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Abstract. In the study of deterministic distributed algorithms it is commonly
assumed that each node has a unique O(log n)-bit identifier. We prove that for
a general class of graph problems, local algorithms (constant-time distributed
algorithms) do not need such identifiers: a port numbering and orientation is
sufficient.

Our result holds for so-called simple PO-checkable graph optimisation problems ;
this includes many classical packing and covering problems such as vertex covers,
edge covers, matchings, independent sets, dominating sets, and edge dominating
sets. We focus on the case of bounded-degree graphs and show that if a local
algorithm finds a constant-factor approximation of a simple PO-checkable graph
problem with the help of unique identifiers, then the same approximation ratio
can be achieved on anonymous networks.

As a corollary of our result and by prior work, we derive a tight lower bound
on the local approximability of the minimum edge dominating set problem.

Our main technical tool is an algebraic construction of homogeneously ordered
graphs : We say that a graph is (α, r)-homogeneous if its nodes are linearly ordered
so that an α fraction of nodes have pairwise isomorphic radius-r neighbourhoods.
We show that there exists a finite (α, r)-homogeneous 2k-regular graph of girth
at least g for any α < 1 and any r, k, and g.
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Figure 1: Three models of distributed computing.

1 Introduction

In this work, we study deterministic distributed algorithms under three different
assumptions; see Figure 1.

(ID) Networks with unique identifiers. Each node is given a unique O(log n)-
bit label.

(OI) Order-invariant algorithms. There is a linear order on nodes. Equiv-
alently, the nodes have unique labels, but the output of an algorithm
is not allowed to change if we relabel the nodes while preserving the
relative order of the labels.

(PO) Anonymous networks with a port numbering and orientation. For each
node, there is a linear order on the incident edges, and for each edge,
there is a linear order on the incident nodes. Equivalently, a node of
degree d can refer to its neighbours by integers 1, 2, . . . , d, and each
edge is oriented so that the endpoints know which of them is the head
and which is the tail.

While unique identifiers are often useful, we will show that they are seldom
needed in local algorithms (constant-time distributed algorithms): there is a
general class of graph problems such that local algorithms in PO are able to
produce as good approximations as local algorithms in OI or ID.

1.1 Graph Problems

We study graph problems that are related to the structure of an unknown
communication network. Each node in the network is a computer; each computer
receives a local input, it can exchange messages with adjacent nodes, and eventually
it has to produce a local output. The local outputs constitute a solution of a
graph problem—for example, if we study the dominating set problem, each node
produces one bit of local output, indicating whether it is part of the dominating set.
The running time of an algorithm is the number of synchronous communication
rounds.

From this perspective, the models ID, OI, and PO are easy to separate.
Consider, for example, the problem of finding a maximal independent set in an
n-cycle. In ID model the problem can be solved in Θ(log∗ n) rounds [6, 17], while
in OI model we need Θ(n) rounds, and the problem is not soluble at all in PO,
as we cannot break symmetry—see Figure 2. Hence ID is strictly stronger than
OI, which is strictly stronger than PO.

1.2 Local Algorithms

In this work we focus on local algorithms, i.e., distributed algorithms that run
in a constant number of synchronous communication rounds, independently of
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Figure 2: In ID, the numerical identifiers break symmetry everywhere—for
example, a maximal independent set can be found in O(log∗ n) rounds. In OI,
we can have a cycle with only one “seam”, and in PO we can have a completely
symmetric cycle.

the number of nodes in the network [19, 22]. The above example separating ID,
OI, and PO no longer applies, and there has been a conspicuous lack of natural
graph problems that would separate ID, OI, and PO from the perspective of local
algorithms.

Indeed, there are results that show that many problems that can be solved with
a local algorithm in ID also admit a local algorithm in OI or PO. For example, the
seminal paper by Naor and Stockmeyer [19] studies so-called LCL problems—these
include problems such as graph colouring and maximal matchings on bounded-
degree graphs. The authors show that ID and OI are indeed equally expressive
among LCL problems. The followup work by Mayer, Naor, and Stockmeyer [18]
hints of a stronger property:

(i) Weak 2-colouring is an LCL problem that can be solved with a local
algorithm in ID model [19]. It turns out that the same problem can be
solved in PO model as well [18].

Granted, contrived counterexamples do exist: there are LCL problems that are
soluble in OI but not in PO. However, most of the classical graph problems that
are studied in the field of distributed computing are optimisation problems, not
LCL problems.

1.3 Local Approximation

In what follows, we will focus on graph problems in the case of bounded-degree
graphs ; that is, there is a known constant ∆ such that the degree of any node in
any graph that we may encounter is at most ∆. Parity often matters; hence we
also define ∆′ = 2b∆/2c.

In this setting, the best possible approximation ratios are surprisingly similar
in ID, OI, and PO. The following hold for any given ∆ ≥ 2 and ε > 0:

(ii) Minimum vertex cover can be approximated to within factor 2 in each of
these models [3, 5]. This is tight: (2− ε)-approximation is not possible in
any of these models [9, 16, 22].

(iii) Minimum edge cover can be approximated to within factor 2 in each of
these models [22]. This is tight: (2− ε)-approximation is not possible in
any of these models [9, 16, 22].

(iv) Minimum dominating set can be approximated to within factor ∆′ + 1 in
each of these models [4]. This is tight: (∆′ + 1− ε)-approximation is not
possible in any of these models [9, 16, 22].
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Figure 3: Graph H is a lift of G. The covering map ϕ : V (H)→ V (G) maps
ai 7→ a, bi 7→ b, ci 7→ c, and di 7→ d for each i = 1, 2. The fibre of a ∈ V (G) is
{a1, a2} ⊆ V (H); all fibres have the same size.

(v) Maximum independent set cannot be approximated to within any constant
factor in any of these models [9, 16].

(vi) Maximum matching cannot be approximated to within any constant factor
in any of these models [9, 16].

This phenomenon has not been fully understood: while there are many problems
with identical approximability results for ID, OI, and PO, it has not been known
whether these are examples of a more general principle or merely isolated co-
incidences. In fact, for some problems, tight approximability results have been
lacking for ID and OI, even though tight results are known for PO:

(vii) Minimum edge dominating set can be approximated to within factor 4−2/∆′

in each of these models [21]. This is tight for PO but only near-tight for
ID and OI: (4 − 2/∆′ − ε)-approximation is not possible in PO [21], and
(3− ε)-approximation is not possible in ID and OI [9, 16, 22].

In this work we prove a theorem unifying all of the above observations—they
are indeed examples of a general principle. As a simple application of our result,
we settle the local approximability of the minimum edge dominating set problem
by proving a tight lower bound in ID and OI.

1.4 Main Result

A simple graph problem Π is an optimisation problem in which a feasible solution
is a subset of nodes or a subset of edges, and the goal is to either minimise or
maximise the size of a feasible solution. We say that Π is a PO-checkable graph
problem if there is a local PO-algorithm A that recognises a feasible solution. That
is, A(G, X, v) = 1 for all nodes v ∈ V (G) if X is a feasible solution of problem Π in
graph G, and A(G, X, v) = 0 for some node v ∈ V (G) otherwise—here A(G, X, v)
is the output of a node v if we run algorithm A on graph G and the local inputs
form an encoding of X.

Let ϕ : V (H) → V (G) be a surjective graph homomorphism from graph H
to graph G. If ϕ preserves vertex degrees, i.e., degH(u) = degG(ϕ(u)), then ϕ is
called a covering map, and H is said to be a lift of G. The fibre of u ∈ V (G) is
the set ϕ−1(u) of pre-images of u. We usually consider n-lifts that have fibres of
the same cardinality n. It is a basic fact that a connected lift H of G is an n-lift
for some n. See Figure 3 for an illustration.

