skip to main content
10.1145/2330163.2330322acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Evolutionary algorithms applied to elucidate ionic water cluster structure formation

Published:07 July 2012Publication History

ABSTRACT

In this work we present two evolutionary algorithms applied to look for positive water cluster structures. Both algorithms were applied in order to simulate the formation of the aggregates using the neutral clusters as a precursor. In other words, we are not looking for the global minima positive water cluster structures, but rather than trying to find the most stable structures formed from neutral stable clusters. To achieve our goal three steps were executed. In the first one we looked for the most stable structures for (H2O)n(n = 2 - 8), applying a genetic algorithm. In the second step we simulated that the found neutral clusters had lost one of their electrons, creating positive clusters (H2O)+/n. Finally, in the last step we simulated the creation of positive cluster by the aggregation of one positive ion, forming (H2O)nH2O+ clusters. in the latter stage we applied a quantum inspired evolutionary algorithm for numerical optimization (QIEA-R). Results of our search present innovative positive water structures and was able to compare two different ways for ionic cluster formation.

References

  1. A. N. Alexandrova. H. (h2o)_n clusters: Microsolvation of the hydrogen atom via molecular ab initio gradient embedded genetic algorithm (gega). J. Phys. Chem. A, 114:12591, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  2. A. N. Alexandrova and A. I. Boldyrev. Search for lin (n=5--7) lowest energy structures using the ab initio gradient embedded genetic algorithm (gega). elucidation of the chemical bonding in the lithium clusters. J. Chem. Theory Comput., 1:566, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  3. A. N. Alexandrova, A. I. Boldyrev, Y. J. Fu, X. Yang, X. B. Wang, and L. S. Wang. Structure of the (nacl)x (x=1--4) clusters via ab initio genetic algorithm and photoelectron spectroscopy. J. Chem. Phys., 121:5709, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  4. P. J. Ballester and W. G. Richards. Ultrafast shape recognition to search compound databases for similar molecular shapes. J. Comput. Chem., 28:1711, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  5. B. Bandow and B. Hartke. Larger water clusters with edges and corners on their way to ice: Structural trends elucidated with an improved parallel evolutionary algorithm. J. Phys. Chem. A, 110:5809 -- 5822, 2006.Google ScholarGoogle Scholar
  6. V. S. Bryantsev, M. S. Diallo, A. C. T. van Duin, and W. A. Goddard III. Evaluation of b3lyp, x3lyp, and m06-class density functionals for predicting the binding energies of neutral, protonated, and deprotonated water clusters. J. Chem. Theory Comput., 5:1016 -- 1026, 2009.Google ScholarGoogle Scholar
  7. C. J. Burnham and S. S. Xantheas. Development of transferable interaction models for water. iv. a flexible, all-atom polarizable potential (ttm2-f) based on geometry dependent charges derived from an ab initio monomer dipole moment surface. J. Chem. Phys., 116:5115, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  8. A. da Cruz, M. Vellasco, and M. Pacheco. Quantum-Inspired Evolutionary Algorithms applied to numerical optimization problems. In IEEE Congress on Evolutionary Computation, pages 1--6. IEEE Press, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  9. D. M. Deaven and K. M. Ho. Molecular geometry optimization with a genetic algorithm. Phys. Rev. Lett., 71:288, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  10. R. Dreizler and E. Gross. Density Functional Theory. Plenum Press, 1995.Google ScholarGoogle Scholar
  11. G. S. Fanourgakis and S. S. Xantheas. The flexible, polarizable, thole-type interaction potential for water (ttm2-f) revisited. J. Phys. Chem. A, 110:4100 -- 4106, 2006.Google ScholarGoogle Scholar
  12. F. A. Fernandez-Lima, O. P. VilelaNeto, A. S. Pimentel, C. R. Ponciano, M. A. C. Pacheco, M. A. C. Nascimento, and E. F. da Silveira. A theoretical and experimental study of negative lif clusters produced by fast ion impact on a polycrystalline lif target. J. Phys. Chem. A, 113:15031, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  13. F. A. Fernandez-Lima, O. P. VilelaNeto, A. S. Pimentel, C. R. Ponciano, M. A. C. Pacheco, M. A. C. Nascimento, and E. F. da Silveira. A theoretical and experimental study of positive and neural lif clusters produced by fast ion impact on a polycrystalline lif target. J. Phys. Chem. A, 113:1813, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  14. M. J. Frisch and et. al. Gaussian 03,uppercaseRevisionuppercaseC.02.uppercaseGaussian, Inc., Wallingford, CT, 2004.Google ScholarGoogle Scholar
  15. F. F. Guimarães, J. C. Belchior, and C. Roberts. Global optimization analysis of water clusters (h2o)_n (11-n-13) through a genetic evolutionary approach. J. Chem. Phys., 116:8327, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  16. H. Haberland. Clusters of Atoms and Molecules. Wiley-VCH, Weinheim, 1994.Google ScholarGoogle ScholarCross RefCross Ref
