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ABSTRACT

We consider the neighborhood tree induced by alternatiegigie
of different neighborhood structures within a local seatebcent.
We investigate the issue of designing a search strategyatpgr
at the neighborhood tree level by exploring different paihshe
tree in a heuristic way. We show that allowing the search &ckd
track’ to a previously visited solution and resuming theatwe
variable neighborhood descent by 'pruning’ the alreadylanepl
neighborhood branches leads to the design of effective #nrd e
cient search heuristics. We describe this idea by discgstsiba-
sic design components within a generic algorithmic schente a
we propose some simple and intuitive strategies to guidesehsch
when traversing the neighborhood tree. We conduct a thbremg
perimental analysis of this approach by considering twedsht
problem domains, namely, the Total Weighted Tardiness|&mob
(SMTWTP), and the more sophisticated Location Routing Rrab
(LRP). We show that independently of the considered donta,
approach is highly competitive. In particular, we show thsing
different branching and backtracking strategies whenaekp the
neighborhood tree allows us to achieve different trads-ofterms
of solution quality and computing cost.

Categories and Subject Descriptors
1.2.8 [Artificial Intelligence ]: Problem Solving and SearchHeuris-
tic methods

General Terms
Algorithms,

Keywords
Metaheuristics, neighborhood combination, VND, VNS.

1. INTRODUCTION

Context and Motivation: Metaheuristics are now considered as
a well established algorithmic framework providing flexikdnd
powerful tools to solve many hard optimization problems. nyla
efforts are being made by the research community in ordeeto d
velop new search methods to help the design of both effeatide
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efficient algorithms. In this paper, we build on previoushtd@ques

by developing an intuitive idea based on exploiting difféneeigh-
borhoods in a forward-backward manner to explore what wa ter
the neighborhood treeGenerally speaking, we consider the possi-
bility of making backward moves to a solution previously lexpd

by some neighborhoods, and continue the search from tharg us
other different neighborhoods searching for a better rmigiood
combination. In the following, we first review some previaes
lated works, then after, we give our contribution and déscaour
findings in more details.

Background and related works: Among other search techniques,
variable neighborhood search (VNS) and its several vavifit]
are based on the systemic change of neighborhood withiretrels.
For instance, Variable Neighborhood Descent (VND) expldie
idea of alternating between several neighborhoods withiiteasia-
tive local improvement descent to escape local optima. Nyoee
cisely, starting with a first neighborhood structure, VNDfpems
local search until no further improvements are possiblentthis
local optimum, the local search is continued with the nexgime
borhood. If an improving solution is found, then the locarsh
continues with the first neighborhood, otherwise the neatlable
neighborhood is explored, and so on until no further impnosets
can be obtained. It is well known that the performance of VND
can highly depend on the order the neighborhoods are atéstna
In standard variants of VND, it is often admitted that ordgri
neighborhoods in an increasing cost/size is a reasonalegy.
However, this standard strategy is not always applicatde -
stance, when the best ordering for a given problem can varg fr
one instance to another one. Actually, the issue of how to-com
bine/exploit/search different neighborhoods is not ned@me can
find many different studies on the subject. For instancelZ#j,[
a fast relaxation of neighborhoods is evaluated in orderetecs
the most accurate ones. In[16], a self-adaptive strategysésl
to rank neighborhoods and to dynamically choose the betdsui
ordering. A number of specific multi-neighborhood combiorat
functions can also be found. For instance, many studiesdems
take the union of some basic neighborhoods. The so-calligthne
borhood composition and the token-ring search are also aték
known neighborhood combination functions, see €.qgl, [081Z,
[I7]. More generally, hyperheuristics|[4] can be consideasch
high level approach operating in the neighborhood spaceainéd
ing at producing effective hyper-search strategies. Fstairce,
in [6[27], simple hyperheuristic selection strategiescanesidered
where low level heuristics (neighborhoods) are chosereeiimn-
domly, or greedily, or based on a score function. Severatroth
sophisticated hyper-strategies, mainly inspired by thg meata-
heuristics operate, can be found in the literature, seg[Blg.
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Technique overview and results:The study conducted in this pa-
per is based on the simple observation that defining how neigh
borhoods are alternated within a local search descent tEngpt
other than defining a specific strategy to traverse a neiglaoor
tree, where the root of the tree represents the initial ciatdisolu-
tion and intermediate nodes represent solutions obtaipegjply-
ing one of the possible neighborhoods. In other words, we vie
the trajectory of a variable neighborhood search as a higél le
neighborhood path, where path nodes are solutions and paéry
hop represents the exploration of one solution using onghbei-
hood among those available. Following this observationterma
neighborhood tree search (NT&}strategy which is able to traverse
the neighborhood tree efficiently searching for promisiathp. It
should be clear that a systematic traversal (exploratiail okigh-
borhood branches) could not be efficient especially whemtime-
ber of neighborhoods is high.

In this paper, we focus on the possibility of backtrackingpte-
viously visited solutions while branching and pruning tremles
all along a search path. We show that this idea with basia-iter
tive improvement descents leads to efficient search stestégth
in terms of solution quality and computing cost. More spealfy,
we consider a simple randomized neighborhood selectiategly,
where the choice of which neighborhood to select at runtisne i

made uniformly at random among those not yet explored. When

effectively branching a neighborhood, we consider botlembein-
istic and randomized adaptive strategies, basically mglyin the
neighborhood path traversed by the search in previous souksl
for backtracking, we investigate intuitive strategiesdahen ran-
dom and tournament selection techniques. We would like to em
phasize that the proposed approach and its design composent
genericand not specific to a fixed problemor to any particular
neighborhood class.