Let F be a family of graphs. We say that F is closed under lifts if G ∈ F
implies H ∈ F for all lifts H of G. A family is closed under connected lifts if
G ∈ F implies H ∈ F whenever H and G are connected graphs and H is a lift
of G.
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Now we are ready to state our main theorem.

Theorem 1 (Main Theorem). Let Π be a simple PO-checkable graph problem.
Assume one of the following:

– General version: F is a family of bounded degree graphs, and it is closed
under lifts.

– Connected version: F is a family of connected bounded degree graphs, it
does not contain any trees, and it is closed under connected lifts.

If there is a local ID-algorithm A that finds an α-approximation of Π in F , then
there is a local PO-algorithm B that finds an α-approximation of Π in F .

While the definitions are somewhat technical, it is easy to verify that the
result is widely applicable:

(a) Vertex covers, edge covers, matchings, independent sets, dominating sets,
and edge dominating sets are simple PO-checkable graph problems.

(b) Bounded-degree graphs, regular graphs, and cyclic graphs are closed under
lifts.

(c) Connected bounded-degree graphs, connected regular graphs, and connected
cyclic graphs are closed under connected lifts.

1.5 An Application

The above result provides us with a powerful tool for proving lower-bound results:
we can easily transfer negative results from PO to OI and ID. We demonstrate this
strength by deriving a new lower bound result for the minimum edge dominating
set problem.

Theorem 2. Let ∆ ≥ 2, and let A be a local ID-algorithm that finds an α-approx-
imation of a minimum edge dominating set on connected graphs of maximum
degree ∆. Then α ≥ α0, where

α0 = 4− 2/∆′ and ∆′ = 2b∆/2c.

This is tight: there is a local ID-algorithm that finds an α0-approximation.

Proof. By prior work [21], it is known that there is a connected ∆′-regular graph
G0 such that the approximation factor of any local PO-algorithm on G0 is at least
α0. Let F0 consist of all connected lifts of G0, and let F consist of all connected
graphs of degree at most ∆. We make the following observations.

(a) We have F0 ⊆ F ; by assumption, A finds an α-approximation in F0.

(b) Family F0 consists of connected graphs of degree at most ∆, it does not
contain any trees, and it is closed under connected lifts. We can apply the
connected version of the main theorem: there is a local PO-algorithm B
that finds an α-approximation in F0.

(c) However, G0 ∈ F0, and hence α ≥ α0.

The matching upper bound is presented in prior work [21].
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1.6 Overview

Informally, our proof of the main theorem is structured as follows.

(a) Fix a graph problem Π, a graph family F , and an ID-algorithm A as in the
statement of Theorem 1. Let r be the running time of ID-algorithm A.

(b) Let G ∈ F be a graph with a port numbering and orientation.

(c) Section 3.2: We construct a certain lift Gε ∈ F of G. Graph Gε inherits the
port numbering and the orientation from G.

(d) Section 4.1: We show that there exists a linear order <ε on the nodes of
Gε that gives virtually no new information in comparison with the port
numbering and orientation. If we have an OI-algorithm A′ with running
time r, then we can simulate A′ with a PO-algorithm B′ almost perfectly
on Gε: the outputs of A′ and B′ agree for a (1− ε) fraction of nodes. We
deduce that the approximation ratio of A′ on F cannot be better than the
approximation ratio of B′ on F .

(e) Section 4.2: We apply Ramsey’s theorem to show that the unique identifiers
do not help, either. We can construct a PO-algorithm B that simulates A in
the following sense: there exists an assignment of unique identifiers on a lift
H ∈ F of Gε such that the outputs of A and B agree for a (1− ε) fraction
of nodes. We deduce that the approximation ratio of A on F cannot be
better than the approximation ratio of B on F .

Now if graph G was a directed cycle, the construction would be standard; see,
e.g., Czygrinow et al. [9]. In particular, Gε and H would simply be long cycles,
and <ε would order the nodes along the cycle—there would be only one “seam”
in (Gε, <ε) that could potentially help A′ in comparison with B′, and only an ε
fraction of nodes are near the seam.

However, the case of a general G is more challenging. Our main technical tool is
the construction of so-called homogeneous graphs; see Section 3.1. Homogeneous
graphs are regular graphs with a linear order that is useless from the perspective
of OI-algorithms: for a (1− ε) fraction of nodes, the local neighbourhoods are
isomorphic. Homogeneous graphs trivially exist; however, our proof calls for
homogeneous graph of an arbitrarily high degree and an arbitrarily large girth
(i.e., there are no short cycles—the graph is locally tree-like). In Section 5 we
use an algebraic construction to prove that such graphs exist.

1.7 Discussion

In the field of distributed algorithms, the running time of an algorithm is typically
analysed in terms of two parameters: n, the number of nodes in the graph, and
∆, the maximum degree of the graph. In our work, we assumed that ∆ is a
constant—put otherwise, our work applies to algorithms that have a running
time independent of n but arbitrarily high as a function of ∆. The work by Kuhn
et al. [12–14] studies the dependence on ∆ more closely: their lower bounds on
approximation ratios apply to algorithms that have, for example, a running time
sublogarithmic in ∆.

While our result is very widely applicable, certain extensions have been left
for future work. One example is the case of planar graphs [9], [15, §13]. The
family of planar graphs is not closed under lifts, and hence Theorem 1 does not
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apply. Another direction that we do not discuss at all is the case of randomised
algorithms.

2 Three Models of Distributed Computing

In this section we make precise the notion of a local algorithm in each of the
models ID, OI and PO. First, we discuss the properties common to all the models.

We start by fixing a graph family F where every G = (V (G), E(G)) ∈ F has
maximum degree at most ∆ ∈ N. We consider algorithms A that operate on
graphs in F ; the properties of A (e.g., its running time) are allowed to depend
on the family F (and, hence, on ∆). We denote by A(G, u) ∈ Ω the output of
A on a node u ∈ V (G). Here, Ω is a finite set of possible outputs of A in F .
If the solutions to Π are sets of vertices, we shall have Ω = {0, 1} so that the
solution produced by A on G, denoted A(G), is the set of nodes u with A(G, u) = 1.
Similarly, if the solutions to Π are sets of edges, we shall have Ω = {0, 1}∆ so that
the ith component of the vector A(G, u) indicates whether the ith edge incident
to u is included in the solution A(G)—in each of the models a node will have a
natural ordering of its incident edges.

Let r ∈ N denote the constant running time of A in F . This means that a
node u can only receive messages from nodes within distance r in G, i.e., from
nodes in the radius-r neighbourhood

BG(u, r) =
{
v ∈ V (G) : distG(u, v) ≤ r

}
.

Let τ(G, u) denote the structure (G, u) restricted to the vertices BG(u, r), i.e., in
symbols,

τ(G, u) = (G, u) � BG(u, r).

Then A(G, u) is a function of the data τ(G, u) in that A(G, u) = A(τ(G, u)). The
models ID, OI and PO impose further restrictions on this function.

2.1 Model ID

Local ID-algorithms are not restricted in any additional way. We follow the
convention that the vertices have unique O(log n)-bit labels, i.e., an instance
G ∈ F of order n = |V (G)| has V (G) ⊆ {1, 2, . . . , s(n)} where s(n) is some fixed
polynomial function of n. Our presentation assumes s(n) = ω(n), even though
this assumption can often be relaxed as we discuss in Remark 4.1.

2.2 Model OI

A local OI-algorithm A does not directly use unique vertex identifiers but only
their relative order. To make this notion explicit, let the vertices of G ∈ F be
linearly ordered by <, and call (G, <) an ordered graph. Denote by τ(G, <, u)
the restriction of the structure (G, <, u) to the r-neighbourhood BG(u, r), i.e., in
symbols,

τ(G, <, u) = (G, <, u) � BG(u, r).

