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ABSTRACT
We consider the neighborhood tree induced by alternating the use
of different neighborhood structures within a local searchdescent.
We investigate the issue of designing a search strategy operating
at the neighborhood tree level by exploring different pathsof the
tree in a heuristic way. We show that allowing the search to ’back-
track’ to a previously visited solution and resuming the iterative
variable neighborhood descent by ’pruning’ the already explored
neighborhood branches leads to the design of effective and effi-
cient search heuristics. We describe this idea by discussing its ba-
sic design components within a generic algorithmic scheme and
we propose some simple and intuitive strategies to guide thesearch
when traversing the neighborhood tree. We conduct a thorough ex-
perimental analysis of this approach by considering two different
problem domains, namely, the Total Weighted Tardiness Problem
(SMTWTP), and the more sophisticated Location Routing Problem
(LRP). We show that independently of the considered domain,the
approach is highly competitive. In particular, we show thatusing
different branching and backtracking strategies when exploring the
neighborhood tree allows us to achieve different trade-offs in terms
of solution quality and computing cost.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence ]: Problem Solving and Search—Heuris-
tic methods

General Terms
Algorithms,

Keywords
Metaheuristics, neighborhood combination, VND, VNS.

1. INTRODUCTION
Context and Motivation: Metaheuristics are now considered as
a well established algorithmic framework providing flexible and
powerful tools to solve many hard optimization problems. Many
efforts are being made by the research community in order to de-
velop new search methods to help the design of both effectiveand
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efficient algorithms. In this paper, we build on previous techniques
by developing an intuitive idea based on exploiting different neigh-
borhoods in a forward-backward manner to explore what we term
the neighborhood tree. Generally speaking, we consider the possi-
bility of making backward moves to a solution previously explored
by some neighborhoods, and continue the search from there using
other different neighborhoods searching for a better neighborhood
combination. In the following, we first review some previousre-
lated works, then after, we give our contribution and describe our
findings in more details.

Background and related works: Among other search techniques,
variable neighborhood search (VNS) and its several variants [14]
are based on the systemic change of neighborhood within the search.
For instance, Variable Neighborhood Descent (VND) exploits the
idea of alternating between several neighborhoods within an itera-
tive local improvement descent to escape local optima. Morepre-
cisely, starting with a first neighborhood structure, VND performs
local search until no further improvements are possible. From this
local optimum, the local search is continued with the next neigh-
borhood. If an improving solution is found, then the local search
continues with the first neighborhood, otherwise the next available
neighborhood is explored, and so on until no further improvements
can be obtained. It is well known that the performance of VND
can highly depend on the order the neighborhoods are alternated.
In standard variants of VND, it is often admitted that ordering
neighborhoods in an increasing cost/size is a reasonable strategy.
However, this standard strategy is not always applicable, for in-
stance, when the best ordering for a given problem can vary from
one instance to another one. Actually, the issue of how to com-
bine/exploit/search different neighborhoods is not new and one can
find many different studies on the subject. For instance, in [22],
a fast relaxation of neighborhoods is evaluated in order to select
the most accurate ones. In [16], a self-adaptive strategy isused
to rank neighborhoods and to dynamically choose the best suited
ordering. A number of specific multi-neighborhood combination
functions can also be found. For instance, many studies consider to
take the union of some basic neighborhoods. The so-called neigh-
borhood composition and the token-ring search are also other well
known neighborhood combination functions, see e.g., [18, 10, 12,
17]. More generally, hyperheuristics [4] can be consideredas a
high level approach operating in the neighborhood space andaim-
ing at producing effective hyper-search strategies. For instance,
in [6, 21], simple hyperheuristic selection strategies areconsidered
where low level heuristics (neighborhoods) are chosen either ran-
domly, or greedily, or based on a score function. Several other
sophisticated hyper-strategies, mainly inspired by the way meta-
heuristics operate, can be found in the literature, see e.g., [5].
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Technique overview and results:The study conducted in this pa-
per is based on the simple observation that defining how neigh-
borhoods are alternated within a local search descent is nothing
other than defining a specific strategy to traverse a neighborhood
tree, where the root of the tree represents the initial candidate solu-
tion and intermediate nodes represent solutions obtained by apply-
ing one of the possible neighborhoods. In other words, we view
the trajectory of a variable neighborhood search as a high level
neighborhood path, where path nodes are solutions and everypath
hop represents the exploration of one solution using one neighbor-
hood among those available. Following this observation, weterma
neighborhood tree search (NTS)a strategy which is able to traverse
the neighborhood tree efficiently searching for promising paths. It
should be clear that a systematic traversal (exploration ofall neigh-
borhood branches) could not be efficient especially when thenum-
ber of neighborhoods is high.

In this paper, we focus on the possibility of backtracking topre-
viously visited solutions while branching and pruning treenodes
all along a search path. We show that this idea with basic itera-
tive improvement descents leads to efficient search strategies both
in terms of solution quality and computing cost. More specifically,
we consider a simple randomized neighborhood selection strategy,
where the choice of which neighborhood to select at runtime is
made uniformly at random among those not yet explored. When
effectively branching a neighborhood, we consider both determin-
istic and randomized adaptive strategies, basically relying on the
neighborhood path traversed by the search in previous rounds. As
for backtracking, we investigate intuitive strategies based on ran-
dom and tournament selection techniques. We would like to em-
phasize that the proposed approach and its design components are
genericandnot specific to a fixed problemnor to any particular
neighborhood class.