We study the properties of the proposed approach by conrsider

ing several instances coming from two different and weldgtd
problem domains: the Single Machine Total Weighted Targtne
Problem (SMTWTP) in the family of scheduling problems, and
Location Routing Problem (LRP). Both problems are NP-Hard.
Many previous studies have been successfully applied t@ sbe
SMTWTP using hybrid variable neighborhood like searcheRPL
is a more sophisticated problem which involves two simudtars
decisions: which depots to open and what routes to plan. Gomm
to these two problems, many natural neighborhood strustcaa
be considered making them two excellent case studies tgzmal
how our neighborhood tree based approach performs under-dif
ent scenarios. Through extensive experiments, we showtinap-
proach leads to substantial improvements in the solving@two
considered problems. More specifically, for SMTWTP we cdesi
three neighborhood structures and we show that NTS perfoetas
ter than standard VND executed with any neighborhood anderi
i.e., NTS is able to dynamically find its way along the neighbo
hood tree without any specific tuning. For LRP, we considevest
neighborhoods and a finely tuned VNS algorithm. Ultimatels,
show that NTS is able to beat VNS without requiring any specifi
perturbation/shaking phase, but the backtracking it-dedre im-
portantly, VNS is used as a base-line algorithm allowingoushiow
how NTS performs when instantiating its components folfayvi
different strategies. This allows us to give insights irite behav-
ior of NTS and to better understand its critical design issuka
particular, we show that NTS can lead to different (and ingam
rable) trade-offs in terms of solution quality and runningéd. In

a general point of view, our study reveals that NTS is a promgis

approach offering many interesting search abilities.

Outline: In Sectio 2, we give an algorithmic scheme for NTS and
describe intuitive strategies to be analyzed later. IniSel, we
describe the considered problems and neighborhoods. tio8gk
(resp.[5), we analyze NTS and give our experimental results.

2. NEIGHBORHOOD TREE SEARCH (NTS)

2.1 Preliminaries
Let us assume that we are given an optimization problem and a
set of corresponding neighborhoods. We aim at designindgan a
rithm that exploits those neighborhoods as efficiently assitobe.
For simplicity, assume in addition that we havstep functiorthat
given a candidate solutionreturns a solutiors’ computed w.r.t.
one neighborhood. Having an initial solutien, we then term the
neighborhood treg™ the (possibly infinite) tree structure obtained
by the following process. The root node %fis the initial solu-
tion sg. The first level of 7, are the candidate solutions obtained
from so by applying the previously definestep functionw.r.t. ev-
ery available neighborhood. Th& level is then constructed re-
cursively from the internal nodes in tif¢ — 1) level and so on.
Notice that this is a rather informal definition which is omgjiven
for the sake of illustration and to clarify our preliminasmarks.

It is clear that designing a local search algorithm expigitthe
available neighborhoods can be viewed as designing a spsttit-
egy to explore the considered neighborhood tree. This i wka
term a neighborhood tree search (NTS) algorithm, i.e., eetra
sal strategy of the neighborhood tree searching for patdirig

to promising regions. Designing such a traversal searatritthgn
can be difficult for many reasons. Firstly, for many optintiaa
problems there may exist a relatively high number of natue h-
borhood structures, say a constant> 2. Hence, a trivial ex-
haustive traversal of all tree nodes at heigft), a function of the
problem sizen, would require at least order &f(™ steps, which
can be intractable. Secondly, the goal is not to systeniitica-
verse as many as possible tree nodes, but to find a path le@ding
high quality solutions while paying the minimum computinost
Fortunately, we know that there exist heuristic traversahniques
leading to relatively efficient and effective search algjoris. For
instance, this is the case for VND like search algorithmsraady
others that could be viewed as specific traversal strategiethis
paper, we focus on designing dynamic traversal heuristivsrev
at each step, one have to decide what neighborhood to conside
when going deeper in the neighborhood tree while backinacta
a previously visited solution whenever the search stadksrion
promising tree regions.

2.2 Abasic randomized NTS

Algorithm[dl gives a relatively detailed description of ousfiNTS
example. As input, we assume that we are given a sktrafigh-
borhood structure§\, - - - , Ny} relative to a given problem and
a fitness/evaluation functiofito be minimized. Algorithrill main-
tains a trajectory path (variablBath) containing an ordered se-
qguence of visited solutions with their neighborhood usaghis
is encoded by variable; = (hl,---, k%) whereh?® is 1 when-
ever neighborhoodV; has been used to explore solutierand 0
otherwise. The algorithm then proceeds iteratively by mers
ing the last solutiors (function HEAD) appearing in the trajectory
path. For that solution, a neighborhodd is chosen uniformly at
random among those that have not been used to expl@#eSTEP
function is then applied to compute a new solutiband neighbor-
hood usage variable’ is updated. The & pfunction could be for



instance any local search heuristic based on neighborhivod- s
ture \V;, e.g., a hill-climbing. Having explored a new neighbor-
hood, we shall decide whether to continue the search witktisal

s’ or to backtrack. In Algorithni]1, a simple acceptance criteri
is used. More precisely, if the new explored solutiéiis found to
improve s then, we make a move forward by pushisicat the end
the trajectory path. Otherwise, we check whether therées@ne
neighborhoods which haveot been used to explore If such a
situation exists, we simply continue the inner-loop, tsate try to
find an improving solution by selecting uniformly at randoman
explored neighborhood w.r.t. the current solutionOtherwise, a
backtrack move is activated (‘else’ condition). Noticetthmathis
case, current solutionis not necessarily a local optimum w.r.t. all
neighborhoods. In fact, this depends on theSfunction and the
depth ofs in the search trajectory. Backtracking in Algoritln 1 is
done using a simple uniform randomized selection processeM
precisely, among path solutions which are not yet explosedlb
neighborhoods, one is chosen uniformly at random, sayisalsj

at positionj. The trajectory path is then updated by deleting those
solutions laying betwees; ands. The search then continues from
s; in the same way until the trajectory path becomes empty.