Then, the output A(G, <, u) depends only on the isomorphism type of τ(G, <, u),
so that if τ(G, <, u) ' τ(G′, <′, u′) then A(G, <, u) = A(G′, <′, u′).

6
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Figure 4: (a) A graph G with a port numbering and an orientation. (b) A
proper labelling `G that is derived from the port numbering. We have an
L-digraph with L = {a, b, c}, a = (1, 2), b = (2, 1), and c = (3, 1). (c) The view
of G from u is an infinite directed tree T = T (G, u); there is a covering map
ϕ from T to G that preserves adjacencies, orientations, and edge labels. For
example, ϕ(λ) = ϕ(aab−1) = u.

2.3 Model PO

In the PO model the nodes are considered anonymous and only the following
node specific structure is available: a node can communicate with its neighbours
through ports numbered 1, 2, . . . ,deg(u), and each communication link has an
orientation.

Edge-Labelled Digraphs. To model the above, we consider L-edge-labelled
directed graphs (or L-digraphs, for short) G = (V (G), E(G), `G), where the edges
E(G) ⊆ V (G) × V (G) are directed and each edge e ∈ E(G) carries a label
`G(e) ∈ L. We restrict our considerations to proper labellings `G : E(G)→ L that
for each u ∈ V (G) assign the incoming edges (v, u) ∈ E(G) distinct labels and
the outgoing edges (u,w) ∈ E(G) distinct labels; we allow `G(v, u) = `G(u,w).
We refer to the outgoing edges of a node by the labels L and to the incoming
edges by the formal letters L−1 = {`−1 : ` ∈ L}. In the context of L-digraphs,
covering maps ϕ : V (H) → V (G) are required to preserve edge labels so that
`H(u, v) = `G(ϕ(u), ϕ(v)) for all (u, v) ∈ E(H).

A port numbering on G gives rise to a proper labelling `G(v, u) = (i, j), where
u is the ith neighbour of v, and v is the jth neighbour of u; see Figure 4. We
now fix L to contain every possible edge label that appears when a graph G ∈ F
is assigned a port numbering and an orientation. Note that |L| ≤ ∆2.
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Figure 5: The complete L-labelled rooted directed tree (T ∗, λ) of radius r = 2,
for L = {a, b}.

Views. The information available to a PO-algorithm computing on a node
u ∈ V (G) in an L-digraph G is usually modelled as follows [1, 22, 23]. The
view of G from u is an L-edge-labelled rooted (possibly infinite) directed tree
T = T (G, u), where the vertices V (T ) correspond to all non-backtracking walks
on G starting at u; see Figure 4c. Formally, a k-step walk can be identified with
a word of length k in the letters L ∪ L−1. A non-backtracking walk is a reduced
word where neither ``−1 nor `−1` appear. If w ∈ V (T ) is a walk on G from
u to v, we define ϕ(w) = v. In particular, the root of T is the empty word λ
with ϕ(λ) = u. The directed edges of T (and their labels) are defined in such a
way that ϕ : V (T )→ V (G) becomes a covering map. Namely, w ∈ V (T ) has an
out-neighbour w` for every ` ∈ L such that ϕ(w) has a outgoing edge labelled `.

Local PO-Algorithms. The inability of a PO-algorithm B to detect cycles
in a graph is characterised by the fact that B(G, u) = B(T (G, u)). In fact, we
define a local PO-algorithm as a function B satisfying B(G, u) = B(τ(T (G, u))).
An important consequence of this definition is that the output of a PO-algorithm
is invariant under lifts, i.e., if ϕ : V (H)→ V (G) is a covering map of L-digraphs,
then B(H, u) = B(G, ϕ(u)). The intuition is that nodes in a common fibre are
always in the same state during computation as they see the same view.

The following formalism will become useful. Denote by (T ∗, λ) the complete
L-labelled rooted directed tree of radius r with V (T ∗) consisting of reduced
words in the letters L ∪ L−1, i.e., every non-leaf vertex in T ∗ has an outgoing
edge and an incoming edge for each ` ∈ L; see Figure 5. The output of B on
every graph G ∈ F is completely determined after specifying its output on the
subtrees of (T ∗, λ). More precisely, let W consist of vertex sets W ⊆ V (T ∗) such
that (T ∗, λ) � W = τ(T (G, u)) for some G ∈ F and u ∈ V (G). Then a function
B : W→ Ω defines a PO-algorithm by identifying B((T ∗, λ) �W ) = B(W ).
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3 Order Homogeneity

In this section we introduce some key concepts that are used in controlling the
local symmetry breaking information that is available to a local OI-algorithm.

3.1 Homogeneous Graphs

In the following, we take the isomorphism type of an r-neighbourhood τ =
τ(G, <, u) to be some canonical representative of the isomorphism class of τ .

Definition 1. Let (H, <) be an ordered graph. If there is a set U ⊆ V (H) of
size |U | ≥ α|H| such that the vertices in U have a common r-neighbourhood
isomorphism type τ∗, then we call (H, <) an (α, r)-homogeneous graph and τ∗

the associated homogeneity type of H.

Homogeneous graphs are useful in fooling OI-algorithms: an (α, r)-homoge-
neous graph forces any local OI-algorithm to produce the same output in at
least an α fraction of the nodes in the input graph. However, there are some
limitations to how large α can be: Let (G, <) be a connected ordered graph on at
least two vertices. If u and v are the smallest and the largest vertices of G, their
r-neighbourhoods τ(G, <, u) and τ(G, <, v) cannot be isomorphic even for r = 1.
Thus, non-trivial finite graphs are not (1, 1)-homogeneous. Moreover, an ordered
(2k − 1)-regular graph cannot be (α, 1)-homogeneous for any α > 1/2; this is the
essence of the weak 2-colouring algorithm of Naor and Stockmeyer [19].

Our main technical tool will be a construction of graphs that satisfy the
following properties:

(1) (1− ε, r)-homogeneous for any ε > 0 and r,
(2) 2k-regular for any k,
(3) large girth,
(4) finite order.

Note that it is relatively easy to satisfy any three of these properties:

(1), (2), (3) Infinite 2k-regular trees admit a (1, r)-homogeneous linear order;
see Figure 6 for an example.

(1), (2), (4) We can construct a sufficiently large k-dimensional toroidal grid
graph (cartesian product of k directed cycles) and order the
nodes lexicographically coordinate-wise; see Figure 7 for an
example. However, these graphs have girth 4 when k ≥ 2.

(1), (3), (4) A sufficiently large directed cycle is (1− ε, r)-homogeneous and
has large girth. However, all the nodes have degree 2.

(2), (3), (4) It is well known that regular graphs of arbitrarily high girth
exist.

Our construction satisfies all four properties simultaneously.

Theorem 3. Let k, r ∈ N. For every ε > 0 there exists a finite 2k-regular
(1 − ε, r)-homogeneous connected graph (Hε, <ε) of girth larger than 2r + 1.
Furthermore, the following properties hold:

(a) The homogeneity type τ∗ of (Hε, <ε) does not depend on ε.

(b) The graph Hε and the type τ∗ are k-edge-labelled digraphs.
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Figure 6: A fragment of a 4-regular infinite ordered tree (G, <). The numbering
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Figure 7: A 4-regular graph G constructed as the cartesian product of two
directed 6-cycles. We define the ordered graph (G, <) by choosing the linear
order 11 < 12 < · · · < 16 < 21 < 22 < · · · < 66. The radius-1 neighbourhood
of node 25 is isomorphic to the radius-1 neighbourhood of node 42. In general,
there are 16 nodes (fraction 4/9 of all nodes) that have isomorphic radius-1
neighbourhoods; hence (G, <) is (4/9, 1)-homogeneous. It is also (1/9, 2)-
homogeneous.
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We defer the proof of Theorem 3 to Section 5. There, it turns out that
Cayley graphs of soluble groups suit our needs: The homogeneous toroidal graphs
mentioned above are Cayley graphs of the abelian groups Zkn. Analogously, we
use the decomposition of a soluble group into abelian factors to guarantee the
presence of a suitable ordering. However, to ensure large girth, the groups we
consider must be sufficiently far from being abelian, i.e., they must have large
derived length [7].

