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ABSTRACT
Dependability and fault-tolerance, which are key require-
ments for business- or safety-critical applications, require
explicit knowledge of potential faults that may occur within
a system. In contrast to other major research directions,
the emerging field of distributed event-based systems is yet
lacking a common understanding of faults. In this paper we
take a step forward and study potential origins and effects of
faults in such systems. Our work on a unified fault taxonomy
follows a rigorous methodology. We first identify five core
sub-areas in the broader field of event-based systems, and
discuss commonalities and differences among them. Then we
derive from the existing literature a coherent domain model,
which accurately captures the specifics of the different areas.
The domain model provides a holistic view and covers both
structural and procedural aspects of event-based systems.
Based on this model, we elaborate a detailed taxonomy of
faults, in line with well-established fault dimensions from de-
pendable and secure computing. The fault taxonomy forms
the basis for a comprehensive discussion of fault instances
across the five sub-areas of event processing.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based Ser-
vices; D.4.5 [Operating Systems]: Reliability; D.4.7 [Ope-
rating Systems]: Organization and Design; H.3.3 [Infor-
mation Search and Retrieval]: Retrieval models

General Terms
Design, Management, Reliability, Standardization

Keywords
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processing, sensor networks, business processes
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1. INTRODUCTION
Event-based systems [21, 42, 51] in various fashions are

gaining considerable momentum as a means for encoding
complex business logic on the basis of correlated, tempo-
rally decoupled event messages. Distributed computing sys-
tems – including event-based systems – are often burdened
with stringent requirements concerning dependability [37]
and fault-tolerance [32], dictated by business regulations,
contractual agreements, or laws. Fault-tolerance in a wider
sense involves different aspects, such as fault detection, iso-
lation, or recovery. Consideration of these aspects in the
software development and validation process requires pre-
cise knowledge about the type and nature of faults that may
potentially occur.

Many research directions have acknowledged the impor-
tance of a common understanding of faults. This has led
to comprehensive surveys and taxonomies for very specific
types of faults, including program and operating system
faults [3], faults in object-oriented software [10], faults in
service-based applications [11,14], faults in memory devices
[70], or faults in microprocessor design [4]. Event processing,
as an emerging research direction, is yet lacking a common
model for faults. Existing works on faults in distributed sys-
tems are partly applicable as well, but some characteristics
that are common among event-based systems (e.g., event
correlation or timing aspects) call for a more specific analy-
sis and classification.

In this paper, the main contribution is an initial fault tax-
onomy for event-based systems. We study different aspects
of faults in event-based systems in general, with a particu-
lar focus on five main sub-areas: (1) event-driven interac-
tion paradigms (EDIP) [13, 22, 23, 33, 53], (2) event stream
processing (ESP) [1, 6, 7, 9, 15, 64], (3) complex event pro-
cessing (CEP) [21, 42, 75], (4) event-driven monitoring net-
works and wireless sensor networks (WSN) [2, 12, 35, 46, 52,
54, 58], and (5) event-driven business process management
(EDBPM) [57,59,69,71], including the related field of event-
driven service-based systems [49,74].

We identify various requirements from these areas, derive
a common (unified) event processing model and discuss po-
tential faults in these systems along different dimensions.
Note that the distinction between the above five types of
event-based systems is not always clear-cut. Contrarily, the
five areas share many common concepts and characteristics,
which leads to the idea that the rich body of knowledge from
different fields should be combined into a unified taxonomy.
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1.1 Methodology
Deriving and applying a fault taxonomy requires a rigor-

ous methodological approach, which is briefly describe here.
We first establish a common model for distributed event-

based systems, which captures general properties across dif-
ferent types of event-based systems. To that end, we identi-
fied more specific sub-areas in the broad field of event pro-
cessing. The model is a contribution in itself, as it sum-
marizes artifacts, properties and requirements of different
event processing disciplines and provides a guideline how to
integrate these artifacts into a single reference model. Sim-
ilar efforts have been undertaken in the past (e.g., [50, 73])
and the goal is to find commonalities among the existing
approaches. What distinguishes our model from existing
approaches is that we specifically seek potential origins of
faults. Hence, we focus on the event processing artifacts
that we deem most relevant, as well as connections, interac-
tions and relations between them.