Algorithm 1: A simple randomized variant of NTS

Input: A set of k neighborhood structurgsVs, - - - , N }
s < initial solution ;
repeat
/™" Current trajectory solution **/
(s, hs) « HEAD(Path) ;
/** Neighborhood Selection **/
Io«— {¢ | Kt =0};
i + RANDOM(T;) ;
/** Neighborhood Exploration **/
s' « STEP(s, N;);
hi«—1;
/** Move or Backtrack **/
if f(s) < f(s") then
hg < (0,---,0);
Path + PUSH((s', hy'), Path) ;
elseif|Is| + 1 = k then
| Path < RANDOM_BACKTRACK(Path);

until Path =0 ;

2.3 NTS generic scheme and variants
Algorithm[d given in the previous section is clearly a spegdifin-
plementation of the more generic scheme given in AlgorilBm 2
Generally speaking, Algorithi 2 is in fact an attempt to giveigh
level procedural description of a NTS like algorithm. Intparlar,

we identify thehistoryvariable which is typically used to record in-
formation about search trajectory and neighborhood pesdoce.
We also have the neighborhood selection stage which rabenislp
the search going towards promising neighborhood branchbs.
Step and AccepTfunction, play the role of branching/pruning.
These two functions should be thought in the same way chlssic
local search algorithms operate, but keeping in mind thasibdy
several neighborhoods can be used. The third main stagegof Al
rithm[2 is backtracking. Within NTS, backtracking servesima

to adapt the traversal when it is stack into paths that do ewd |
to improvements. Backtracking should be thought with respe
search history. In this paper, we study the properties of WS
considering the following particular variants.

Algorithm 2 : general purpose design scheme for NTS

Input: A set ofk neighborhood structurgsVi, - - - , N5}
s < initial solution; history < &;
repeat
/** Neighborhood Selection Strategy **/
i < SELECT(s, history) ;
/™" Branching/Pruning Strategy **/
s' « STEP(s, N;, history);
if ACCEPT(s, s, history) then
| s+ s
else
/** Backtracking Strategy **/
s < BACKTRACK((history) ;

until STOPPINGCONDITION ;

Trajectory history: In all our variants, we record the path tra-
versed by the search and containing the branching solutiads
their relative neighborhood usage (exactly in the same Way in
Algorithm[). We additionally record the (local) best fiteg&***
relative to each solutiom and observed by the search when the
local step function $EP(s, \;) is applied at positios.

Neighborhood Selection Strategy We simply consider the ran-
domized process depicted in Algorittirh 1, i.e., one neighbod
among those not previously used at current path positicelésted
uniformly at random.

Step function STEP(s, N;) : we study four classical alternatives
denoted BI (best improvement), Fl (first impr.), BD (bestaieg)
and FD (first descent). Bl corresponds to the case wherd@okit

is the neighbor of (w.r.t \;) with the best fitness. For strategy Fl,
s’ is the first neighbor of which is found to have a better fitness
thans, when processing neighbors in a random order. BD (resp.
FD) denotes a local search descent where Bl (resp. Fl) girée
applied until no improving neighbors can be found.

Acceptance/Branching criterion We study three strategies de-
noted AA, Al, and AT. AA is exactly the same than in Algoritfiin 1
i.e., any solutions’ that improves the fitness of current solutien
is accepted f(s") < f(s). Al denotes the strategy where solution
s' is accepted if its fitness is better thary™! i.e., f(s') < fPet

AT is a combination of AA and Al. More specifically, a solutieh

is always accepted if (s') < fP°t Otherwise, iff(s’) > foest

but f(s") < f(s) thens’ is accepted with a probability parameter
pa. Otherwises’ is not accepted. In our study, we adopt an adap-
tive strategy where, = 1/d(s) with d(s) the position of solution

s in the trajectory path. In other words, a neighborhood, ilead
to a branch improving, but not improving the previous best local
fithess obtained using a different neighborhood, is acdeptth a
probability which is proportional to the branch height ie theigh-
borhood tree, i.e., the more we are deep in the neighborheed t
the more it is unlikely to explore non improving branches.

Backtracking strategy: We consider three backtracking strategies
denoted BR, BH, BU. BR is the strategy depicted in Algorifim 1
i.e., among path positions which are not yet explored by eitjm-
borhoods, one is chosen uniformly at random. BH and BR are
more sophisticated tournament-based selection stratediéore
precisely, for both BH and BR, we select two distinct pathipos
tionss; ands;, uniformly at random among those not yet explored
by all neighborhoods. With BH, we backtrack to the solutidrick



is less deep in the trajectory path, i.e.s jf appears aftes; in the
search path, then we backtracksto With BU, we backtrack to the
solution which was explored less often by available neighbods.