3.2 Homogeneous Lifts

We fix some notation towards a proof of Theorem 1. By Theorem 3 we let
(Hε, <ε), ε > 0, be a family of 2|L|-regular (1 − ε, r)-homogeneous connected
graphs of girth > 2r + 1 interpreted as L-digraphs. The homogeneity type τ∗

that is shared by all Hε is then of the form τ∗ = (T ∗, <∗, λ), where T ∗ is the
complete L-labelled tree of Section 2.3.

We use the graphs Hε to prove the following theorem.

Theorem 4. Let G be an L-digraph. For every ε > 0 there exists a lift (Gε, <Gε)
of G such that a (1− ε) fraction of the vertices in (Gε, <Gε) have r-neighbourhoods
isomorphic to a subtree of τ∗ = (T ∗, <∗, λ). Moreover, if G is connected, Gε can
be made connected.

Proof. Write (C, <C) = (Gε, <Gε) and (H, <H) = (Hε, <ε) for short. Our goal
is to construct (C, <C) as a certain product of (H, <H) and G; see Figure 8.
This product is a modification of the common lift construction of Angluin and
Gardiner [2].

The lift C is defined on the product set V (C) = V (H)×V (G) by “matching equi-
labelled edges”: the out-neighbours of (h, g) ∈ V (C) are vertices (h′, g′) ∈ V (C)
such that (h, h′) ∈ E(H), (g, g′) ∈ E(G) and `H(h, h′) = `G(g, g′). An edge
((h, g), (h′, g′)) ∈ E(G) inherits the common label `H(h, h′) = `G(g, g′).

The properties of C are related to the properties of G and H as follows.

(a) The projection ϕG : V (C) → V (G) mapping (h, g) 7→ g is a covering map.
This follows from the fact that each edge incident to g ∈ V (G) is always
matched against an edge of H in the fibre V (H)× {g}.

(b) The projection ϕH : V (C) → V (H) mapping (h, g) 7→ h is not a covering
map in case G is not 2|L|-regular. In any case ϕH is a graph homomorphism,
and this implies that C has girth > 2r + 1.

Next, we define a partial order <p on V (C) as u <p v ⇐⇒ ϕH(u) <H ϕH(v),
for u, v ∈ V (C). Note that this definition leaves only pairs of vertices in a common
ϕH-fibre incomparable. But since H has large girth, none of the incomparable
pairs appear in an r-neighbourhood of C. We let <C be any completion of <p into
a linear order. The previous discussion implies that <C satisfies τ(C, <C , u) =
τ(C, <p, u) for all u ∈ V (C).

Let UH ⊆ V (H), |UH| ≥ (1− ε)|H|, be the set of type τ∗ vertices in (H, <H).
Set UC = ϕ−1

H (UH) so that |UC | ≥ (1 − ε)|C|. Let u ∈ UC. By our definition of
<p, ϕH maps the r-neighbourhood τu = τ(C, <C , u) into τ(H, <H, ϕH(u)) ' τ∗

while preserving the order. But because τ∗ is a tree, ϕH must be injective on the
vertex set of τu so that τu is isomorphic to a subtree of τ∗ as required.

Finally, suppose G is connected. Then, by averaging, some connected compo-
nent of C will have vertices in UC with density at least (1− ε). This component
satisfies the theorem.
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Figure 8: Homogeneous lifts. In this example L = |2|, and the two labels
are indicated with two different kinds of arrows. Graph Hε is a homogeneous
2|L|-regular ordered L-digraph with a large girth—in particular, the local
neighbourhood of a node looks like a tree. Graph G is an arbitrary L-digraph,
not necessarily ordered. Their product Gε is a lift of G, but it inherits the
desirable properties of Hε: a high girth and a homogeneous linear order.
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4 Proof of Main Theorem

Next, we use the tools of the previous section to prove Theorem 1. For clarity of
exposition we first prove Theorem 1 in the special case where A is an OI-algorithm.
The subsequent proof for an ID-algorithm A uses a somewhat technical but well-
known Ramsey type argument.

4.1 Proof of Main Theorem for OI-algorithms

We will prove the general and connected versions of Theorem 1 simultaneously;
for the proof of the connected version it suffices to consider only connected lifts
below. We do not need the assumption that F does not contain any trees.

Let Π be as in the statement of Theorem 1. Suppose an OI-algorithm A finds
an α-approximation of Π in F . We define a PO-algorithm B simply by setting
for W ∈W,

B(W ) = A
(
(T ∗, <∗, λ) �W

)
.

Now, Theorem 4 translates into saying that for every G ∈ F and ε > 0 we have
that A(Gε, <Gε, u) = B(Gε, u) for at least a (1 − ε) fraction of nodes u ∈ V (Gε).
The claim that B works as expected follows essentially from this fact as we argue
next.

For simplicity, we assume the solutions to Π are sets of vertices so that
A(G) ⊆ V (G); solutions that are sets of edges are handled similarly.

Fix G ∈ F and let ϕε : V (Gε)→ V (G), ε > 0, be the associated covering maps.

Algorithm B Finds a Feasible Solution of Π on G. Let V be a local PO-
algorithm verifying the feasibility of a solution for Π; we may assume V also runs
in time r. For ε > 0 sufficiently small, each v ∈ V (G) has a pre-image v′ ∈ ϕ−1

ε (v)
such that A and B agree on the vertices

⋃
v∈V (G)BGε(v

′, r). Thus, V accepts the

solution B(Gε) on the vertices v′. But because ϕε({v′ : v ∈ V (G)}) = V (G) it
follows that V accepts the solution B(G) = ϕε(B(Gε)) on every node in G.

Algorithm B Finds an α-Approximation of Π on G. We assume Π is
a minimisation problem; maximisation problems are handled similarly. Let
X ⊆ V (G) and Xε ⊆ V (Gε) be some optimal solutions of Π.

As ε → 0, the solutions B(Gε) and A(Gε) agree on almost all the vertices.
Indeed, a simple calculation shows that |B(Gε)| ≤ f(ε) · |A(Gε)| for some f with
f(ε)→ 1 as ε→ 0. Furthermore,

|B(G)|
|X|

=
|ϕ−1
ε (B(G))|
|ϕ−1
ε (X)|

≤ |B(Gε)|
|Xε|

≤ f(ε) · |A(Gε)|
|Xε|

≤ f(ε)α,

where the first equality follows from ϕε being an n-lift, and the first inequality
follows from ϕ−1

ε (B(G)) = B(Gε) and the fact that ϕ−1
ε (X) is a feasible solution

so that |Xε| ≤ |ϕ−1
ε (X)|. Since the above inequality holds for every ε > 0 we

must have that |B(G)|/|X| ≤ α, as desired.

4.2 Proof of Main Theorem for ID-algorithms

We extend the above proof to the case of local ID-algorithms A by designing
“worst-case” vertex identifiers for the instances in F in order to make A behave
similarly to a PO-algorithm on tree neighbourhoods. To do this we use the

13



Ramsey technique of Naor and Stockmeyer [19]; see also Czygrinow et al. [9]. For
a reference on Ramsey’s theorem see Graham et al. [11].

We use the following notation: if (X,<X) and (Y,<Y ) are linearly ordered sets
with |X| ≤ |Y |, we write f : (X,<X) ↪→ (Y,<Y ) for the unique order-preserving
injection f : X → Y that maps the ith element of X to the ith element of Y . A
t-set is a set of size t, and the set of t-subsets of X is denoted X(t).

