large (k(1)+

k(2) < nTEF ) and that there is an increase in fitness beyond what
we would expect from the stochasticity of individual evaluation,
i.e. if

fit
(
I(3)

)
≥ max

{
fit

(
I(1)

)
, fit

(
I(2)

)}
+ 2σ (14)

where σ is computed by comparing five calculations of fitness for
the best individual from the previous population. If the condi-
tions are not met, merge returns a copy of the first parent.

Prune: The prune operator serves to provide pressure on the
population to decrease individual complexity, provided that the
fitness of the pruned individual does not decrease. An individual
selected for pruning, I(1), will have a child, I(2), created where the
child has either its neighbourhood cardinality decreased by one, or
a randomly selected TEF removed:

I(2) = copy
(
I(1)

)
if rand < 1

2
then

n(2) = n(1) − 1
else

k(2) = k(1) − 1

delete T
(2)

urand({1,...,k(1)}) and re-index

end if

If fit
(
I(2)

)
≥ fit

(
I(1)

)
+ σ, the prune operator returns the

pruned child; Otherwise, prune returns a copy of the original

parent.