Stopping Condition: We consider two different stopping condi-
tions: we end the search when (i) the path trajectory is engoty
(ii) a maximum number of fithess evaluations is reached.

Terminology and notations: For clarity, we shall use the follow-
ing notationNTS-(X,Y,Z) whereX € {FI, B, FD,BD} is
the step functionY € {A A, AI, AT} the branching/acceptance
strategy, an& € {BR, BH, BU} is the backtracking strategy.

3. PROBLEM DOMAINS
3.1 Single machine scheduling (SMTWTP)

Problem definition and motivation: In the Single Machine To-

capacity and a fixed opening cost. Each depot is associatbd wi
a single uncapacitated vehicle. Each customer has a naiivieg
demand which is known in advance and should be satisfied. For
any pair of clients (or client-depot), there is an assodiataveling
cost. LRP then consists in minimizing the total cumulatiestof
both depot opening (location) and client delivery (Roufing
Neighborhoods We consider a natural representation of a candi-
date solution (not necessarily feasible) for LRP, namellsteof
opened and non opened depots. For each depot, a permutgiion r
resents the assigned clients and their order in the routeowader
eleven neighborhoods sketched in the following; (resp. A2):

All solutions obtained by performing a clieimsertionmove in the
permutation(s) encoding one single depot route (respdifferent
depot routes)s (resp.Na): All solutions obtained by performing

a swap move on the permutation(s) encoding one depot rasp. (r
two depot routes).Ns (resp. Ns): All solutions obtained by per-

tal Weighted Tardiness Problem, we are given n jobs. Each job forming a classica2-opt move on the permutation(s) encoding one

has to be processed without any interruption on a single imach

depot route (resp. two depot routed); (resp.Ns): All solutions

that can only process one job at a time. Each job has a process_obtained by performing an extended insertion move on theaper

ing timep; , a due datel; and an associated weight; (reflecting

the importance of the job). The tardiness of a jols defined as

T; = max{0,C; — d;}, whereCj is the completion time of job

j in the current sequence of jobs. The goal is then to find a job
sequence minimizing the sum of the so-called weightednass:

*_ wi-T;. SMTWTP is NP-hard. Several different metaheuris-
tics have been proved to efficiently solve SMTWTP benchmark
instances, e.g.[ [11] 8, 13] to cite a few. SMTWTP is in fact a
well understood problem which is often used to study the g@rop
ties of search heuristic methods. This paper is not an execept
Although we are able to show that very simple NTS techniques
outperform previous more sophisticated and finely tunedisiges
for SMTWTP, we shall rather focus on studying and understend
the behavior of our NTS heuristics.

tation(s) encoding every route (resp. tdifferentroutes), that is
an insertion of any sub-route of any possible length, iceite bone
insertion. Vg (resp.A1o): All solutions obtained by performing a
route bone insertion move as for neighborhogds(resp.Ns) but
while inserting clients sub-route in the reverse ordér; : All can-
didate solutions obtained by closing a depot and affectsyyhole
route to a closed depot (close one depot and open a new one).
Since we are dealing with neighborhoods producing possibly
feasible solutions, we use an evaluation functfodefined as fol-
lowing: f(s) = ¢(s) + p(s) wherec(s) is the cost ofs as stated by
the objective function of LRP ang(s) is a penality on the viola-
tion of depot capacity constraints. It is calculated by theadion:
p(x) = >, a-max{0, Q;(s) — b, } wherea is a weight factor pa-
rameterQ;(s) is the total demand of customers serviced by depot

Neighborhoods Permutations are the standard representation used.J andb; is the capacity associated with depot.e., the more depot

for SMTWTP. In this paper, we consider three standard neighb
hoods. Exchange (E)all permutations that can be obtained by
swapping adjacent jobs in the permutatidswap (S)all permu-
tations that can be obtained by swapping adjacent jobs at'the
and;™ position. Insert (I): all permutations that can be obtained by
removing a job at positionand inserting it at positiof.

Instances We consider the well knowh00 Job instance set, and at
a less extent, the0 and40 Job instances from the OR-Library [1].
Each instance set contaihg5 instances.

3.2 Location Routing problem (LRP)

Problem definition and motivation: LRP [20,[19] deals with two
NP-hard problems, namely, facility location problem (FlaRyl ve-
hicle routing problem (VRP). Roughly speaking, in LRP ons ha
to simultaneously decide which depots to open and what sdote
establish to satisfy client demands. Besides being a ctuilig
problem for local search heuristics, LRP is of special ig¢esince
many neighborhoods can be naturally considered for botlotize

tion and the routing level (which are known to be inter-defea).
Many specific search strategies have been studied for LRP[@,
[7,[9] to cite a few. A common aspect in these studies is to find
a good balance for simultaneously searching the routingl kewd

the location level. In particular, there exist a rich liter@ on sev-
eral different neighborhoods dealing with the two LRP levédlhis
makes the choice and the combination of neighborhoodsaliti
and thus LRP is an excellent candidate problem to study our ap
proach. In this paper, we consider the uncapacitated e=hanhd
capacitated LRP[2]. More specifically, we consider a set ofis-
tomers and a set of. potential depots. Each depot has a limited

constraints are violated, the more is the penality and theertiee
search is forced to move toward feasible regions.