We study the properties of the proposed approach by consider-
ing several instances coming from two different and well-studied
problem domains: the Single Machine Total Weighted Tardiness
Problem (SMTWTP) in the family of scheduling problems, and
Location Routing Problem (LRP). Both problems are NP-Hard.
Many previous studies have been successfully applied to solve the
SMTWTP using hybrid variable neighborhood like searches. LRP
is a more sophisticated problem which involves two simultaneous
decisions: which depots to open and what routes to plan. Common
to these two problems, many natural neighborhood structures can
be considered making them two excellent case studies to analyze
how our neighborhood tree based approach performs under differ-
ent scenarios. Through extensive experiments, we show thatour ap-
proach leads to substantial improvements in the solving of the two
considered problems. More specifically, for SMTWTP we consider
three neighborhood structures and we show that NTS performsbet-
ter than standard VND executed with any neighborhood ordering,
i.e., NTS is able to dynamically find its way along the neighbor-
hood tree without any specific tuning. For LRP, we consider eleven
neighborhoods and a finely tuned VNS algorithm. Ultimately,we
show that NTS is able to beat VNS without requiring any specific
perturbation/shaking phase, but the backtracking it-slef. More im-
portantly, VNS is used as a base-line algorithm allowing us to show
how NTS performs when instantiating its components following
different strategies. This allows us to give insights into the behav-
ior of NTS and to better understand its critical design issues. In
particular, we show that NTS can lead to different (and incompa-
rable) trade-offs in terms of solution quality and running time. In
a general point of view, our study reveals that NTS is a promising

approach offering many interesting search abilities.
Outline: In Section 2, we give an algorithmic scheme for NTS and
describe intuitive strategies to be analyzed later. In Section 3, we
describe the considered problems and neighborhoods. In Section 4
(resp. 5), we analyze NTS and give our experimental results.

2. NEIGHBORHOOD TREE SEARCH (NTS)
2.1 Preliminaries
Let us assume that we are given an optimization problem and a
set of corresponding neighborhoods. We aim at designing an algo-
rithm that exploits those neighborhoods as efficiently as possible.
For simplicity, assume in addition that we have astep functionthat
given a candidate solutions returns a solutions′ computed w.r.t.
one neighborhood. Having an initial solutions0, we then term the
neighborhood treeT the (possibly infinite) tree structure obtained
by the following process. The root node ofT is the initial solu-
tion s0. The first level ofT , are the candidate solutions obtained
from s0 by applying the previously definedstep functionw.r.t. ev-
ery available neighborhood. Thejth level is then constructed re-
cursively from the internal nodes in the(j − 1)th level and so on.
Notice that this is a rather informal definition which is onlygiven
for the sake of illustration and to clarify our preliminary remarks.

It is clear that designing a local search algorithm exploiting the
available neighborhoods can be viewed as designing a specific strat-
egy to explore the considered neighborhood tree. This is what we
term a neighborhood tree search (NTS) algorithm, i.e., a traver-
sal strategy of the neighborhood tree searching for paths leading
to promising regions. Designing such a traversal search algorithm
can be difficult for many reasons. Firstly, for many optimization
problems there may exist a relatively high number of naturalneigh-
borhood structures, say a constantk > 2. Hence, a trivial ex-
haustive traversal of all tree nodes at heightg(n), a function of the
problem sizen, would require at least order ofkg(n) steps, which
can be intractable. Secondly, the goal is not to systematically tra-
verse as many as possible tree nodes, but to find a path leadingto
high quality solutions while paying the minimum computing cost.
Fortunately, we know that there exist heuristic traversal techniques
leading to relatively efficient and effective search algorithms. For
instance, this is the case for VND like search algorithms andmany
others that could be viewed as specific traversal strategies. In this
paper, we focus on designing dynamic traversal heuristics where
at each step, one have to decide what neighborhood to consider
when going deeper in the neighborhood tree while backtracking to
a previously visited solution whenever the search stacks into non
promising tree regions.

2.2 A basic randomized NTS
Algorithm 1 gives a relatively detailed description of our first NTS
example. As input, we assume that we are given a set ofk neigh-
borhood structures{N1, · · · ,Nk} relative to a given problem and
a fitness/evaluation functionf to be minimized. Algorithm 1 main-
tains a trajectory path (variablePath) containing an ordered se-
quence of visited solutions with their neighborhood usage.This
is encoded by variablehs = (h1

s, · · · , h
k
s) wherehi

s is 1 when-
ever neighborhoodNi has been used to explore solutions and0
otherwise. The algorithm then proceeds iteratively by consider-
ing the last solutions (function HEAD) appearing in the trajectory
path. For that solution, a neighborhoodNi is chosen uniformly at
random among those that have not been used to explores. A STEP

function is then applied to compute a new solutions′ and neighbor-
hood usage variablehi

s is updated. The STEP function could be for



instance any local search heuristic based on neighborhood struc-
tureNi, e.g., a hill-climbing. Having explored a new neighbor-
hood, we shall decide whether to continue the search with solution
s′ or to backtrack. In Algorithm 1, a simple acceptance criterion
is used. More precisely, if the new explored solutions′ is found to
improves then, we make a move forward by pushings′ at the end
the trajectory path. Otherwise, we check whether there exists some
neighborhoods which havenot been used to explores. If such a
situation exists, we simply continue the inner-loop, that is we try to
find an improving solution by selecting uniformly at random anon
explored neighborhood w.r.t. the current solutions. Otherwise, a
backtrack move is activated (’else’ condition). Notice that in this
case, current solutions is not necessarily a local optimum w.r.t. all
neighborhoods. In fact, this depends on the STEP function and the
depth ofs in the search trajectory. Backtracking in Algorithm 1 is
done using a simple uniform randomized selection process. More
precisely, among path solutions which are not yet explored by all
neighborhoods, one is chosen uniformly at random, say solution sj
at positionj. The trajectory path is then updated by deleting those
solutions laying betweensj ands. The search then continues from
sj in the same way until the trajectory path becomes empty.