Next, the core concepts and terminology are clarified and
applied to our context. Among other things, we recite the
often used distinction between failures, errors and faults [5]
and discuss their relevance in our context. We then define
the dimensions along which the fault taxonomy is estab-
lished. Concerning the taxonomy dimensions, we distinguish
between fault classes on the one hand, and fault sources on
the other hand. Afterwards, we combine the sub-areas and
dimensions and discuss types and manifestations of possible
faults in event-based systems. Where applicable, the fault
description refers back to the affected artifacts in the model.

Although not directly a part of this paper’s contribution,
we also briefly outline in the conclusions how the obtained
model and fault taxonomy can be implemented and applied
to real-life platforms with the goal of fault injection [31, 32]
and fault diagnosis [30], which is our focus for future work.

1.2 Roadmap
The remainder of this paper is structured as follows. Sec-

tion 2 defines the common model for event-based systems,
which is used throughout the paper. Section 3 constitutes
the core contribution where we work out selected classifica-
tion dimensions, establish the fault taxonomy along these
dimensions, and provide an in-depth discussion of fault in-
stances for each of the five discussed sub-areas. Related
work that deserves special consideration and has not been
mentioned in the main part of the paper, is discussed in
Section 4. Finally, Section 5 concludes the paper, discusses
remaining limitations, and points to application scenarios
and future research directions.

2. A COMMON MODEL OF DISTRIBUTED
EVENT-BASED SYSTEMS

In this section, we establish a common model of event-
based systems, which serves as the basis for discussion in
the remainder of the paper. The goal of the model is to cap-
ture specifics of different variants of distributed event-based
systems. In particular, the model is derived from various
previous publications in five sub-areas, which we briefly dis-
cuss in Section 2.1. The challenge in defining such a refer-
ence model is the tradeoff of including as many aspects and
different viewpoints as possible, while at the same time keep-
ing the complexity at a minimum, providing the necessary
level of generality.

2.1 Specializations
We have evaluated various publications published as books,

journal or conference contributions related to event-based
systems, and have extracted five main sub-areas of this field.

Figure 1: Sub-Areas of Event-Based Systems

The first principal field involves event-based information
dissemination [44, 53] and event-driven programming mod-
els [17], including content filtering [33], message oriented
middleware (MOM) [8], wide-area notification services [13],
message-passing systems [20], or tuple spaces [26]. Exam-
ples where this field plays a key role are emergency control
systems, real-time collaboration, or active databases [47].
Here we collectively refer to this class of systems as event-
driven interaction paradigms (EDIP). The event-based
interaction mode has also gained importance in software en-
gineering, e.g., for graphical user interface software [65], in
the context of specification of system architecture [41, 45],
or under the term implicit invocation [25].

The second field is event stream processing [6, 7, 64]
(ESP), which deals with continuous queries over data streams,
often with a focus on high-frequency events and scalability.
Example applications are financial services [9], stock trading
platforms [1], or network traffic management [7].

The third field is complex event processing [21,42,43]
(CEP), which covers the core concepts of causal event his-
tories, event patterns, event filtering and event aggrega-
tion [43]. Application areas include geospatial event pro-
cessing [21], RFID-based product monitoring [72], or online
fraud detection [21,60].

The fourth main area of interest is event-driven wireless
sensor networks [2, 12, 58] (WSN), including applications
of ubiquitous computing [66], intrusion detection [35], or
monitoring of environment (temperature) data [58]. Among
the key problems in this field are energy-efficiency, event
routing or data aggregation [34].

The fifth area is service-oriented and event-driven
business process management [69, 74] (EDBPM), with
popular examples including road tolling systems [21], order
and shipment management [57], or workflows of telecommu-
nication providers [49].
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Figure 2: Excerpt of the Common Model for Event-Based Systems

Figure 1 contains five elliptic shapes which represent the
five mentioned event processing areas. The intersection of
the shapes is a circle that contains concepts of the publish/-
subscribe (Pub/Sub) interaction scheme [22, 23]. Pub/-
Sub elements are commonly found in all areas (e.g., events,
producers, consumers), although sometimes slightly differ-
ent terminology is used in each field. Moreover, there are
characteristics and challenges specific to each area, which
are printed in the non-intersecting parts of the figure. To
further illustrate some of the commonalities among the five
sub-areas, Table 1 lists typical terminology in the different
areas which often refers to similar concepts.

The concept of events plays a role in many other research
areas that are rather remotely related to our choice, for in-
stance interconnect solutions for large scale multiprocessor
systems [16], discrete event systems [55], or events/signals
in operating systems [28]. Although partly applicable to
our approach, these areas are not explicitly included in the
discussion of this paper.