Instances We consider a set of50 instances taken from the lit-
erature [[2]. These instances can be grouped into finely dkfine
classes according LRP specific parameters. In our expetéainen
results, we simply group them intosets according to the number
of clients (z) and the number of depots): (n,m) € {(5,10),
(5,20), (5, 30), (10, 20), (10, 30) }. Each set is containing equally
the same number of instances, %),

4. EXPERIMENTAL ANALYSIS: SMTWTP
4.1 Results with standard VND

For SMTWTP, we consider to study the behavior of our approach
compared to standard VND techniques. In Tdhle 1, we report a
summary of results we have obtained for SMTWTP when running
a standard VND using theé possible ordering of neighborhoods
and the4 possible strategies for making a local step move. In ac-
cordance with results reported in previous studies, €], VND

is well suited for solving SMTWTP. In fact, the average petee
age deviation from optimal is relatively low and arousi of
instances are solved to optimality by at least one trial GGeper-
formed in our experiments. However, one can notice that some
instances remain hard to solve by standard VND as reporteictin
vious works. In addition, no fixed ordering nor local ste@atgy
outperforms all the others for all three measures repontddblel.

4.2 Results overview with NTS



Table 1: Results for standard VNDs with a random initial solution. Results are for the 100 job instances with 30 trials per instance.
First column gives neighborhood ordering, i.e., ExchangeH), Insert (I), Swap (S). FI, Bl, FD and BD columns are for the bcal step
functions given in Sectior2.Nop is the number of optimal solutions found by at least one trial A is the average percentage deviation
from optimal and Eval is the average number of evaluations until search ternmation. Bold style is for best result (for each column).

Fi _ Bl I FD I BD Il

Nt | Eval A || Now| Eva A || Nox| Eva A || Nox| Eva A
EIS 102 | 140872.4 | 0.010 || 103 | 471156.4 | 0.015 ||| 113 | 121787.3 | 0.015 101 | 667976.4 | 0.019
ESI 106 | 121372.3 | 0.016 91 485211.7 | 0.018 102 | 106214.4 | 0.015 92 946366.1 | 0.019
IES 104 | 120262.4 | 0.017 96 | 1024409.3 | 0.022 95 101053.6 | 0.017 93 | 1006583.9 | 0.021
ISE 101 | 135572.1 | 0.013 96 865525.5 | 0.022 112 | 115144.1 | 0.014 || 103 | 871254.1 | 0.018
SEI 98 121220.9 | 0.017 93 | 1026960.0 | 0.021 102 | 100903.9 | 0.016 92 | 1007357.2 | 0.025
SIE 106 | 138007.4 | 0.015 101 | 864900.3 | 0.023 106 | 114412.0 | 0.014 | 105 | 871631.1 | 0.021

Order

e T Ty VY p—— e able to find an optimal solution (over tf38® performed trials) for
ool n’ﬁ%gggi : s all the125 instances. .
o / f{ Moreover, NTS using step functions Fl and FD can be proved to
7 § provide substantial improvements in all aspects over allstan-
/ ;’ dard VND variants reported in Tallé 1. For the sake of clavity
50 i only report our finding using one VND ordering, namely ESI-No
» Jr;‘" tice however that similar conclusions can be drawn for thesiot
/-"’ C NTSEAMBR —— | possible orderings. To be fair in our comparative study, uwéher
0k il < YNDESIFI(RESTARD = | consider restarting the VND algorithm from a randomly geuex
1000 10000 100000 1e+06 1e+07 1000 10000 100000 1e+06 1e+07 . . . .
#Evaluations #Evaluations solution in the case VND terminates before the maximum numbe
. . N of evaluations is reached. As shown in Elg.1 (Top-right ad B
‘ 3 09 tom), NTS outperforms VND both in terms of: cumulative numbe
01 3 SO0 of instances solved to optimality\pt), average percentage devi-
\ gz; /7 ation from optimal AA), and average success rate that is the per-
200 : 8o 4:’ centage of trials that do find the optimal solution, i.e.sttén be
= 5.3,0‘4 4 interpreted as the probability distribution of finding th&imal so-
o001 N o3 lutions for all instances.
TS-(FI,AA BR) \\ 02
oS SR \\ o e RS = : o .
0'00011000 10600 106000 1le+06 1e+07 0 0 2e+06 4e‘+06 6e‘+06 Be‘+06 1le+07 43 Run Tlme DIStrIbUtlon AnalySIS
#Evaluations #Evaluations In previous section, we showed that NTS performs better\#iNib
Figure 1: Results for NTS-(*,AA,BR) Vs standard VND for 100 in general, i.e., results are mainly averaged over insgnicethis
job instances (labels refer to search strategies). Top: cunfa- section, we go to a throughout comparative study. More §peci
tive number of instances solved to optimality (Vopt) by at least cally, we analyze the run-time behavior of NTS comparedaa-st
one trial over 30 as a function of number of fitness evaluations. dard VND by using run-time distributions (RTO) [115]. RTDs/gi
Bottom-Left: Evolution, with number of evaluations, of the av- the cumulative empirically observed probability of findiag op-
erage percentage deviation from optimal {\) averaged over30 timal solution (or a solution within a specific quality boyridr
trials. Bottom-Right: Evolution, with number of evaluatio ns, a given instance as a function of the CPU time. In our study, we
of the success rate averaged over thi25 instances. use a slightly different definition, where probability isnsidered
as a function of number of evaluations. This is mainly to stale-
pendent of any specific implementation or operating sysssmes
. . . (NTS running time issues are however studied in next sective
For SMTWTP, the reported results are obtained with the Smpl o, o ined the behavior of NTS with different step functionsl a
variant of NTS given in AlgorithrillL, With random initial S‘?‘“”- for several instances, mainly, those who are reputed tolagvedy
acceptance strategy AA and bz_i(_:ktracklng strategy B_R’N'-ES' hard. In Fig[2 we present our results for only four instantes
(, A4, BR). As stopping condition, the search t7er.m|nates WheN similar conclusions can be made for the others. The RTDslylea
either a maximum number of evaluations, namtly, is reached, shows that NTS performs better than VND for three out of the fo
or the trajectory path becomes empty. Our resuits for NTSure instances, namely9, 38, and41, even if optimality is not required.
marized in F_|g|:ll. Firstly, we rem_ark that for both FD ar_1d Biodb For instances6, the difference is less pronounced, with a small ad-
step stratggleg, the search terminates before the maxmmrben vantage in favor of NTS for fitness deviation Bf from optimal.
of evaluations is reached (Fid. 1 Top-left). At the oppqdite both
Fl and Bl the search continues without the backtrackingdebie . .
to force termination. This is mainly due to the relativelgthitra- 4.4 NTS history analysis
jectory path length as we will discuss later. Furthermosesauld Here, we give some basic observations about trajectory ystl
be expected, firstimprovement strategies are less costipared by NTS. In TabldR, we report the maximum lengdth,... of the
to best improvement strategies. We also found that Fl ofdpes trajectory path ever observed for any instance and any,taaid