Algorithm 1 : A simple randomized variant of NTS

Input : A set ofk neighborhood structures{N1, · · · ,Nk}
s← initial solution ;
(h1

s, · · · , h
k
s )← (0, · · · , 0) ; Path←

{

(s, (h1
s, · · · , h

k
s ))

}

;
repeat

/
∗∗

Current trajectory solution
∗∗
/

(s, hs)← HEAD(Path) ;
/
∗∗

Neighborhood Selection
∗∗
/

Is ← {ℓ | h
ℓ
s = 0} ;

i← RANDOM(Is) ;
/
∗∗

Neighborhood Exploration
∗∗
/

s′ ← STEP(s,Ni);
hi
s ← 1 ;
/
∗∗

Move or Backtrack
∗∗
/

if f(s) < f(s′) then
hs′ ← (0, · · · , 0) ;
Path← PUSH

(

(s′, hs′), Path
)

;
else if|Is|+ 1 = k then

Path← RANDOM BACKTRACK(Path);

until Path = ∅ ;

2.3 NTS generic scheme and variants
Algorithm 1 given in the previous section is clearly a specific im-
plementation of the more generic scheme given in Algorithm 2.
Generally speaking, Algorithm 2 is in fact an attempt to givea high
level procedural description of a NTS like algorithm. In particular,
we identify thehistoryvariable which is typically used to record in-
formation about search trajectory and neighborhood performance.
We also have the neighborhood selection stage which role is to help
the search going towards promising neighborhood branches.The
STEP and ACCEPT function, play the role of branching/pruning.
These two functions should be thought in the same way classical
local search algorithms operate, but keeping in mind that possibly
several neighborhoods can be used. The third main stage of Algo-
rithm 2 is backtracking. Within NTS, backtracking serves mainly
to adapt the traversal when it is stack into paths that do not lead
to improvements. Backtracking should be thought with respect to
search history. In this paper, we study the properties of NTSby
considering the following particular variants.

Algorithm 2 : general purpose design scheme for NTS

Input : A set ofk neighborhood structures{N1, · · · ,Nk}.
s← initial solution;history ← ∅;
repeat

/∗∗ Neighborhood Selection Strategy ∗∗/

i← SELECT(s, history) ;
/
∗∗

Branching/Pruning Strategy
∗∗
/

s′ ← STEP(s,Ni, history);
if ACCEPT(s, s′, history) then

s← s′ ;
else

/
∗∗

Backtracking Strategy
∗∗
/

s← BACKTRACK(history) ;

until STOPPINGCONDITION ;

Trajectory history : In all our variants, we record the path tra-
versed by the search and containing the branching solutionsand
their relative neighborhood usage (exactly in the same way than in
Algorithm 1). We additionally record the (local) best fitness fbest

s

relative to each solutions and observed by the search when the
local step function STEP(s,Ni) is applied at positions.

Neighborhood Selection Strategy: We simply consider the ran-
domized process depicted in Algorithm 1, i.e., one neighborhood
among those not previously used at current path position is selected
uniformly at random.

Step function STEP(s,Ni) : we study four classical alternatives
denoted BI (best improvement), FI (first impr.), BD (best descent)
and FD (first descent). BI corresponds to the case where solution s′

is the neighbor ofs (w.r.tNi) with the best fitness. For strategy FI,
s′ is the first neighbor ofs which is found to have a better fitness
thans, when processings neighbors in a random order. BD (resp.
FD) denotes a local search descent where BI (resp. FI) strategy is
applied until no improving neighbors can be found.

Acceptance/Branching criterion: We study three strategies de-
noted AA, AI, and AT. AA is exactly the same than in Algorithm 1,
i.e., any solutions′ that improves the fitness of current solutions
is accepted :f(s′) < f(s). AI denotes the strategy where solution
s′ is accepted if its fitnesss is better thanfbest

s , i.e.,f(s′) < fbest
s .

AT is a combination of AA and AI. More specifically, a solutions′

is always accepted iff(s′) < fbest
s . Otherwise, iff(s′) > fbest

s ,
but f(s′) < f(s) thens′ is accepted with a probability parameter
pa. Otherwises′ is not accepted. In our study, we adopt an adap-
tive strategy wherepa = 1/d(s) with d(s) the position of solution
s in the trajectory path. In other words, a neighborhood, leading
to a branch improvings, but not improving the previous best local
fitness obtained using a different neighborhood, is accepted with a
probability which is proportional to the branch height in the neigh-
borhood tree, i.e., the more we are deep in the neighborhood tree,
the more it is unlikely to explore non improving branches.

Backtracking strategy: We consider three backtracking strategies
denoted BR, BH, BU. BR is the strategy depicted in Algorithm 1,
i.e., among path positions which are not yet explored by all neigh-
borhoods, one is chosen uniformly at random. BH and BR are
more sophisticated tournament-based selection strategies. More
precisely, for both BH and BR, we select two distinct path posi-
tionssj andsj′ uniformly at random among those not yet explored
by all neighborhoods. With BH, we backtrack to the solution which



is less deep in the trajectory path, i.e., ifsj′ appears aftersj in the
search path, then we backtrack tosj . With BU, we backtrack to the
solution which was explored less often by available neighborhoods.