Write ΩW for the family of functions W→ Ω; recall that each B ∈ ΩW can
be interpreted as a PO-algorithm. Set k = |ΩW| and t = |T ∗|. We consider every
t-subset A ∈ N(t) to be ordered by the usual order < on N. For W ∈W we let
fW,A : (W,<∗) ↪→ (A,<) so that the vertex-relabelled tree fW,A((T ∗, λ) �W ) has
the |W | smallest numbers in A as vertices. Define a k-colouring c : N(t) → ΩW

by setting
c(A)(W ) = A(fW,A((T ∗, λ) �W )).

For each m ≥ t we can use Ramsey’s theorem to obtain a number R(m) ≥ m,
so that for every R(m)-set I ⊆ N there exists an m-subset J ⊆ I such that
J (t) is monochromatic under c, i.e., all t-subsets of J have the same colour. In
particular, for every interval

I(m, i) = [(i− 1)R(m) + 1, iR(m)], i ≥ 1,

there exist an m-subset J(m, i) ⊆ I(m, i) and a colour (i.e., an algorithm)
Bm,i ∈ ΩW such that c(A) = Bm,i for all t-subsets A ⊆ J(m, i).

This construction has the following property.

Proposition 5. Suppose m ≥ |Gε| + t. Algorithms A and Bm,i produce the
same output on at least a (1− ε) fraction of the vertices in the vertex-relabelled
L-digraph fm,i(Gε), where

fm,i : (V (Gε), <Gε) ↪→ (J(m, i), <).

Proof. By Theorem 4, let U ⊆ V (fm,i(Gε)), |U | ≥ (1−ε)|Gε|, be the set of vertices
u with τ(fm,i(Gε), <, u) isomorphic to a subtree of τ∗. In particular, for a fixed
u ∈ U we can choose W ∈W such that

τ(fm,i(Gε), <, u) ' (T ∗, <∗, λ) �W.

Now, as m is large, there exists a t-set A ⊆ J(m, i) such that

τ(fm,i(Gε), u) = fW,A((T ∗, λ) �W ).

Thus, A and Bm,i agree on u by the definition of Bm,i.

For every n ∈ N some colour appears with density at least 1/k (i.e., appears at
least n/k times) in the sequence Bm,1,Bm,2, . . . ,Bm,n. Hence, let Bm be a colour
that appears with density at least 1/k among these sequences for infinitely many
n. Let B be a colour appearing among the Bm for infinitely many m. We claim
B satisfies Theorem 1. In fact, Theorem 1 follows from the following proposition
together with the considerations of Section 4.1.

Proposition 6. For every Gε there exists an n-lift H of Gε such that V (H) ⊆
{1, 2, . . . , s(|H|)} and A(H, u) = B(H, u) for a (1− ε) fraction of nodes u ∈ V (H).
Moreover, if Gε is connected and not a tree, H can be made connected.
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Proof. Let m be such that m ≥ |Gε|+ t and B = Bm. For infinitely many n there
exists an n-set I ⊆ [nk] of indices such that B = Bm,i for i ∈ I. Consider the
following n-lift of Gε obtained by taking disjoint unions:

H =
⋃
i∈I

fm,i(Gε).

Algorithms A and B agree on a (1− ε) fraction of the nodes in H by Proposition 5.
Furthermore, we have |H| = n|Gε| and V (H) ⊆ {1, 2, . . . , nkR(m)}. We are
assuming that s(n) = ω(n) so choosing a large enough n proves the non-connected
version of the claim.

Finally, suppose Gε is connected and not a tree. We may assume that there is
an edge e = (u, v) ∈ E(Gε) so that Gε remains connected when e is removed and
that a (1− ε) fraction of vertices in Gε have r-neighbourhoods not containing e
that are isomorphic into τ∗. Now H above is easily modified into a connected
graph by redefining the directed matching between the fibre {ui}i∈I of u and the
fibre {vi}i∈I of v. Namely, let π be a cyclic permutation on I and set

E′ =
(
E(H) r {(ui, vi)}i∈I

)
∪ {(ui, vπ(i))}i∈I .

Then H′ = (V (H), E′) is easily seen to be a connected n-lift of Gε satisfying the
claim.

Remark 4.1. Above, we assumed that instances G have node identifiers V (G) ⊆
{1, 2, . . . , s(n)}, n = |G|, for s(n) = ω(n). By choosing identifiers more economi-
cally as in the work of Czygrinow et al. [9] one can show lower bounds for the
graph problems of Section 1.3 even when s(n) = n.

5 Construction of Homogeneous Graphs of Large
Girth

In this section we prove Theorem 3. Our construction uses Cayley graphs of
semi-direct products of groups. First, we recall the terminology in use here; for a
standard reference on group theory see, e.g., Rotman [20].

For the benefit of the reader who is not well-versed in group theory we include
in Appendix A a short primer on the semi-direct product groups that are used
below.

5.1 Semi-Direct Products

Let G and H be groups with H acting on G as a group of automorphisms. We
write h · g for the action of h ∈ H on g ∈ G so that the mapping g 7→ h · g is
an automorphism of G. The semi-direct product GoH is defined to be the set
G×H with the group operation given by

(g, h)(g′, h′) = (g(h · g′), hh′).

5.2 Cayley Graphs

The Cayley graph C(G,S) of a group G with respect to a finite set S ⊆ G is an
S-digraph on the vertex set G such that each g ∈ G has an outgoing edge (g, gs)
labelled s for each s ∈ S. We require that 1 /∈ S so as not to have any self-loops.
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We do not require that S is a generating set for G, i.e., the graph C(G,S) need
not be connected.

If ϕ : H → G is an onto group homomorphism and S ⊆ H is a set such that
the mapping ϕ is injective on S ∪ {1}, then ϕ naturally induces a covering map
of digraphs C(H,S) and C(G,ϕ(S)).

5.3 Proof of Theorem 3

Let n ∈ N be an even number. We consider three families of groups, {Hi}i≥1,
{Wi}i≥1, and {Ui}i≥1, that are variations on a common theme. The families are
defined iteratively as follows:

H1 = Zn, W1 = Z2, U1 = Z,
Hi+1 = H2

i o Zn, Wi+1 = W 2
i o Z2, Ui+1 = U2

i o Z.

Here, the cyclic group Zn = {0, 1, . . . , n − 1} acts on the direct product H2
i =

Hi ×Hi by cyclically permuting the coordinates, i.e., the subgroup 2Zn ≤ Zn
acts trivially and the elements in 1 + 2Zn swap the two coordinates. The groups
Z2 and Z act analogously in the definitions of Wi and Ui. See Appendix A for
more information on groups Hi, Wi, and Ui.

The underlying sets of the groups Hi, Wi, and Ui consist of d(i)-tuples of
elements in Z, for d(i) = 2i − 1, so that Wi ⊆ Hi ⊆ Ui as sets. Interpreting these
tuples as points in Rd(i) we immediately get a natural embedding of every Cayley
graph of these groups in Rd(i). This geometric intuition will become useful later.

(a) The groups Wi are i-fold iterated regular wreath products of the cyclic
group Z2. These groups have order |Wi| = 2d(i) and they are sometimes
called symmetric 2-groups; they are isomorphic to the Sylow 2-subgroups
of the symmetric group on 2i letters [20, p. 176].

(b) The groups Ui are natural extensions of the groups Wi by the free abelian
group of rank d(i): the mapping ϕi : Ui →Wi that reduces each coordinate
modulo 2 is easily seen to be an onto homomorphism with abelian kernel
(2Z)d(i) ' Zd(i).