all other step strategies both in computing cost and numbier- o hmae the maximum length3( trials per one instance) averaged
stances solved to optimality. In fact, it is the only strgtegnich is over125 instances of each problem size set.
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Figure 2: RTDs for NTS vs VND with random restart. The x-
axis gives the logarithm of the number of fithess evaluations
the y-axis the cumulative empirical solution quality probabil-
ity. § denotes the gap (in percentage) between the required so-
lution quality and the optimal solution. Top-Left figure (re sp.
Top-Right, Bottom-Left and Bottom-Right) shows the resuls
for instance 19 (resp. 38, 42, and 86).

With the FD step function, the maximum length for the three in
stance sets is at mostwhich is relatively very low. This is a
crucial observation that can be exploited in different neaarfor
backtracking. Let be the maximum length that can be observed
which is also the maximum height for the neighborhood tres: A
suming that the exploration of each of theneighborhoods by the
step function FD requires a polynomial time in the problemesi
say p(n), then an exhaustive neighborhood tree traversal would
lead to an NTS algorithm with computing complexity of roughl
O(k™ - p(n)). If his proved to be a constant or even a very small
function inn, then an exhaustive neighborhood tree traversal could
lead to a relatively efficient NTS. In our experimerfiseems to be
very insensitive tm which suggests that other backtracking strate-
gies, e.g., using a fixed/adaptive number of backtrack stepgd
improve the search.

For the FI step function, it is clear that (compared to FD)é¢hs

a significant increase in the trajectory path length. Tieegfthe
previous discussion does not hold anymore using FI. In é&sstim-
ing thathmax = Q(n), which seems to be the case, an exhaustive
search of the neighborhood tree is normally intractablés iBfur-
ther confirmed by the fact that in all our experiments with Bie
strategy, NTS always reaches the maximum number of iterstio
without emptying the whole search path. We however remaak th
using random backtracking (BR), FI produces better reshlis
FD. We attribute this to the fact that Fl implies a neighbarhtree

of relatively high size but relatively diversified neighbond paths.

To conclude this section, we would like to give some remarks o
the impact of maintaing and accessing the history path on CPU
running time. As discussed before, path trajectory is iradt low
compared to problem size. Knowing that the size of many neigh
borhood structures is at least linear, and many often pofyalo in

problem size, the cost of maintaining the path history staje-
tively marginal. In our implementation using standard Jéwvary,
without any specific code optimization, the average CPl&tim
perform one evaluation for problem siz@0 on a standard 2.0 Ghz
Intel processor i9.0005 millisecond.

Table 2: NTS maximum path length (hnax and hyax)

Fl FD
n hmax hmax hmax hmax
40 267 | 166.3 7 3.8
50 || 359 | 219.2 8 3.9
100 || 868 | 554.5 8 4.3

5. EXPERIMENTAL ANALYSIS: LRP
5.1 VNS baseline algorithm

For our comparative study, we take as a baseline algoritharia v
ant of the generalized VNS algorithm describedin [7]. TheS/N
algorithm was carefully designed with LRP specific neigthiood
combinations. More precisely, the baseline VNS has twodstah
components: random shaking and local search both usirerefiff
neighborhood structures. For local search, a standard \éNBed
with the following neighborhoods\; U N2, N3 U Ny, N5 U N,
N7UNs, NoUN70, andNi;. For shaking, both neighborhood§ ,

N> andN;; are combined to produce a random neighbor each time
the VND local search fails producing an improving local aptim.
The maximum strength of the shaking is fixed to be a function of
the problem size, namely,+ m. The standard VNS shaking strat-
egy is used, i.e., if a new improving local optimum is fountils

ing is rested to neighborhoad otherwise the next neighborhood
is considered and so on until reaching the last neighborh®bis
specific shaking and local search is motivatedn [7] by iftitsitio
manage the two decision levels (Location and Routing) ieduzy

Generally speaking, VNS is particularly interesting for tNTS
study since it uses a shaking phase combined with an efficaeint
able neighborhood descent. Since NTS is not equipped with an
specific shaking (perturbation) procedure, the goal istdystvhether
the backtracking component of NTS is able to efficiently pedhe
local optima computed in the descent phase and to effegtiivel
better ones without any specific shaking (perturbation)ovifg
thatnon problem specific backtracking strategies can lead to com-
petitive algorithms would help the design of generic seaigo-
rithms that can be applied without any problem specific tgnin

the following, starting from a randomly generated initialugion,
different solution quality / computing cost trade-offs atgtained
depending on NTS backtracking strategy, step function andga
tance criterion.