Stopping Condition: We consider two different stopping condi-
tions: we end the search when (i) the path trajectory is empty, or
(ii) a maximum number of fitness evaluations is reached.

Terminology and notations: For clarity, we shall use the follow-
ing notationNTS-(X,Y,Z) whereX ∈ {FI,BI,FD,BD} is
the step function,Y ∈ {AA,AI,AT} the branching/acceptance
strategy, andZ ∈ {BR,BH,BU} is the backtracking strategy.

3. PROBLEM DOMAINS
3.1 Single machine scheduling (SMTWTP)
Problem definition and motivation: In the Single Machine To-
tal Weighted Tardiness Problem, we are given n jobs. Each job
has to be processed without any interruption on a single machine
that can only process one job at a time. Each job has a process-
ing timepj , a due datedj and an associated weightwj (reflecting
the importance of the job). The tardiness of a jobj is defined as
Tj = max{0, Cj − dj}, whereCj is the completion time of job
j in the current sequence of jobs. The goal is then to find a job
sequence minimizing the sum of the so-called weighted tardiness:
∑n

i=1 wi ·Ti. SMTWTP is NP-hard. Several different metaheuris-
tics have been proved to efficiently solve SMTWTP benchmark
instances, e.g., [11, 3, 13] to cite a few. SMTWTP is in fact a
well understood problem which is often used to study the proper-
ties of search heuristic methods. This paper is not an exception.
Although we are able to show that very simple NTS techniques
outperform previous more sophisticated and finely tuned heuristics
for SMTWTP, we shall rather focus on studying and understanding
the behavior of our NTS heuristics.
Neighborhoods: Permutations are the standard representation used
for SMTWTP. In this paper, we consider three standard neighbor-
hoods. Exchange (E): all permutations that can be obtained by
swapping adjacent jobs in the permutation.Swap (S): all permu-
tations that can be obtained by swapping adjacent jobs at theith

andjth position.Insert (I): all permutations that can be obtained by
removing a job at positioni and inserting it at positionj.
Instances: We consider the well known100 Job instance set, and at
a less extent, the50 and40 Job instances from the OR-Library [1].
Each instance set contains125 instances.

3.2 Location Routing problem (LRP)
Problem definition and motivation: LRP [20, 19] deals with two
NP-hard problems, namely, facility location problem (FLP)and ve-
hicle routing problem (VRP). Roughly speaking, in LRP one has
to simultaneously decide which depots to open and what routes to
establish to satisfy client demands. Besides being a challenging
problem for local search heuristics, LRP is of special interest since
many neighborhoods can be naturally considered for both theloca-
tion and the routing level (which are known to be inter-dependent).
Many specific search strategies have been studied for LRP, e.g., [8,
7, 9] to cite a few. A common aspect in these studies is to find
a good balance for simultaneously searching the routing level and
the location level. In particular, there exist a rich literature on sev-
eral different neighborhoods dealing with the two LRP levels. This
makes the choice and the combination of neighborhoods critical
and thus LRP is an excellent candidate problem to study our ap-
proach. In this paper, we consider the uncapacitated vehicles and
capacitated LRP [2]. More specifically, we consider a set ofn cus-
tomers and a set ofm potential depots. Each depot has a limited

capacity and a fixed opening cost. Each depot is associated with
a single uncapacitated vehicle. Each customer has a non-negative
demand which is known in advance and should be satisfied. For
any pair of clients (or client-depot), there is an associated traveling
cost. LRP then consists in minimizing the total cumulative cost of
both depot opening (location) and client delivery (Routing).
Neighborhoods: We consider a natural representation of a candi-
date solution (not necessarily feasible) for LRP, namely, alist of
opened and non opened depots. For each depot, a permutation rep-
resents the assigned clients and their order in the route. Weconsider
eleven neighborhoods sketched in the following.N1 (resp.N2):
All solutions obtained by performing a clientinsertionmove in the
permutation(s) encoding one single depot route (resp. twodifferent
depot routes).N3 (resp.N4): All solutions obtained by performing
a swap move on the permutation(s) encoding one depot route (resp.
two depot routes).N5 (resp.N6): All solutions obtained by per-
forming a classical2-opt move on the permutation(s) encoding one
depot route (resp. two depot routes).N7 (resp.N8): All solutions
obtained by performing an extended insertion move on the permu-
tation(s) encoding every route (resp. twodifferent routes), that is
an insertion of any sub-route of any possible length, i.e., route bone
insertion.N9 (resp.N10): All solutions obtained by performing a
route bone insertion move as for neighborhoodsN7 (resp.N8) but
while inserting clients sub-route in the reverse order.N11: All can-
didate solutions obtained by closing a depot and affecting its whole
route to a closed depot (close one depot and open a new one).
Since we are dealing with neighborhoods producing possiblyun-
feasible solutions, we use an evaluation functionf defined as fol-
lowing: f(s) = c(s)+ p(s) wherec(s) is the cost ofs as stated by
the objective function of LRP andp(s) is a penality on the viola-
tion of depot capacity constraints. It is calculated by the equation:
p(x) =

∑

j
α ·max{0, Qj(s)− bj} whereα is a weight factor pa-

rameter,Qj(s) is the total demand of customers serviced by depot
j andbj is the capacity associated with depotj, i.e., the more depot
constraints are violated, the more is the penality and the more the
search is forced to move toward feasible regions.
Instances: We consider a set of450 instances taken from the lit-
erature [2]. These instances can be grouped into finely defined
classes according LRP specific parameters. In our experimental
results, we simply group them into5 sets according to the number
of clients (n) and the number of depots (m): (n,m) ∈ {(5, 10),
(5, 20), (5, 30), (10, 20), (10, 30)}. Each set is containing equally
the same number of instances, i.e.,90.