(c) The groups Hi are intermediate between Ui and Wi in that the mapping
ψi : Ui → Hi that reduces each coordinate modulo n is an onto homomor-
phism, and the mapping ϕ′i : Hi →Wi that reduces each coordinate modulo
2 is an onto homomorphism. In summary, the following diagram commutes:

Ui
ψi //

ϕi   

Hi

ϕ′
i
��
Wi

Our goal will be to construct a suitable Cayley graph H of some Hi. We
will use the groups Wi to ensure H has large girth, whereas the groups Ui will
guarantee that H has an almost-everywhere homogeneous linear ordering.

Girth. Gamburd et al. [10] study the girth of random Cayley graphs and prove,
in particular, that a random k-subset of Wi generates a Cayley graph of large
girth with high probability when i � k is large. We only need the following
weaker version of their theorem (see Appendix B for an alternative, constructive
proof).
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Theorem 7 (Corollary to [10, Theorem 6]). Let k, r ∈ N. There exists an i ∈ N
and a set S ⊆ Wi, |S| = k, such that the girth of the Cayley graph C(Wi, S) is
larger than 2r + 1.

Fix a large enough j ∈ N and a k-set S ⊆ Wj so that C(Wj , S) has a girth
larger than 2r+ 1. Henceforth, we omit the subscript j and write H, W , U , ϕ, ψ
and d in place of Hj , Wj , Uj , ϕj , ψj and d(j). Interpreting S as a set of elements
of H and U (so that ϕ(S) = ψ(S) = S) we construct the Cayley graphs

H = C(H,S), W = C(W,S), and U = C(U, S).

As each of these graphs is a lift of W, none have cycles of length at most 2r + 1
and their r-neighbourhoods are trees.

Linear Order. Next, we introduce a left-invariant linear order < on U satis-
fying

u < v =⇒ wu < wv, for all u, v, w ∈ U.

Such a relation can be defined by specifying a positive cone P ⊆ U of elements
that are greater than the identity 1 = 1U so that

u < v ⇐⇒ 1 < u−1v ⇐⇒ u−1v ∈ P.

A relation < defined this way is automatically left-invariant; it is transitive iff
u, v ∈ P implies uv ∈ P ; and every pair u 6= v is comparable iff for all w 6= 1,
either w ∈ P or w−1 ∈ P . The existence of a P satisfying these conditions
follows from the fact that U is a torsion-free soluble group (e.g., [8]), but it is
easy enough to verify that setting

P =
{

(u1, u2, . . . , ui, 0, 0, . . . , 0) ∈ U : 1 ≤ i ≤ d and ui > 0
}

(1)

satisfies the required conditions above (see Appendix A.3).
Because U acts (by multiplication on the left) on U as a vertex-transitive

group of graph automorphisms, it follows that the structures (U , <, u), u ∈ U ,
are pairwise isomorphic. A fortiori, the r-neighbourhoods τ(U , <, u), u ∈ U , are
all pairwise isomorphic. Let τ∗ be this common r-neighbourhood isomorphism
type.

Transferring the Linear Order on U to H. Let V (H) be ordered by
restricting the order < on U to the set V (H) = Zdn underlying the group H. Note
that < is not a left-invariant order on H (indeed, no non-trivial finite group can
be left-invariantly ordered). Nevertheless, we will argue that, as n→∞, almost
all u ∈ V (H) have r-neighbourhoods of type τ∗.

The neighbours of a vertex u ∈ V (U) are elements us where s ∈ S ∪ S−1 ⊆
[−1, 1]d. The right multiplication action of s ∈ S ∪ S−1 on u can be described
in two steps as follows: First, the coordinates of s are permuted (as determined
by u) to obtain a vector s′. Then, us is given as the standard addition of the
vectors u and s′ in Zd ⊆ Rd. Hence, us ∈ u+ [−1, 1]d, and moreover,

BU (u, r) ⊆ u+ [−r, r]d. (2)

This means that vertices close to u in the graph U are also close in the associated
geometric Rd-embedding.
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Consider the set of inner nodes I = [r, (n − 1) − r]d. Let u ∈ I. By (2),
the vertex set BU(u, r) is contained in Zdn. This implies that the cover map
ψ is the identity on BU (u, r) and consequently the r-neighbourhood τ(H, <, u)
contains the ordered tree τ(U , <, u) ' τ∗. If τ(H, <, u) had any additional edges
to those of τ(U , <, u), this would entail a cycle of length ≤ 2r + 1 in H, which
is not possible. Thus, τ(H, <, u) ' τ∗. The density of elements in H having
r-neighbourhood type τ∗ is therefore at least |I|/|H| = (n− 2r)d/nd ≥ 1− ε, for
large n.

Finally, to establish Theorem 3 it remains to address H’s connectedness.
But if H is not connected, an averaging argument shows that some connected
component must have the desired density of at least (1− ε) of type τ∗ vertices.
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A Groups of Section 5 in More Detail

This appendix contains expository material on the structure and properties of
groups Hi, Wi, and Ui for the convenience of the reader who is not familiar
with semi-direct products. The notation we introduce here will become useful in
Appendix B.

A.1 Binary Trees

We can interpret the elements of groups Hi, Wi, and Ui as complete binary trees
of height i: there are i levels of internal nodes, one level of leaf nodes, and all
internal nodes have two children. The number of internal nodes is d(i) = 2i − 1.

Moreover, there is some data associated with the internal nodes: in Hi the
internal nodes are labelled with the elements of Zn, in Wi they are elements of
Z2, and in Ui they are elements of Z.

A.2 Group Ui

We will now focus on the case of group Ui; the other two cases are similar.
Wherever reasonable, we will use the convention that x, y, . . . ∈ Z, A,B, . . . ∈ Ui,
and α, β, . . . ∈ Uj for some j < i.

Base Case. We will use the symbol ◦ to denote a binary tree of height 0.
Group U0 is the trivial group U0 = {◦}.

Recursive Step. Now assume that we have defined group Ui−1; we proceed
to define group Ui. Elements of group Ui are triples (α, β, x), where α, β ∈ Ui−1

and x ∈ Z. Intuitively, (α, β, x) is a tree with the element x as the root node, α
as the left subtree, and β as the right subtree.

In what follows, we will write ẍ for an even ẍ ∈ Z and ẋ for an odd ẋ ∈ Z.
Group Z acts on Ui−1 × Ui−1 as follows, depending on the parity:

ẍ · (α, β) = (α, β),

ẋ · (α, β) = (β, α).

Hence by the definition of the semi-direct product, the group operation in Ui is

(α, β, ẍ)(γ, δ, ÿ) = (αγ, βδ, ẍ+ ÿ),

(α, β, ẋ)(γ, δ, ÿ) = (αδ, βγ, ẋ+ ÿ),

(α, β, ẍ)(γ, δ, ẏ) = (αγ, βδ, ẍ+ ẏ),

(α, β, ẋ)(γ, δ, ẏ) = (αδ, βγ, ẋ+ ẏ).

Shorthand Notation. To make this a bit easier to approach, let us define
some shorthand notation:

I0 = ◦,
Ii = (Ii−1, Ii−1, 0),

Xi(x) = (Ii−1, Ii−1, x),

[α, β] = (α, β, 0).

20



In particular, Ii ∈ Ui is an empty tree of height i: all internal nodes are labelled
with zeroes. Observe that Ii is the identity element of Ui:

(α, β, x)Ii = (α, β, x) = Ii(α, β, x).

Moreover, we can express any element as a product of [·, ·] and Xi:

[α, β]Xi(x) = (α, β, x).

We will omit the subscript i when it is clear from the context.

Examples of Group Operations. Now the group operations are much more
straightforward:

[α, β] [γ, δ] = [αγ, βδ],

X(x)X(y) = X(x+ y),

X(ẍ) [α, β] = [α, β]X(ẍ),

X(ẋ) [α, β] = [β, α]X(ẋ),

[α, β]−1 = [α−1, β−1],

X(x)−1 = X(−x).