5.2 Solution Quality vs Computing Cost

We first examine solution quality obtained with NTS using Fidla
BD local step strategies compared to VNS. We select ordiat d
analysis to compare the considered algorithms. For eachitim

a and each experimeiit an ordinal value’, representing the rank
of the algorithm is given. To compare the relative perforogaaf
competing algorithms, we aggregate the obtained ordersdon
algorithm into a unique order. We use a simple and intuitige a
gregation method, known as tiB®rda countvoting method. An
algorithm having rank?’, in an experiment is given’ points, and



the total score of an algorithm is simply the sum of its ranksro

all experiments. The algorithms are then compared to theme
lative scores where the algorithm having #maallest scordeing
considered as the best performing algorithm. For eachrinstahe
ranks were computed using as a metric the solution gap torlowe
bound averaged oveo trials (The lower bounds were taken from
the work in [2].). In other words, for each instance, the &l
having thei" smaller average gap is rankeand thus it is scored
with ¢ points. The final score of each algorithm is them the sum of
its scores over all instances. For LRP, we considarstance sets
according to problem size. Each set conta@iisnstances. We will
consider7 algorithms, i.e.6 NTS variants and VNS. Thus, for a
given instance set, the best (resp. worst) possible scofe(iesp.
630), while the best (resp. worst) possilitgtal score is450 (resp.
3150). Our first results are summarized in Table 3. We can ob-
serve that for lower instances sizes, FD step strategigedatms
VNS with all backtrack strategies. However, for higher amstes
sizes only BU performs better than VNS where as BH is the worst
performing strategy overall. We attribute this to the déifécation
introduced by the BU strategy. Actually, the solution qtyatie-
sults reported in Tab[g 3 have a price in terms of computirsg ae
discussed below.

Table 3: Solution quality with Borda count voting method for
LRP using NTS variants and VNS. Notation NTS{X,Y, Z)
was defined in Sectiof 2. Acceptance criterion AA is fixed
for all variants. X € {BD, FD} refers to step function.
7 € {BH, BR, BU} is the backtracking strategy. In bold, we
highlight the scores in favor of NTS over VNS.

NTS— (+, A4, %)
BH BR BU
M 5T F> B [ FO | BD [ FD | VNS
(10,30) || 508 | 438 | 510 | 348 [ 230 99 | 286
(10,20) || 607 | 471 | 490 | 370 | 218 | 115 | 248
(5,30) || 488 | 359 || 401 | 266 | 141 | 91 | 399
(5,20) || 452 | 301 || 349 | 190 | 131 | 93 | 403
(5,10) | 368 | 250 | 322 | 225 || 203 | 115 || 310
Total || 2513 | 1819 || 2031 [ 1399 || 923 [ 513 || 1646

In Table[4, we report the joint solution quality, and compgttost
(until termination) for NTS compared to VNS. We denatg the

ratio obtained when dividing the total number of evaluadiqer-
formed by NTS by the total number of evaluations performed by
VNS. We denoten-. a Borda like score computed as following.
For each instance, we compare the average gap to lower bdund o

Table 4: Solution quality and computing cost of NTS with FD
and AA strategies compared to VNS.

NTS— (FD, AA, %)
BH BR BU

(n,m) — — —
n> Teval n> Teval || > | Teval

(10,30) || =60 [ 0.50 || =37 [ 0.84 || 73 | 5.00
(10,20) || =741 0.45 || =52 | 0.77 || 56 | 3.75
(5,30) 20 | 0.45 44 1 0.78 || 70 | 4.19
(5,20) 40 | 0.76 53 | 1.32 || 59 | 6.18
(5,10) 19 | 0.82 24 | 1.40 || 47 | 4.67
Total —55 | 0.60 32 | 1.02 || 305 | 4.76

NTS and VNS. If NTS is better we scoreitl, in case of equality
we score i), and otherwise-1. n~ is then obtained by summing
up the computed scores. Havifig instances per problem size, the
best (resp. worst) score 90 (resp.—90). A positive (resp. neg-
ative, zero) score means that NTS performs better on mose.(re
less, equally) number of instances. This gives a general ahe
the number of instances for which NTS performs better thaisVN
(Taking n~ /90 gives the ratio of instances where NTS performs
better or worst depending on. sign). For simplicity we only re-
port results with FD step function. Notice that Table 4 giees
idea not only about the performance of NTS compared to VNS,
but also the relative performance of the different NTS styis.
One can clearly see the different trade-offs given by NT&®ims

of solution quality (BH< BR ~ VNS < BU) and computing cost
(BU < VNS ~ BR < BH). E.g., for lower instance sizes, BH beats
VNS in both two measures. BR gives better solution qualitshwi
comparable running cost. At higher instance sizes, only 8&bie

to perform better than VNS in solution quality but at the priaf
being around! times slower.