4. EXPERIMENTAL ANALYSIS: SMTWTP

4.1 Results with standard VND
For SMTWTP, we consider to study the behavior of our approach
compared to standard VND techniques. In Table 1, we report a
summary of results we have obtained for SMTWTP when running
a standard VND using the6 possible ordering of neighborhoods
and the4 possible strategies for making a local step move. In ac-
cordance with results reported in previous studies, e.g., [11], VND
is well suited for solving SMTWTP. In fact, the average percent-
age deviation from optimal is relatively low and around90% of
instances are solved to optimality by at least one trial over30 per-
formed in our experiments. However, one can notice that some
instances remain hard to solve by standard VND as reported inpre-
vious works. In addition, no fixed ordering nor local step strategy
outperforms all the others for all three measures reported in Table 1.

4.2 Results overview with NTS



Table 1: Results for standard VNDs with a random initial solution. Results are for the100 job instances with30 trials per instance.
First column gives neighborhood ordering, i.e., Exchange (E), Insert (I), Swap (S). FI, BI, FD and BD columns are for the local step
functions given in Section 2.Nopt is the number of optimal solutions found by at least one trial. ∆ is the average percentage deviation
from optimal and Eval is the average number of evaluations until search termination. Bold style is for best result (for each column).

Order
FI BI FD BD

Nopt Eval ∆ Nopt Eval ∆ Nopt Eval ∆ Nopt Eval ∆

EIS 102 140872.4 0.010 103 471156.4 0.015 113 121787.3 0.015 101 667976.4 0.019
ESI 106 121372.3 0.016 91 485211.7 0.018 102 106214.4 0.015 92 946366.1 0.019
IES 104 120262.4 0.017 96 1024409.3 0.022 95 101053.6 0.017 93 1006583.9 0.021
ISE 101 135572.1 0.013 96 865525.5 0.022 112 115144.1 0.014 103 871254.1 0.018
SEI 98 121220.9 0.017 93 1026960.0 0.021 102 100903.9 0.016 92 1007357.2 0.025
SIE 106 138007.4 0.015 101 864900.3 0.023 106 114412.0 0.014 105 871631.1 0.021
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Figure 1: Results for NTS-(*,AA,BR) Vs standard VND for 100
job instances (labels refer to search strategies). Top: cumula-
tive number of instances solved to optimality (Nopt) by at least
one trial over 30 as a function of number of fitness evaluations.
Bottom-Left: Evolution, with number of evaluations, of the av-
erage percentage deviation from optimal (∆) averaged over30
trials. Bottom-Right: Evolution, with number of evaluatio ns,
of the success rate averaged over the125 instances.

For SMTWTP, the reported results are obtained with the simple
variant of NTS given in Algorithm 1, with random initial solution,
acceptance strategy AA, and backtracking strategy BR, i.e., NTS-
(∗, AA,BR). As stopping condition, the search terminates when
either a maximum number of evaluations, namely107, is reached,
or the trajectory path becomes empty. Our results for NTS aresum-
marized in Fig. 1. Firstly, we remark that for both FD and BD local
step strategies, the search terminates before the maximum number
of evaluations is reached (Fig. 1 Top-left). At the opposite, for both
FI and BI the search continues without the backtracking being able
to force termination. This is mainly due to the relatively high tra-
jectory path length as we will discuss later. Furthermore, as could
be expected, first improvement strategies are less costly compared
to best improvement strategies. We also found that FI outperforms
all other step strategies both in computing cost and number of in-
stances solved to optimality. In fact, it is the only strategy which is

able to find an optimal solution (over the30 performed trials) for
all the125 instances.
Moreover, NTS using step functions FI and FD can be proved to
provide substantial improvements in all aspects over all the stan-
dard VND variants reported in Table 1. For the sake of clarity, we
only report our finding using one VND ordering, namely ESI. No-
tice however that similar conclusions can be drawn for the other
possible orderings. To be fair in our comparative study, we further
consider restarting the VND algorithm from a randomly generated
solution in the case VND terminates before the maximum number
of evaluations is reached. As shown in Fig.1 (Top-right and Bot-
tom), NTS outperforms VND both in terms of: cumulative number
of instances solved to optimality (Nopt), average percentage devi-
ation from optimal (∆), and average success rate that is the per-
centage of trials that do find the optimal solution, i.e., this can be
interpreted as the probability distribution of finding the optimal so-
lutions for all instances.

4.3 Run Time Distribution Analysis
In previous section, we showed that NTS performs better thanVND
in general, i.e., results are mainly averaged over instances. In this
section, we go to a throughout comparative study. More specifi-
cally, we analyze the run-time behavior of NTS compared to stan-
dard VND by using run-time distributions (RTD) [15]. RTDs give
the cumulative empirically observed probability of findingan op-
timal solution (or a solution within a specific quality bound) for
a given instance as a function of the CPU time. In our study, we
use a slightly different definition, where probability is considered
as a function of number of evaluations. This is mainly to stayinde-
pendent of any specific implementation or operating system issues
(NTS running time issues are however studied in next section). We
examined the behavior of NTS with different step functions and
for several instances, mainly, those who are reputed to be relatively
hard. In Fig. 2 we present our results for only four instances, but
similar conclusions can be made for the others. The RTDs clearly
shows that NTS performs better than VND for three out of the four
instances, namely,19, 38, and41, even if optimality is not required.
For instance86, the difference is less pronounced, with a small ad-
vantage in favor of NTS for fitness deviation of1% from optimal.