Here are some further examples:

(α, β, x)−1 =
(
[α, β]X(x)

)−1

= X(x)−1 [α, β]−1

= X(−x) [α−1, β−1],

(α, β, ẍ)−1 = (α−1, β−1,−ẍ),

(α, β, ẋ)−1 = (β−1, α−1,−ẋ).

If A ∈ Ui, we can interpret the left multiplication as follows from the perspective
of trees:

– X(ẍ)A: increment the label of the root node by ẍ.

– X(ẋ)A: exchange the left and the right subtree of A, and increment the
label of the root node by ẋ.

– [α, β]A: recursively apply α to the left subtree of A and β to the right
subtree of A.

A.3 Positive Cone

Let us now have a closer look at the definition of a positive cone P in (1). The
properties of P are easy to verify if we consider the following alternative, recursive
definition. For each i > 0, we say that A = (α, β, x) ∈ Ui is positive if one of the
following holds:

(a) x > 0,
(b) x = 0 and β is positive,
(c) x = 0 and β = Ii−1 and α is positive.

Finally, element I0 ∈ U0 is not positive. Let Pi ⊆ Ui consist of all positive
elements of Ui. Let us prove the following properties.
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Lemma 8. For any i and A ∈ Ui, precisely one of the following is true: A = Ii,
A ∈ Pi, or A−1 ∈ Pi.

Proof. The proof is by induction. The case i = 0 is trivial: U0 = {I0}, and
I−1

0 = I0 is not positive by definition.
Now assume that i > 0 and A = (α, β, x). If x 6= 0, we have A−1 = (γ, δ,−x)

for some γ, δ ∈ Ui−1. Therefore we have either (i) A 6= Ii, A ∈ P , and A−1 /∈ P ,
or (ii) A 6= Ii, A /∈ P , and A−1 ∈ P .

Otherwise x = 0, and we have A−1 = (α−1, β−1, 0). The claim follows by a
simple case analysis.

Lemma 9. If A,B ∈ Pi, we have AB ∈ Pi.

Proof. The proof is by induction. The claim is trivial if i = 0. Otherwise, let A =
(α1, β1, x) and B = (α2, β2, y). If x > 0 or y > 0, we have AB = (α, β, x+y) ∈ Pi,
as x + y > 0. Otherwise x = y = 0 and AB = (α1α2, β1β2, 0), and the claim
follows by a simple case analysis.

Hence if we define a relation < on Ui by A < B ⇐⇒ A−1B ∈ Pi, we have
the following properties:

(a) A < B and B < C implies A < B < C,
(b) A < B implies CA < CB, and
(c) for all A,B ∈ Ui precisely one of the following is true: A = B, A < B, or

A > B.

That is, < is a left-invariant linear order.

A.4 Group Wi

Let us now compare Wi with Ui. The case of Wi is further simplified, as we
have only two possible values of x ∈ {0, 1}. Moreover, X(0) = I is the identity
element; hence there is only one non-trivial case, X(1):

X(1) [α, β] = [β, α]X(1),

X(1)−1 = X(1),

(α, β, 0)−1 = (α−1, β−1, 0),

(α, β, 1)−1 = (β−1, α−1, 1).

Intuitively, an element A ∈Wi is simply an automorphism of a complete binary
tree of height i: for example, X(1) is an automorphism that exchanges the left
and the right subtree of the root node. The group operation is, in essence, the
composition of automorphisms.

More Shorthand Notation. The following notation will prove useful in Ap-
pendix B. First, let us extend the bracket notation to cover an arbitrary vector
of length ` = 2k:

[α1, α2, α3, α4] =
[
[α1, α2], [α3, α4]

]
,

[α1, α2, . . . , α8] =
[[

[α1, α2], [α3, α4]
]
,
[
[α5, α6], [α7, α8]

]]
, . . .

Then, we extend the function X in an analogous fashion. For any ` = 2k, we
define

Xi(x1, x2, . . . , x`) = [Xi−k(x1), Xi−k(x2), . . . , Xi−k(x`)].
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and

Xi(r; `) = Xi(y1, y2, . . . , y`),where yr = 1 and yj = 0 for all j 6= r.

For example,

X(3; 4) = X(0, 0, 1, 0) =
[
[X(0), X(0)], [X(1), X(0)]

]
.

Intuitively, Xi(x1, x2, . . . , x`) is a complete binary tree of height i that is mostly
empty: the nodes at depth k have values x1, x2, . . . , x`, but all other nodes have
value 0.

Examples of Group Operations. We conclude this section with the following
examples of group operations in Wi:

X(x1, x2, . . . , x`)
−1 = X(x1, x2, . . . , x`),

X(x1, x2, . . . , x`)X(y1, y2, . . . , y`) = X(x1 + y1, x2 + y2, . . . , x` + y`),

X(x1, x2, . . . , x`) [α1, α2, . . . , α`] = [X(x1)α1, X(x2)α2, . . . , X(x`)α`].

In particular, X(r; `) exchanges the rth pair of subtrees:

X(3; 4) [α1, β1, α2, β2, α3, β3, α4, β4] = [α1, β1, α2, β2, β3, α3, α4, β4]X(3; 4).

B Constructing High-Girth Generators

In this appendix, we give an alternative proof of Theorem 7. Our proof borrows
many ideas from the original proof of Gamburd et al. [10]. However, while they
use the probabilistic method to prove that a set S exists, we give a simple explicit
construction. In terms of the asymptotic growth of girth, this version is weaker
but sufficient for our purposes. We will use the notation defined in Appendix A;
see Figure 9 for an illustration.

B.1 Preliminaries

Fix integers g and m. For i = 0, 1, . . . , g, define

f(i) = m+ g − i,
h(i) = i(2m+ 2g − i+ 1)/2,

n(i) = 2f(i).

Note that we have

h(0) = 0,

h(i)− h(i− 1) = f(i) + 1,

n(i)/n(i− 1) = 1/2.

For each i = 1, 2, . . . , g, let Gi be the direct product

Gi = W
n(i)
h(i−1)+1 = Wh(i−1)+1 ×Wh(i−1)+1 × . . .×Wh(i−1)+1.

As h(i− 1) + 1 + log2 n(i) = h(i), we can interpret Gi as a subgroup of Wh(i): it
consists of elements of the form

[α1, α2, . . . , αn(i)] ∈Wh(i), αi ∈Wh(i−1)+1.

For each i = 1, 2, . . . , g and k ≤ n(i) we define the projections pki : Gi →Wh(i−1)+1

by
pki ([α1, α2, . . . , αn(i)]) = αk.
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B.2 Complex Words

Let Si ⊆Wh(i). A word in Si is a product of the form

w = A
σ(1)
1 A

σ(2)
2 · · ·Aσ(`)

`

such that Aj ∈ Si and σ(j) ∈ {−1, 1} for each j. We say that ` is the length of
the word. The word w vanishes if we have w = Ih(i) in group Wh(i).

The word is reduced if Ai = Ai+1 implies σ(i) = σ(i + 1). That is, in a
reduced word we do not have a subword of the form BB−1 or B−1B, B ∈ Si.
In the Cayley graph C(Wh(i), Si), a walk of length ` corresponds to a word of
length `, a non-backtracking walk corresponds to a reduced word, and a cycle
corresponds to a reduced walk that vanishes.

Let X = {A1, A2, . . . , A`}. We say that the complexity of the word w is
`− |X|. For example, if L1, L2, and L3 are distinct elements of Si, then

(a) the complexity of L1L2L3 and L−1
2 L3 is 0,

(b) the complexity of L1L2L1L3, L3L3, and L1L3L
−1
1 is 1,

(c) the complexity of L1L1L2L2 and L1L3L
−1
1 L−1

1 is 2.

Obviously, the complexity of any word of length g is at most g − 1.
We say that a word w is k-complex if it is reduced and its complexity is at

most k. For example, a 2-complex word is always a 3-complex word as well.