5.3 Speeding up the search

In this section, we give the results we have obtained by ngni
NTS with acceptance criterion AT. Recall that with the ATaségy

a neighborhood branch is explored depending on the bedtyloca
observed fitnesg?®® and with a probability which is inversely pro-
portional to the trajectory path length. Results with FDpdienc-

tion are summarized in Tab[é 5. One can clearly see that the AT
strategy has the effect of speeding-up the search (companed
sults with AA given in Tablg€l). This is rather expected sinegh-
borhood branches producing solutions with poor quality parad

to other neighborhoods are likely to be pruned as we get déepe
the search path. While strategy AT allows us to speed up trelse

it has two 'side-effects’. Firstly, compared to AA, AT prazks
less high solution quality for all backtracking strategi€gcondly
and for the largest instances, AT is no more competitiveregahe
finely tuned VNS even using the most effective BU backtragkin
strategy.

Table 5: Solution quality and computing cost of NTS with FD
and AT compared to VNS.

NTS— (FD, AT, )
BH BR BU

(n,m) S— S S
n> Teval n> Teval n> Teval

(10, 30) —80 | 0.22 || —66 | 0.36 -9 | 1.03
(10, 20) —88 [ 0.23 || —82]0.35 | —38 | 0.88
(5,30) —22 10.22 13 | 0.35 66 | 0.92
(5,20) 16 0.40 42 | 0.63 55 | 1.54
(5,10) 0 0.53 14 | 0.81 32 | 1.53
Total —174 | 0.32 || =79 | 0.50 || 106 | 1.18

5.4 Time to best with step function Fl

In accordance with the results obtained for SMTWTP, we found
that NTS combined with FI step function is able to give verpgo
results for LRP. In the following, we report only our findingken
running NTS for a maximum number of evaluations, nam]a(lﬁ,
evaluations. For all competing algorithms, VNS included,study

the number of evaluations it takes for an algorithm to findtibst
fitness solution. Using acceptance conditions AA and AT, & r
port the values of~. andr,, which is now the ratio of the number
of fithess evaluations it takes for NTS and VNS to find the best




Table 6: Solution quality and computing cost of NTS with FI

and AA compared to VNS.
NTS— (FI,AA,x)
BH BR BU
(n’m) / ! !
n> Teval n> Teval n> Teval I

(10,30) | =25 [ 0.67 || =31 0.69 || —24 | 0.70
(10, 20) 44 | 1.87 || 58 |2.14 || 67 | 2.48
(5,30) 70 {026 || 70 |0.26 | 70 |0.26
(5,20) 59 1040 59 |044 | 59 |0.42
(5,10) 46 | 0.18 | 48 |0.24 || 50 |0.27
Total || 194 [0.68 [ 204 [0.75 || 222 [ 0.83

Table 7: Solution quality and computing cost of NTS with FI

and AT compared to VNS.

NTS — (FI, AT, %)
BH BR BU

(n,m) ; ; e
N> | Teval || M> | Teval || M> | Teval

(10,30) || 11 [ 149 35 | 2.64 || —27 | 0.69
(10, 20) 8 1084 33 | 145 69 | 247
(5,30) 70 1 0.39 || 70 | 0.48 70 | 0.26
(5,20) 59 | 0.34 || 59 | 0.40 59 |0.44
(5,10) 42 | 0.16 || 48 | 0.19 50 | 0.24
Total 190 | 0.64 || 245 | 1.03 || 221 | 0.82

solution. Our results are summarized in Taljles 6 [@nd 7. In ac-
cordance with the results obtained with FD, different traffe are
obtained. For instance, the computing cost of BH is bettn R
which is better than BU. For all instance sets, but for $i& 30),

BU beats all other strategies in terms of solution qualityctuA
ally, for instance sef10, 30) strategy BU needs more time to find
high quality solutions, i.e., BU is an exploration orientcategy
which needs more time to converge but produces very high solu
tion quality. Moreover, we can state that overall instarsteNsTS
with Fl strategy performs better than VNS. In particulackieack-

ing strategies BH and BR provides very competitive resuttth b

in computing cost and solution quality especially when ciored
with the adaptive acceptance criterion AT.

6. CONCLUSION

In this paper, by operating at the level of the tree induced bgt

of several different neighborhood structures, we intredua back-
tracking traversal algorithm called NTS and studied somésof
variants. Compared to standard VND where neighborhoodrorde
ing can be critical, NTS is able to find its way by simply pipididy
ferent neighborhoods dynamically at runtime. Compared K&V
where shaking is crucial, backtracking in NTS is able to psca
local optima searching for promising neighborhood pathewH
ever, since exploring the neighborhood tree in an exhaustian-
ner could be intractable, NTS components (step functioighne
borhood selection, branching, accepting, backtrackirggto be
carefully combined in order to obtain a good compromise betw
solution quality and computing cost. In particular, the NeBi-
ants described in this paper are based on the following ttuitive
claims: (i) the more we are deep in the neighborhood treentire
itis likely to find better local optima (intensification)the less we
are deep in the neighborhood tree, the more it is likely tdaep
new search regions and thus to go forward through new high qua

ity solutions (diversification). Generally speaking, wainl that
new adaptive backtracking strategies combined with neyptada
acceptance criteria would be the key ingredients providiegef-
ficient balance between intensification and diversificatioNTS.
We believe that this is a challenging and interesting opesitijon
which deserves further investigations.
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