4.4 NTS history analysis
Here, we give some basic observations about trajectory pathused
by NTS. In Table 2, we report the maximum lengthhmax of the
trajectory path ever observed for any instance and any trial, and
hmax the maximum length (30 trials per one instance) averaged
over125 instances of each problem size set.



 0

 0.2

 0.4

 0.6

 0.8

 1

 1000  10000  100000  1e+06  1e+07

em
pi

ric
al

 s
ol

ut
io

n 
pr

ob
ab

ili
ty

#evaluations

NTS-(FI,AA,BR) δ=0
VND ESI (RESTART) δ=0

NTS-(FI,AA,BR) δ=0.1%
VND ESI (RESTART) δ=0.1%

NTS-(FI,AA,BR) δ=1%
VND ESI (RESTART) δ=1%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000  10000  100000  1e+06  1e+07

em
pi

ric
al

 s
ol

ut
io

n 
pr

ob
ab

ili
ty

#evaluations

NTS-(FI,AA,BR) δ=0
VND ESI (RESTART) δ=0

NTS-(FI,AA,BR) δ=0.5%
VND ESI (RESTART) δ=0.5%

NTS-(FI,AA,BR) δ=1%
VND ESI (RESTART) δ=1%

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000  10000  100000  1e+06  1e+07  1e+08

em
pi

ric
al

 s
ol

ut
io

n 
pr

ob
ab

ili
ty

#Evaluations

NTS-(FI,AA,BR) δ=0%
NTS-(FI,AA,BR) δ=0.1%

VND ESI (RESTART) FI δ=0.1%
NTS-(FI,AA,BR)  δ=1%

VND ESI (RESTART) δ=1%

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1000  10000  100000  1e+06  1e+07

em
pi

ric
al

 s
ol

ut
io

n 
pr

ob
ab

ili
ty

#evaluations

NTS-(FI,AA,BR) δ=0
VND ESI (RESTART) δ=0

NTS-(FI,AA,BR) δ=0.1%
VND ESI (RESTART) δ=0.1%

NTS-(FI,AA,BR) δ=1%
VND ESI (RESTART) δ=1%

Figure 2: RTDs for NTS vs VND with random restart. The x-
axis gives the logarithm of the number of fitness evaluations,
the y-axis the cumulative empirical solution quality probabil-
ity. δ denotes the gap (in percentage) between the required so-
lution quality and the optimal solution. Top-Left figure (re sp.
Top-Right, Bottom-Left and Bottom-Right) shows the results
for instance 19 (resp. 38, 42, and 86).

With the FD step function, the maximum length for the three in-
stance sets is at most8 which is relatively very low. This is a
crucial observation that can be exploited in different manners for
backtracking. Leth be the maximum length that can be observed
which is also the maximum height for the neighborhood tree. As-
suming that the exploration of each of thek neighborhoods by the
step function FD requires a polynomial time in the problem size,
say p(n), then an exhaustive neighborhood tree traversal would
lead to an NTS algorithm with computing complexity of roughly
O(kh · p(n)). If h is proved to be a constant or even a very small
function inn, then an exhaustive neighborhood tree traversal could
lead to a relatively efficient NTS. In our experiments,h seems to be
very insensitive ton which suggests that other backtracking strate-
gies, e.g., using a fixed/adaptive number of backtrack steps, could
improve the search.

For the FI step function, it is clear that (compared to FD) there is
a significant increase in the trajectory path length. Therefore, the
previous discussion does not hold anymore using FI. In fact,assum-
ing thathmax = Ω(n), which seems to be the case, an exhaustive
search of the neighborhood tree is normally intractable. This is fur-
ther confirmed by the fact that in all our experiments with theFI
strategy, NTS always reaches the maximum number of iterations
without emptying the whole search path. We however remark that
using random backtracking (BR), FI produces better resultsthan
FD. We attribute this to the fact that FI implies a neighborhood tree
of relatively high size but relatively diversified neighborhood paths.

To conclude this section, we would like to give some remarks on
the impact of maintaing and accessing the history path on CPU
running time. As discussed before, path trajectory is relatively low
compared to problem size. Knowing that the size of many neigh-
borhood structures is at least linear, and many often polynomial, in

problem size, the cost of maintaining the path history staysrela-
tively marginal. In our implementation using standard Javalibrary,
without any specific code optimization, the average CPU-time to
perform one evaluation for problem size100 on a standard 2.0 Ghz
Intel processor is0.0005 millisecond.

Table 2: NTS maximum path length (hmax and hmax)

n
FI FD

hmax hmax hmax hmax

40 267 166.3 7 3.8
50 359 219.2 8 3.9
100 868 554.5 8 4.3

5. EXPERIMENTAL ANALYSIS: LRP
5.1 VNS baseline algorithm
For our comparative study, we take as a baseline algorithm a vari-
ant of the generalized VNS algorithm described in [7]. The VNS
algorithm was carefully designed with LRP specific neighborhood
combinations. More precisely, the baseline VNS has two standard
components: random shaking and local search both using different
neighborhood structures. For local search, a standard VND is used
with the following neighborhoods:N1 ∪ N2,N3 ∪N4,N5 ∪N6,
N7∪N8,N9∪N10, andN11. For shaking, both neighborhoodsN1,
N2 andN11 are combined to produce a random neighbor each time
the VND local search fails producing an improving local optimum.
The maximum strength of the shaking is fixed to be a function of
the problem size, namely,n+m. The standard VNS shaking strat-
egy is used, i.e., if a new improving local optimum is found, shak-
ing is rested to neighborhood1, otherwise the next neighborhood
is considered and so on until reaching the last neighborhood. This
specific shaking and local search is motivated in [7] by its ability to
manage the two decision levels (Location and Routing) induced by
LRP.

Generally speaking, VNS is particularly interesting for our NTS
study since it uses a shaking phase combined with an efficientvari-
able neighborhood descent. Since NTS is not equipped with any
specific shaking (perturbation) procedure, the goal is to study whether
the backtracking component of NTS is able to efficiently escape the
local optima computed in the descent phase and to effectively find
better ones without any specific shaking (perturbation). Proving
thatnonproblem specific backtracking strategies can lead to com-
petitive algorithms would help the design of generic searchalgo-
rithms that can be applied without any problem specific tuning. In
the following, starting from a randomly generated initial solution,
different solution quality / computing cost trade-offs areobtained
depending on NTS backtracking strategy, step function and accep-
tance criterion.

5.2 Solution Quality vs Computing Cost
We first examine solution quality obtained with NTS using FD and
BD local step strategies compared to VNS. We select ordinal data
analysis to compare the considered algorithms. For each algorithm
a and each experimentℓ, an ordinal valueoℓa representing the rank
of the algorithm is given. To compare the relative performance of
competing algorithms, we aggregate the obtained orders foreach
algorithm into a unique order. We use a simple and intuitive ag-
gregation method, known as theBorda countvoting method. An
algorithm having rankoℓa in an experiment is givenoℓa points, and



the total score of an algorithm is simply the sum of its ranks over
all experiments. The algorithms are then compared to their cumu-
lative scores where the algorithm having thesmallest scorebeing
considered as the best performing algorithm. For each instance, the
ranks were computed using as a metric the solution gap to lower
bound averaged over30 trials (The lower bounds were taken from
the work in [2].). In other words, for each instance, the algorithm
having theith smaller average gap is rankedi and thus it is scored
with i points. The final score of each algorithm is them the sum of
its scores over all instances. For LRP, we consider5 instance sets
according to problem size. Each set contains90 instances. We will
consider7 algorithms, i.e.,6 NTS variants and VNS. Thus, for a
given instance set, the best (resp. worst) possible score is90 (resp.
630), while the best (resp. worst) possibletotal score is450 (resp.
3150). Our first results are summarized in Table 3. We can ob-
serve that for lower instances sizes, FD step strategies outperforms
VNS with all backtrack strategies. However, for higher instances
sizes only BU performs better than VNS where as BH is the worst
performing strategy overall. We attribute this to the diversification
introduced by the BU strategy. Actually, the solution quality re-
sults reported in Table 3 have a price in terms of computing cost as
discussed below.

Table 3: Solution quality with Borda count voting method for
LRP using NTS variants and VNS. Notation NTS-(X,Y, Z)
was defined in Section 2. Acceptance criterion AA is fixed
for all variants. X ∈ {BD, FD} refers to step function.
Z ∈ {BH,BR,BU} is the backtracking strategy. In bold, we
highlight the scores in favor of NTS over VNS.

(n,m)

NTS− (∗, AA, ∗)

VNS
BH BR BU

BD FD BD FD BD FD
(10, 30) 598 438 519 348 230 99 286
(10, 20) 607 471 490 370 218 115 248
(5, 30) 488 359 401 266 141 91 399
(5, 20) 452 301 349 190 131 93 403
(5, 10) 368 250 322 225 203 115 310

Total 2513 1819 2081 1399 923 513 1646

In Table 4, we report the joint solution quality, and computing cost
(until termination) for NTS compared to VNS. We denotereval the
ratio obtained when dividing the total number of evaluations per-
formed by NTS by the total number of evaluations performed by
VNS. We denoten> a Borda like score computed as following.
For each instance, we compare the average gap to lower bound of

Table 4: Solution quality and computing cost of NTS with FD
and AA strategies compared to VNS.

(n,m)

NTS− (FD,AA, ∗)
BH BR BU

n> reval n> reval n> reval

(10, 30) −60 0.50 −37 0.84 73 5.00
(10, 20) −74 0.45 −52 0.77 56 3.75
(5, 30) 20 0.45 44 0.78 70 4.19
(5, 20) 40 0.76 53 1.32 59 6.18
(5, 10) 19 0.82 24 1.40 47 4.67

Total −55 0.60 32 1.02 305 4.76

NTS and VNS. If NTS is better we score it+1, in case of equality
we score it0, and otherwise−1. n> is then obtained by summing
up the computed scores. Having90 instances per problem size, the
best (resp. worst) score is+90 (resp.−90). A positive (resp. neg-
ative, zero) score means that NTS performs better on more (resp.
less, equally) number of instances. This gives a general idea on
the number of instances for which NTS performs better than VNS
(Taking n>/90 gives the ratio of instances where NTS performs
better or worst depending onn> sign). For simplicity we only re-
port results with FD step function. Notice that Table 4 givesan
idea not only about the performance of NTS compared to VNS,
but also the relative performance of the different NTS strategies.
One can clearly see the different trade-offs given by NTS in terms
of solution quality (BH< BR≃ VNS < BU) and computing cost
(BU < VNS≃ BR< BH). E.g., for lower instance sizes, BH beats
VNS in both two measures. BR gives better solution quality with
comparable running cost. At higher instance sizes, only BU is able
to perform better than VNS in solution quality but at the price of
being around4 times slower.