B.3 Overview

We will construct sets S1, S2, . . . , Sg such that

(a) Si ⊆ Gi,
(b) |Si| = n(i),
(c) (i− 1)-complex words in Si do not vanish.

It follows that

(a) Sg ⊆ Gg,
(b) |Sg| = 2m,
(c) reduced words of length 1 ≤ ` ≤ g in Sg do not vanish.

It follows that the girth of C(Wh(g), Sg) is larger than g. In particular, Theorem 7
follows by choosing g = 2r + 1 and m > log2 k. Our construction satisfies

g +m >
√
h(g) >

√
log2 log2 |Wh(g)|.

B.4 Base Case

Construction. The base case of our construction, S1 ⊆ G1 is straightforward.

Note that we have h(0) + 1 = 1; hence G1 = W
n(1)
1 . Recall that W1 = {I,X(1)}.

We define

Lj = Xh(1)(j;n(1)),

S1 = {L1, L2, . . . , Ln(1)}.

Observe that we have the projections

pki (Lj) = pki (L
−1
j ) = I, k 6= j,

pki (Lj) = pki (L
−1
j ) = X(1), k = j.
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Correctness. Now assume that w is a 0-complex word in S1. Then there is at
least one Lk ∈ S1 that occurs in w; moreover, Lk occurs only once. It follows
that pk1(w) = X(1) 6= I, and hence w does not vanish in G1.

B.5 Recursive Step

Construction. Let i ≥ 2. Assume that we have already constructed a set Si−1

such that (i− 2)-complex words in Si−1 do not vanish in Wh(i−1). We proceed to
construct Si ⊆Wh(i).

We have |Si−1| = 2n(i); hence we can label the elements of Si−1 by γj and δj
where j = 1, 2, . . . , n(i). We define

Kj = [γj , δj , γj , δj , . . . , γj , δj ],

Lj = Kj Xh(i)(j;n(i)),

Si = {L1, L2, . . . , Ln(i)}.

Observe that we have the projections

pki (Kj) = [γj , δj ],

pki (Lj) = [γj , δj ], k 6= j,

pki (Lj) = [γj , δj ]X(1), k = j,

pki (L
−1
j ) = [γ−1

j , δ−1
j ], k 6= j,

pki (L
−1
j ) = X(1) [γ−1

j , δ−1
j ], k = j.

Intuition. We will prove that a (i− 1)-complex word w in Si does not vanish
in Wh(i). We will argue that there is at least one projection pki (w) 6= I. To gain
some intuition, let us begin with some examples.

First, let w = L1L2L3L1. Now

p1
i (w) = [γ1, δ1]X(1) [γ2, δ2] [γ3, δ3] [γ1, δ1]X(1)

= [γ1δ2δ3δ1, δ1γ2γ3γ1],

p2
i (w) = [γ1, δ1] [γ2, δ2]X(1) [γ3, δ3] [γ1, δ1]

= [γ1γ2δ3δ1, δ1δ2γ3γ1]X(1),

p3
i (w) = [γ1, δ1] [γ2, δ2] [γ3, δ3]X(1) [γ1, δ1]

= [γ1γ2γ3δ1, δ1δ2δ3γ1]X(1),

p4
i (w) = [γ1, δ1] [γ2, δ2] [γ3, δ3] [γ1, δ1]

= [γ1γ2γ3γ1, δ1δ2δ3δ1].

In particular, w is a word of length 4 in Si, and it follows that all projections are
of form [w1, w2]X(x), where w1 and w2 are words of length 4 in Si−1. Moreover,
as the original word w was 1-complex, w1 and w2 are also 1-complex: each Lj
contributes precisely one δj or γj in w1 and w2. Projection p4

i (w) is not useful for
our purposes; nothing interesting happens there, as w did not contain any copies
of L4. However, the case of p1

i (w) is more interesting: we have p1
i (w) = [w1, w2],

and this time w1 and w2 are not only 1-complex but also 0-complex.
Second, let w = L2L1L

−1
2 . Now

p1
i (w) = [γ2, δ2] [γ1, δ1]X(1) [γ−1

2 , δ−1
2 ]

= [γ2γ1δ
−1
2 , δ2δ1γ

−1
2 ].

Again we were able to identify a projection p1
i (w) = [w1, w2] such that w1 and

w2 are 0-complex even though w is 1-complex.
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Correctness. To generalise the above observations, we study the following
cases that cover all possible (i− 1)-complex words in Si.

(a) For some k, word w is of the form

w = sLktLku,

where t does not contain any copies of Lk or L−1
k . It follows that we have

pki (s) = X(s′) [s1, s2], pki (t) = [t1, t2], pki (u) = [u1, u2]X(u′)

for some s1, s2, t1, t2, u1, u2 ∈Wh(i−1) and s′, u′ ∈ {0, 1}. Hence

pki (w) = X(s′) [s1, s2] [γk, δk]X(1) [t1, t2] [γk, δk]X(1) [u1, u2]X(u′)

= X(s′) [s1γkt2δku1, s2δkt1γku2]X(u′).

Now if w is an (i−1)-complex word in Si, then s1γkt2δku1 is (i−2)-complex
in Si−1: we have removed at least one duplicate element, as one slot of
Lk is replaced with γk and while the other slot is replaced with δk. Hence
pki (w) 6= I and w does not vanish.

(b) For some k, word w is of the form w = sL−1
k tL−1

k u, where t does not contain
any copies of Lk or L−1

k . It follows that w−1 = u−1Lkt
−1Lku

−1, and the
above argument shows that w−1 6= I. Hence w does not vanish.

(c) For some j 6= k and some a, b, c ∈ {−1, 1}, word w is of the form

w = sLak t L
b
j uL

c
k v,

where t and u do not contain any copies of Lj , and L−1
j . It follows that

pji (s) = X(s′) [s1, s2], pji (t) = [t1, t2],

pji (u) = [u1, u2], pji (v) = [v1, v2]X(v′)

for some s1, s2, t1, t2, u1, u2, v1, v2 ∈Wh(i−1) and s′, v′ ∈ {0, 1}. Hence

pji (w) = X(s′) [s1, s2] [γak , δ
a
k ] [t1, t2] [γbj , δ

b
j ]X(1) [u1, u2] [γck, δ

c
k] [v1, v2]X(v′)

= X(s′)[s1 γ
a
k t1 γ

b
j u2 δ

c
k v2, s2 δ

a
k t2 δ

b
j u1 γ

c
k v1]X(v′ + 1).

Again, if w is an (i − 1)-complex word in Si, then s1 γ
a
k t1 γ

b
j u2 δ

c
k v2 is

(i− 2)-complex in Si−1: on slot of Lk contributes a γk while the other slot
contributes a δk. Hence w does not vanish.

(d) The above cases cover all reduced words w that contain at least two
occurrences of any element of Si; recall that in a reduced word, we cannot
have Lk and L−1

k next to each other. The only remaining case is that all

elements of w are distinct. Then w is 0-complex, and pji (w) = [w1, w2]X(x),
where w1 and w2 are 0-complex. In particular, they are (i − 2)-complex,
they do not vanish, and hence w does not vanish, either.

This concludes the proof of Theorem 7.
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Figure 9: Construction of Appendix B, in the case g = 3 and m = 1. We have
h(0) = 0, h(1) = 4, h(2) = 7, and h(3) = 9. There are n(1) = 8 elements in
S1; these can be interpreted as complete binary trees of height 4, as they are
elements of group W4. In the illustration, a black internal node indicates the
value 1 and a white internal node indicates the value 0. For the purposes of
constructing S2 = {L1, L2, L3, L4} in Appendix B.5, we label the elements of
S1 by γ1, δ1, γ2, δ2, . . . , γ4, δ4. Now Lj is constructed by gluing together copies
of γj and δj .
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