  17. K. Han and J. Kim. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Comput., 6:580 -- 593, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. K. Han and J. Kim. Quantum?inspired evolutionary algorithms with a new termination criterion, h_e gate and two?phase scheme. IEEE Trans. Evol. Comput., 8:156 -- 169, 2004. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. B. J. Hartke. Global geometry optimization of clusters using a genetic algorithm. J. Phys. Chem., 97:9973, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  20. J. Jellinek. Theory of Atomic and Molecular Cluster. Springer, Berlin, 1999.Google ScholarGoogle ScholarCross RefCross Ref
  21. R. L. Johnston. Atomic and Molecular Clusters. Taylor and Francis, London, 2002.Google ScholarGoogle Scholar
  22. R. L. Johnston. Evolving better nanoparticles: Genetic algorithms for optimizing cluster geometries. Dalton Trans., page 4193, 2003.Google ScholarGoogle Scholar
  23. J. Kohanoff. Electronic Structure Calculations for Solid and Molecules: Theory and Computational Methods. Cambridge University Press, Cambridge, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  24. A. Lagutschenkov1, G. S. Fanourgakis, G. Niedner-Schatteburg, and S. S. Xantheas. The spectroscopic signature of the all-surface to internally solvated structural transition in water clusters in the n = 17--21 size regime. J. Chem. Phys., 122:194310, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  25. A. Leach. Molecular Modelling: Principles and Applications. Prentice Hall, 2001.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. J. L. Llanio-Trujillo, J. M. C. Marques, and F. B. Pereira. An evolutionary algorithm for the global optimization of molecular clusters: Application to water, benzene, and benzene cation. J. Phys. Chem. A, 115:2130, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  27. R. M. Matin. Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge, 2004.Google ScholarGoogle Scholar
  28. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, New York, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. M. Moseler, H. Häkkinen, R. Barnett, and U. Landman. Structure and magnetism of neutral and anionic palladium clusters. Phys. Rev. Lett., 86:2545, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  30. A. Narayanan and M. Moore. Quantum inspired genetic algorithms. In IEEE Congress on Evolutionary Computation, pages 61--66. IEEE Press, 1996.Google ScholarGoogle Scholar
  31. Q. C. Nguyen, Y. S. Ong, H. Soh, and J. L. Kuo. Multiscale approach to explore the potential energy surface of water clusters (h2o)_n n < 8. J. Phys. Chem. A, 112:6257, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  32. B. V. Reddy, S. N. Khanna, and B. Dunlap. Giant magnetic moments in 4d clusters. Phys. Rev. Lett., 70:3323, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  33. D. Sholl and J. A. Steckel. Density Functional Theory: A Practical Introduction. Wiley-Interscince, 2009.Google ScholarGoogle Scholar
  34. E. S. A. Silva, H. A. Duarte, and J. C. Belchior. An approach based on genetic algorithms and dft for studying clusters: (h2o)_n (2-n-13) cluster analysis. Chemical Physics, 323:553, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  35. D. J. Wales. Energy Landscapes. Cambridge University Press, Cambridge, 2004.Google ScholarGoogle Scholar
  36. Y. Xiao and D. E. Willians. Genetic algorithm: a new approach to the prediction of the structure of molecular clusters. Chem. Phys. Lett., 215:17, 1993.Google ScholarGoogle ScholarCross RefCross Ref
  37. Y. Zeiri. Prediction of the lowest energy structure of clusters using a genetic algorithm. Phys. Rev. E, 51:2769, 1995.Google ScholarGoogle ScholarCross RefCross Ref
  38. C. Zhu, R. H. Byrd, P. Lu, and J. Nocedal. L-bfgs-b: Fortran subroutines for large-scale bound constrained optimization. ACM Transactions on Mathematical Software, 23:550--560, 1997. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Evolutionary algorithms applied to elucidate ionic water cluster structure formation

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            GECCO '12: Proceedings of the 14th annual conference on Genetic and evolutionary computation
            July 2012
            1396 pages
            ISBN:9781450311779
            DOI:10.1145/2330163

            Copyright © 2012 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 7 July 2012

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • research-article

            Acceptance Rates

            Overall Acceptance Rate1,669of4,410submissions,38%

            Upcoming Conference

            GECCO '24
            Genetic and Evolutionary Computation Conference
            July 14 - 18, 2024
            Melbourne , VIC , Australia
          • Article Metrics

            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0

            Other Metrics

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader