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A. PROOF OF THEOREM 4.1
PROOF. The bias is given by
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If f(x) is differentiable in (x;_1, xz), then for any x € (x;_1, xz), by the mean value
theorem, there exists &, (x) € (xz_1, x) such that
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Here f(xp_1+) is the right limit of f at x;_;, which is finite by the assumptions. In

general, if f(x) is not differentiable at n,f: points in (x;_1, xz), where Zfﬂ nkf =nf, it can
be shown in the same way as before that
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However, we have the following:
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Since p(x) is differentiable in (x;_1, xz), using the mean value theorem again, for any
x # yin (x;_1, x), there exists & (x, y) € (x, y) such that

p(y) = p(x) + p'(&x(x, y))(y — x).
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Consequently,
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As for the last two terms in (22), we have
| FaoFol < | Fao) (B + Fo), | faex) (1= Fx) | = |f @) | (e + 1= F).
Combining the preceding, we obtain (15). O

B. PROOF OF THEOREM 4.3
PROOF. Let F be the cdf of X. According to Theorem 4.1, the bias is bounded by
(15). If € H(D_ 4,)), from (7), for any a € (0, d,), we have
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Since the integrand is analytic in {z € C : J(z) € (0, d,)}, using the condition (1) and
Cauchy’s integral theorem, for any € > 0 such that d, — ¢ > a, we have
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Let € | 0, we obtain
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Note that the probability density p(x) admits the following inverse Fourier transform
representation:

| f(x0)F(x0)| < | fxo)|e*0%.
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By Cauchy’s integral theorem and the condition (1), for any ¢ > 0 such that d, —¢ > 0,
we have
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Similarly, using the representation (6), we have the following:
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Since £¢(&) is absolutely integrable on R by the assumptions on ¢,
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where the interchange of the integration and differentiation is valid due to the domi-
nated convergence theorem. Therefore,
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Combining the preceding, we obtain the bound for the bias in (16). O

C. PROOF OF THEOREM 4.5

PROOF. Denote the density of #¢ by p;. From Theorem 4.1, we have the following
forany 1 <i<d:
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Following Glasserman and Liu [2010], |E[ (X1, - - - X)) — E[f(X1, - - - , X2)]| is bounded
by the following:
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where || pigill1 = [ Di(x)gi(x)dx, 1 < i < d. The conclusion then follows immediately. [J
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D. ALGORITHM 3

ALGORITHM 3: Simulating Kou’s double exponential jump diffusion

For t > 0, simulate X, = ut + o B, + Y, Z;

(1) Generate a standard normal random variable G.

(2)  Generate the Poisson process N; using the inverse transform method described on p.128 of
Glasserman [2004].

(3) Generate Z;,1 <i < N,, in the following way: generate U, that is uniform in (0, 1); if
U; < p, generate Z; from an exp(n;) distribution; otherwise, generate Z; from the negative
of an exp(ns) distribution.

4) LetX,=ut+oJtG+Z,+---+Zy,.
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