5.3 Speeding up the search
In this section, we give the results we have obtained by running
NTS with acceptance criterion AT. Recall that with the AT strategy
a neighborhood branch is explored depending on the best locally
observed fitnessfbest

s , and with a probability which is inversely pro-
portional to the trajectory path length. Results with FD step func-
tion are summarized in Table 5. One can clearly see that the AT
strategy has the effect of speeding-up the search (comparedto re-
sults with AA given in Table 4). This is rather expected sinceneigh-
borhood branches producing solutions with poor quality compared
to other neighborhoods are likely to be pruned as we get deeper in
the search path. While strategy AT allows us to speed up the search,
it has two ’side-effects’. Firstly, compared to AA, AT produces
less high solution quality for all backtracking strategies. Secondly
and for the largest instances, AT is no more competitive against the
finely tuned VNS even using the most effective BU backtracking
strategy.

Table 5: Solution quality and computing cost of NTS with FD
and AT compared to VNS.

(n,m)

NTS− (FD,AT, ∗)
BH BR BU

n> reval n> reval n> reval

(10, 30) −80 0.22 −66 0.36 −9 1.03
(10, 20) −88 0.23 −82 0.35 −38 0.88
(5, 30) −22 0.22 13 0.35 66 0.92
(5, 20) 16 0.40 42 0.63 55 1.54
(5, 10) 0 0.53 14 0.81 32 1.53

Total −174 0.32 −79 0.50 106 1.18

5.4 Time to best with step function FI
In accordance with the results obtained for SMTWTP, we found
that NTS combined with FI step function is able to give very good
results for LRP. In the following, we report only our findingswhen
running NTS for a maximum number of evaluations, namely,107

evaluations. For all competing algorithms, VNS included, we study
the number of evaluations it takes for an algorithm to find thebest
fitness solution. Using acceptance conditions AA and AT, we re-
port the values ofn> andr′eval which is now the ratio of the number
of fitness evaluations it takes for NTS and VNS to find the best



Table 6: Solution quality and computing cost of NTS with FI
and AA compared to VNS.

(n,m)

NTS− (FI,AA, ∗)
BH BR BU

n> r′eval n> r′eval n> r′eval

(10, 30) −25 0.67 −31 0.69 −24 0.70
(10, 20) 44 1.87 58 2.14 67 2.48
(5, 30) 70 0.26 70 0.26 70 0.26
(5, 20) 59 0.40 59 0.44 59 0.42
(5, 10) 46 0.18 48 0.24 50 0.27

Total 194 0.68 204 0.75 222 0.83

Table 7: Solution quality and computing cost of NTS with FI
and AT compared to VNS.

(n,m)

NTS− (FI,AT, ∗)
BH BR BU

n> r′eval n> r′eval n> reval

(10, 30) 11 1.49 35 2.64 −27 0.69
(10, 20) 8 0.84 33 1.45 69 2.47
(5, 30) 70 0.39 70 0.48 70 0.26
(5, 20) 59 0.34 59 0.40 59 0.44
(5, 10) 42 0.16 48 0.19 50 0.24

Total 190 0.64 245 1.03 221 0.82

solution. Our results are summarized in Tables 6 and 7. In ac-
cordance with the results obtained with FD, different trade-offs are
obtained. For instance, the computing cost of BH is better than BR
which is better than BU. For all instance sets, but for size(10, 30),
BU beats all other strategies in terms of solution quality. Actu-
ally, for instance set(10, 30) strategy BU needs more time to find
high quality solutions, i.e., BU is an exploration orientedstrategy
which needs more time to converge but produces very high solu-
tion quality. Moreover, we can state that overall instance set NTS
with FI strategy performs better than VNS. In particular, backtrack-
ing strategies BH and BR provides very competitive results both
in computing cost and solution quality especially when combined
with the adaptive acceptance criterion AT.

6. CONCLUSION
In this paper, by operating at the level of the tree induced bya set
of several different neighborhood structures, we introduced a back-
tracking traversal algorithm called NTS and studied some ofits
variants. Compared to standard VND where neighborhood order-
ing can be critical, NTS is able to find its way by simply pipingdif-
ferent neighborhoods dynamically at runtime. Compared to VNS
where shaking is crucial, backtracking in NTS is able to escape
local optima searching for promising neighborhood paths. How-
ever, since exploring the neighborhood tree in an exhaustive man-
ner could be intractable, NTS components (step function, neigh-
borhood selection, branching, accepting, backtracking) have to be
carefully combined in order to obtain a good compromise between
solution quality and computing cost. In particular, the NTSvari-
ants described in this paper are based on the following two intuitive
claims: (i) the more we are deep in the neighborhood tree, themore
it is likely to find better local optima (intensification) (ii) the less we
are deep in the neighborhood tree, the more it is likely to explore
new search regions and thus to go forward through new high qual-

ity solutions (diversification). Generally speaking, we claim that
new adaptive backtracking strategies combined with new adaptive
acceptance criteria would be the key ingredients providingthe ef-
ficient balance between intensification and diversificationin NTS.
We believe that this is a challenging and interesting open question
which deserves further investigations.
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