2.2 Description of the Common Model
In the following we discuss the unified model for event-

based systems. The model we propose is based on pre-
vious work that has tried to capture common features of
event-based systems and applications, most notably in [50,
62, 73]. The fundamental concepts, artifacts and entities of

the model (printed in bold) are introduced below. The core
elements and relationships of the model are depicted in the
form of a UML class diagram in Figure 2.

• An event is “anything significant that happens or is
contemplated as happening”[50]. Research distinguishes
simple events (events which do not represent a set of
other events) and complex events (events that span
multiple other events). An event has a certain type
and an arbitrary number of properties. Standard
properties are the source, destination and the time
at which the event occurred. Additionally, the event
may be associated with application-specific properties,
denoted as event payload.

• Events are typically sent from a producer (often ter-
med source in sensor networks) to one or more con-
sumers (sink in sensor networks) through a commu-
nication channel. Between the event producer(s) and
end-consumer(s) there is an event processing net-
work (EPN) consisting of event processing agents
(EPAs) connected by event channels. The channel may
be a direct connection (i.e., the producer is able to
contact the consumer(s) directly), or it may be part
of an event bus whose responsibility is to deliver the
events accordingly. Typically, additional functionali-
ties and responsibilities are attributed to the event bus,

Concept [50] EDIP ESP CEP WSN EDBPM

event notification tuple event datum invocation
producer publisher source producer sensor

service/
activity

consumer subscriber sink consumer sink
event processing service operator agent node

channel channel stream event bus link service bus
derived event merged message event pattern complex event fused information composite service

Table 1: Different Terminology for Similar Concepts
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such as storage, registry or access control services [50].
For simplicity, we summarize these artifacts under the
term utility services, which the EPN interacts with.
Another critical utility service is time synchroniza-
tion, required for correct and consistent timestamping
of events. In stream processing, EPNs and data flow
dependencies between EPAs are often modeled as a di-
rected acyclic graph (DAG). However, in general the
connections between EPAs may also be cyclic.

• Event consumers register a subscription with a pro-
ducer to receive notifications about certain events.
The subscription filter specifies which events are of
interest, based on the type and/or payload. Upon re-
ceipt of an event, consumers react by performing an
(application-dependent) task, e.g., operating a phys-
ical switch, invoking an electronic service, initiating
a business process etc. Subscriptions must be unam-
biguously identifiable, and consumers should be ad-
dressable. If notifications cannot be directly pushed
to consumers (via a publishing interface), they have
to be requested in pull mode. Internally, event pro-
ducers may bundle subscriptions of different consumers
that are similar/equal from a processing perspective.

• Correlation [35, 57] means identifying and grouping
events that are logically linked together (from the ap-
plication point of view). A correlation condition is a
function that determines for a set of events whether or
not they are correlated. In the simplest case, corre-
lation properties are defined on two or more event
types and all instances of these types for which the
properties match are considered correlated [57]. Event
isolation aims at dividing the total set of events into
(usually disjoint) sets of correlated events (a typical
example is isolation of business process instances).

• The logic of an event-based business process is spec-
ified in a process definition (e.g., using a graphi-
cal notation or some formalization like Petri nets) of
which multiple instances can exist. The process defi-
nition is either known a priori and transformed into
an EPN, or the definition is learned by monitoring the
EPN using process mining techniques [57,69].

• Communication between EPAs often (although not nec-
essarily) happens asynchronously and non-blocking.
Events that cannot be processed immediately are put
to a buffer (or queue). Buffers are subject to phys-
ical resource restrictions and therefore usually have a
limited size (length).

• Event routing may happen either statically (accord-
ing to pre-defined routing tables) or dynamically (de-
cision based on the characteristics or capabilities of
available EPAs). Dynamic (and resource efficient) rout-
ing is a key problem in WSNs [12,34].

• EPAs process a set of input events and output zero or
more (possibly new) events. Thereby, three stages are
distinguished [50]: pattern matching, processing
and emission. An EPA can be at the same time event
consumer and producer, and hence it implements the
corresponding interfaces. Incoming events are put to
one or possibly multiple (depending on the implemen-
tation) input buffers. The operator of an EPA is re-
sponsible for generating events on the output buffers

and is specified via a function that maps from inputs
to desired outputs (see details in Section 2.3). Addi-
tionally, each EPA is associated with a state that re-
flects its current allocation of variables, memory, reg-
isters, and other state information. We assume that
the state also includes the model instances that are
relevant for the EPA, so that the EPA can reflect
on itself at runtime (e.g., which subscriptions it man-
ages). Apart from the general model entities stored in
the state, the notion of state is highly application spe-
cific. Hence, we only assume this generic container and
make no further restrictions about its representation,
in order to keep things simple.

• EPAs are deployed on physical machines (or com-
puting nodes), and one machine can host multiple
EPAs. If the deployment changes and the responsi-
bility of hosting an EPA (including its state) is trans-
ferred from one machine to another, we speak of mi-
gration of this EPA.

2.3 Modeling the Operation of EPAs
Because a large part of an EPN’s functionality is encoded

in the EPAs, they are a primary source for potential faults.
Hence, we discuss the internal structure and modus operandi
of EPAs, as envisioned in the common model, in more detail.

Event Processing Agent (EPA)

Subscription
Interface

Event Channel

Event Channel

Notification
Interface

Publication
Interface

Output Buffers

Buffer

Buffer

Input Buffers

BufferBuffer

BufferBuffer

Operator
Function

Subscription
Manager

. . . . . .

Incoming Events from Producers

Outgoing Events to Consumers

Input Router State
Manager

Output Router

BufferBuffer

Figure 3: Internal Structure And Functionality
Commonly Applicable to EPAs

Figure 3 depicts a UML component diagram with an EPA
connected to two channels. The state associated with the
EPA is maintained by a state manager, which may be im-
plemented as an actual state machine (automaton) or some
other mathematical model. The input router is responsible
for directing the events received via the notification inter-
face to one or more input buffers. The EPA also receives re-
quests from the channel via the subscription interface. A
subscription manager is responsible for maintaining sub-
scriptions. More specifically, when a new request comes in,
a new Subscription model element is instantiated and stored
in the state manager. The output router is responsible for
forwarding events from the output buffer to subscribed
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consumers via the channel’s publication interface. The
figure contains five exemplary buffers for illustration, but
the dots (“. . . ”) indicate that more buffers are conceivable.

2.3.1 Input-Output Operator Function
The operator function mediates between the input/out-

put buffers and the state manager. Formally, this function is
defined as follows. Let B denote the set of buffers (for both
input and output), E the set of all events, T the temporal
domain (all possible event timestamps), and S the set of
possible states. The current content of a buffer is expressed
as N → E, mapping from the numeric slot position (index)
within the buffer to an event (∅, the “empty event”, is also
part of E and hence ∅ signifies an empty buffer slot).

φ : [T → E]n → [T → E]m;n,m ∈ N+ (1)

A generic operator function φ, denoted stream transformer,
has been previously proposed in [64]. This function (printed
in Equation 1) takes a set of timestamp/event pairs as input
and outputs a new set of timestamp/event pairs.

op : (BE × S)→ (BE × S) (2)

We propose to use a more specific input-output operator
function that considers the input/output buffers as well as
the state of the EPA. Let BE := P(B × (N → E)) denote
the buffered events, i.e., the buffer allocation at any point in
time (P(x) denotes the powerset of x). We then define the
operator function as printed in Equation 2. The input of
the op function is a subset of the buffers (BE) together with
their content, plus the current state (S) of the EPA. The
output of op is a new content assignment for a subset of the
buffers (BE), plus a new assignment for the EPA state (S).

Upon arrival, new events are added to the corresponding
input buffer(s) (existing events are shifted by one position),
and op is executed. The approach provides the expressive
power of event-condition-action (ECA) rules [47], a popular
method for CEP specification. Our formalization is also in
line with the stream transformer definition in [64], since the
timestamp is accessible as an event property in our model.

We illustrate the operator function with a small example
in Equation 3. The example considers an EPA which re-
ceives numeric event values on two input buffers (ib1, ib2)
and determines whether the sum of the values is positive or
negative. Let val(e) denote the numeric payload of an event
e ∈ E. The EPA has two output buffers (ob1, ob2). If the
sum is positive an event epos is put to ob1, otherwise the
new event eneg on ob2 indicates that the sum is negative.
Additionally, the EPA can be in a state INACTIV E, in
which case no output is generated at all.

op({(ib1, {1 7→ e1}), (ib2, {1 7→ e2})}, s) := (∅, s) if s = INACTIV E
({(ob1, {1 7→ epos}), s) else if val(e1) + val(e2) ≥ 0
({(ob2, {1 7→ eneg}), s) else if val(e1) + val(e2) < 0

(3)

2.3.2 Event Routing Functions
Particularly in WSNs, dynamic event routing is a key chal-

lenge [12, 34]. Our model, therefore, contains two router
components, which reflect that routing is decoupled from

the input/output operator. Let P denote the set of event
producers and C the set of event consumers. The input
router is defined via a function in : (E × P × S) → P(B),
which determines for an incoming event e ∈ E, producer
p ∈ P , and current state s ∈ S the subset of input buffers
ib ⊆ B to which e is added. Conversely, the output router is
defined via a function out : (E ×P(B)× S)→ P(C), which
defines for an outgoing event e ∈ E, coming from a subset
of the output buffers ob ⊆ B, and a current state s ∈ S the
consumers c ⊆ C to which e will be forwarded.

3. FAULT TAXONOMY
Based on the model defined in Section 2, we now establish

the fault taxonomy for distributed event based systems.

3.1 Taxonomy Dimensions and Terminology
The highly influential work by Avizienis et al. [5] stud-

ies concepts for dependable and secure computing, and pro-
vides a detailed taxonomy framework with multiple fault
dimensions. Despite the high level of detail, their work still
provides general applicability and builds a solid basis for
extended approaches. For instance, Chan et al. [14] have
presented a fault taxonomy for Web Service Compositions
that closely builds on the classification by Avizienis et al.

Firstly, we recite the most relevant terminology from [5],
put into the context of event-based systems. A system deliv-
ers correct service if it provides the desired functionality,
which includes the functionality of end producers and con-
sumers as well as the EPN that mediates between them.
A failure occurs when the system “does not comply with
the functional specification, or because this specification did
not adequately describe the system function” [5]. As an ex-
ample, consider a system that analyzes a stream of stock
market events and is supposed to indicate if the price of a
stock “rises significantly”, but no event is generated, even
after the price has risen ten consecutive times. Depending
on the system function, this behavior may either be a fail-
ure caused by incorrect processing, or the failure may be
rooted in the fact that the system detects stock rises with a
high statistical confidence of 99.9%, whereas the specifica-
tion (implicitly) assumed a 95% confidence interval. When
asking for the manifestation of a failure in the system, we
say that a failure is caused by one or more states deviating
from the correct service state. This deviation is denoted as
error. The assumed cause of an error, either internal or
external, is called a fault. In the stock price example, a
possible error is that an EPA was unable to store new in-
coming events, and the probable fault that lead to this error
is a buffer overflow. Note that not all faults cause an error
and therefore lead to a system failure: “A fault is active
when it causes an error, otherwise it is dormant” [5].

3.1.1 Fault Classes
In [5], 16 elementary fault classes are derived from eight

basic viewpoints. We have identified 12 of these fault classes
as highly relevant for our purpose. The phase of creation
or occurrence distinguishes between faults that are intro-
duced at development time or during operation (execution)
of the system. System boundaries refers to the distinction
whether a fault is caused internally within the system or
caused by external input received at the service interface or
from the environment. Persistence determines whether the
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fault is continuous our bounded in time (i.e., persistent or
transient). The dimension indicates faults that affect (or
originate in) either software or hardware. The phenomeno-
logical cause of a fault can be either rooted in natural phe-
nomena (on which humans have limited or no influence) or
in active human participation. The capability dimension ac-
knowledges that some faults are introduced inadvertently
(or accidentally), while other faults result from lack of pro-
fessional competence, strategy or planning.

Faults

Phase of Creation
or Occurrence

System Boundaries

Persistence

Dimension

Phenomenological
Cause

Capability

Level in Solution
Stack

Development Faults
Operational Faults

Platform Faults
Business Logic Faults

Internal Faults
External Faults

Permanent Faults
Transient Faults

Hardware Faults
Software Faults

Natural Faults
Human-Made Faults

Accidental Faults
Incompetence Faults

Non-Deliberate Faults
Deliberate Faults

Figure 4: Elementary Fault Classes (based on [5])

The other four fault classes in [5] make a distinction be-
tween malicious and non-malicious faults as well as delib-
erate and non-deliberate faults). These four latter types
of faults are particularly important in the area of security,
which is not the core focus in this paper. Hence, our ap-
proach is to capture the technical manifestations of deliber-
ate and malicious acts (e.g., an overloaded channel or buffer
overflow caused by a denial-of-service attack), but our fault
taxonomy does not explicitly distinguish purely security-
related dimensions. In return, we add two important fault
classes concerning the level in solution stack, namely plat-
form faults versus business logic faults. The former class of
faults has its roots in the implementation of the underlying
event processing platform and may potentially affect all of
the applications on top of it, whereas the latter fault class
is tightly connected to the types of events and the specific
business application that is deployed by the platform. Fig-
ure 4 contains a schematic view of the seven dimensions and
14 classes used in our fault taxonomy.

3.1.2 Fault Sources
Besides classes (types) of faults, our taxonomy also asks

for the sources of faults, i.e., the artifacts of the system which
are potentially or positively responsible for causing the fault.
Figure 5 depicts the six categories of fault sources, which
have been extracted and compiled from earlier work on fault
localization [3, 63] and root cause analysis [38]. Where ap-
plicable, the fault source description refers back to elements
of the model discussed in Section 2.

The environment refers to the physical platform on which
the event-based system operates, i.e., machines, network
links, and power supply. Power supply plays a key role,
particularly if the event data are only stored in volatile (non-
persistent) memory, which is flushed in case of a power out-
age. External input is received from business events and util-
ity services; both types of inputs can potentially influence

the reliable operation of the system. The fault source cate-
gory named code functions refers to processing logic encoded
as operators, state transitions, queries, algorithms, etc. Ev-
idently, code functions are at the core of event processing
and can introduce faults into the system. The system state
includes both the model-related configuration of the sys-
tem (e.g., active correlations, subscriptions) and application-
specific business logic state (e.g., state INACTIV E in the
example in Section 2.3.1). Software assets are self-contained
components that the system builds on, which are known
to operate well under controlled conditions but fail under
certain circumstances (e.g., buffer overflow of a channel, or
kernel error of an operating system). The concepts and ab-
stractions category captures additional aspects that play a
role in the processing, such as timing aspects or dependen-
cies. The third part of this category is denoted semantics; for
instance, if an event-processing platform performs dynamic
re-configuration and re-deployment, it must be ensured that
the newly configured system is semantically equivalent to
the previous state and still fulfills all requirements.

Fault
Sources

Environment

Code Functions

System State

Software Assets

Concepts and
Abstractions

External Input

Machine Hardware
Network Links
Power Supply

Business Events
Utility Services

Operator Function
Routing Function
Deployment Function
Correlation Condition
Subscription Filter

Active Correlations
Subscriptions
Business Logic State

Buffers
Channels
Operating System

Dependencies
Timing
Semantics

Figure 5: Fault Sources

3.2 Discussion of Identified Faults
In Figure 6, we identify and classify 30 fundamental faults

(without claim of completeness), which are the result of lit-
erature review guided by combining different fault classes
and model artifacts. The figure depicts a classification tree
in which the leaf nodes are fault descriptions, and each level
represents a pair of fault classes from Figure 4.

Moreover, Figure 7 lists for each of the 30 faults the sources
which are likely involved in the creation of the fault. The
matrix contains fault sources on the left-hand side and fault
examples on the top. Each intersection of fault type and
matching fault example is marked with a red dot. Note
that a fault may potentially be rooted in more than one
fault source. We have attributed each fault to one of the
core sub-areas of event-based systems that we identified in
Section 2.1 (see “Main Areas Affected” at the bottom of Fig-
ure 7). This is of course a strong simplification – in fact, the
distinction is not always clear and the areas partly overlap,
i.e., faults may play a role in more than one area.
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Figure 6: Taxonomy Tree for Faults in Event-Based Systems

3.2.1 Faults in Pub/Sub Systems
Publish/Subscribe is the basis for many types of event-

based systems. The main challenges are related to man-
agement of subscriptions, filtering, and dissemination of in-
formation [22]. On the network level, multicast transmis-
sion between one producer and multiple subscribers is of-
ten achieved using point-to-point communication primitives.
This may easily lead to Overloaded Channels, which is
the first (leftmost) fault example in Figure 7. For illus-
tration purposes we briefly explain the fault classes for this
fault (see Figure 6). An overloaded channel is an operational
fault, because its phase of creation/occurrence is attributed
rather to execution time than to development time. It is not
particularly business logic-specific, but a general platform
fault. The fault usually comes into existence by external in-
fluences or inputs. Although it remains active for a while,
its presence is bounded in time (until the traffic drops to
an acceptable level) and hence we note that it is transient.
Moreover, the fault is a software fault and it is human-made.
Concerning the fault capability, a channel overload is con-
sidered accidental, especially if the underlying network is
commonly used by multiple external systems.

As subscriptions have an expiry time in our model, it may
occur that an event producer garbage collects an expired
subscription, while one of the consumers still retains a refer-
ence and attempts to modify it. This type of fault is denoted
Outdated Subscription and can be compared to a dan-
gling pointer in programming languages. This fault is gener-
ally attributed to the platform and the development phase,
because outdated subscription references should be prop-
erly garbage collected. Analogously, a subscription should
be kept alive as long as there exist any references to it. Sim-
ilarly, a Duplicate Subscription is a development fault
because one would expect that the platform takes care of
eliminating such duplicates. Concerning delivery of event

messages in push mode, an Inaccessible Consumer oc-
curs if the endpoint address of the consumer is not available.
This can have several reasons, e.g., the consumer process has
no privileges to open a listening network socket, or network
packets are dropped due to firewall rules, etc.

3.2.2 Faults in Event-Driven Interactions
Related to the Inaccessible Consumer fault in Pub/Sub

is the problem of Endpoint Address Change, which we
attributed to the EDIP category. This fault happens when
the logical consumer of an event subscription is moved to a
different physical machine or connection without updating
its references. A main difference is that an address change is
usually permanent, whereas an inaccessible consumer may
be a permanent or temporary (transient) fault.

Another weak point in EDIP (and also Pub/Sub systems)
is the evaluation of filters. Popular implementation variants
include topic-based filtering and content-based filtering [22].
While topic-based filtering is usually straight-forward, con-
tent-based filtering is more dynamic and flexible. For in-
stance, in [33] a content-based Pub/Sub system with routing
based on Bloom filters has been proposed. This leaves room
for optimizations in the dissemination procedure, but also
opens possibilities for the introduction of new faults. We
collectively refer to this class of problems related to evalua-
tion of subscription filters as Unmatchable Filter.

Event Loss is a potential problem in most event-based
systems. In contrast to load shedding [1,18], where strategies
for deliberate dropping of events are put into action, event
loss in CEP can also happen unintentionally. It is particu-
larly relevant when an event is expected to be handed from
a source to a destination EPA and the global behavior de-
pends on the operator of each involved EPA along the path.
A problem closely related to event loss is Garbled Event
Order. For instance, the Aurora platform implements de-
layed processing in periods of high load, which may result
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Figure 7: Factors of Influence Responsible for Different Faults

in the situation that already emitted results need to be re-
vised [1]. This feature is prone to errors and it is crucial
to restore the correct message order. Applied to our model,
garbled event order may also happen if the input router or
output router functions are not correctly synchronized.

In some cases, event-driven interaction faults are less so-
phisticated but simply caused by an Unparseable Data
Format of the underlying events. There exists a variety
of different character encodings and document markup lan-
guages used to encode the payload (event properties), and
the communication will most likely fail if the event producer
and consumer do not utilize the same standards.

3.2.3 Faults in Event Stream Processing
We now focus on faults that are related to the main chal-

lenges in event stream processing (ESP) systems. An obvi-
ous and often studied source for problems is high-frequency
streams. Resource limitations of the machines on which
EPAs are deployed allow only a certain amount of events (or
tuples, as often denoted in stream processing) to be stored
and processed per time unit, depending on the complexity
of the performed operation. A Buffer Overflow occurs if
an EPA cannot allocate new memory to buffer an incoming
event. This problem has been intensively studied and dif-
ferent solutions were proposed. One solution is load shed-
ding [1,18], where exactness/accuracy in the operator func-
tion is sacrificed for continuous availability by heuristically
dropping (or delaying) events that are (deemed to be) of
less importance. Partial fault tolerance under high load and
the effects of bursty tuple loss have been intensively studied
based on a fault injection framework in [31].

A Node Failure occurs when the event processing system
experiences hardware failures or faults due to“heisenbugs”in
the underlying operating system or platform [61]. This type
of fault also plays a key role in WSNs, for instance caused
by depletion of batteries. We assume that the effects of a
node failure (e.g., loss of state information) are permanent
and cause the EPA operator to stop functioning immedi-
ately. From the viewpoint of the event processing system,
a node failure happens accidentally and cannot be directly
attributed to human incompetence. Evidently, node failure
poses a key problem to any type of system that is supposed
to operate reliably. EPA replication is a commonly used

technique for reliable operation in the presence of node fail-
ures, which is intensively studied in [61].

Another key issue with parallel processing of events (in
particular for ESP, but also in other areas) is that improp-
erly synchronized code can cause Race Conditions when
common resources (e.g., buffer memory) are accessed. Syn-
chronization errors may lead to unexpected side effects and
inconsistent states. These problems are often hard to debug
and only revealed nondeterministically under high load.

Reliable reflection about the system state plays a key role
for the operator and routing function of EPAs. If the actual
state of the system is not accurately reflected in the saved
state of an EPA, we speak of a State Mismatch. Two main
reasons may be responsible for a state mismatch: either the
output of an EPA’s operator function is faulty and generates
a (locally) inaccurate state, or the state transfer of a global
state between multiple EPAs is not transactionally safe.

Queries over streams that involve multiple nested opera-
tions are often decomposed and rewritten/optimized based
on query plans to achieve high performance [1,75]. The goal
is to map the original query to a new query which has more
desirable characteristics (e.g., better suited for distribution
or avoids unnecessary execution steps), while at the same
time preserving the exact semantics of the original query. If
the latter condition does not hold, a Bad Query Substi-
tution fault occurs that may have an effect on the system
functionality.

Finally, if the processing graph defined by the dependen-
cies within an EPN contains cycles, the system may get into
a state in which events are “trapped” by getting forwarded
indefinitely. We refer to faults of this type as Cyclic Pro-
cessing Logic. A possible technique to avoid this fault is
to attach metadata to event messages that circulate in the
system, for instance a time-to-live counter that specifies how
many times the event may be passed on to the next EPA.

3.2.4 Faults in Complex Event Processing
Complex Event Processing (CEP) is concerned with com-

plex interactions and event patterns often spanning multiple
sources. A complex event is one that is derived or aggregated
from multiple other events. A frequently encountered prob-
lem are Pattern Recognition Faults. One manifestation
of this fault is when a relevant pattern exists but is not de-
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tected. The other possibility is that a complex event (e.g.,
credit card fraud [60]) may be mistakenly assumed to exist
although in fact it does not. Pattern recognition is often
achieved using event automata [60] which define states and
state transitions. In our model, event automata correspond
to the EPA state combined with its operator function. Pat-
tern recognition faults are hence rooted in the incorrect han-
dling of the EPA’s state by this function. The general case
of events being incorrectly combined into complex (or aggre-
gate) events is denoted as Faulty Aggregation. Aggrega-
tion functions, including simple aggregates (count, sum, av-
erage, minimum, maximum, etc.) or mathematical functions
over event sequences (e.g., cross-correlation coefficients), are
a vital foundation for defining and executing CEP business
logic [60,72,75]. As indicated in Figure 6, faulty aggregation
usually affects the business logic (e.g., when combining mul-
tiple correlated “item” events into a single “package” event
in a warehouse [72]).

Time-sensitive CEP queries and event composition often
rely on synchronized time measurements among the produc-
ers, to retain either absolute time difference or relative or-
der of events [40]. In our model, time is expressed as a
special case of the EPA state, which is periodically changed
(irrespective of event inputs) and shared among the EPAs.
Unsynchronized Clocks are therefore a source of failure
which may cause misbehavior in a CEP system. Synchro-
nization is also a key issue in wireless sensor networks [2].

Stratification [36] is the process of splitting up the EPN
dependency graph into independent sub-graphs, denoted as
stratums, to achieve parallelism and early filtering of events.
The semantics and dependencies of the processing graph
must be retained and hence the non-trivial stratification al-
gorithm in [36] is itself a potential source of faults. The
effect of Improper Stratification could be for instance
that events are filtered out too early, or that the wanted
effect of load distribution is not achieved and one node or
channel gets overloaded.

CEP systems may run into the problem of an Unsatis-
fiable Dependency, where an EPA is in a state in which
it expects a certain event to arrive but this event cannot be
delivered, e.g., caused by event loss or a cyclic dependency.
Note that we have to make a subtle distinction here: the
processing graph of an EPN can in fact be cyclic (e.g., an
EPA may consume and process events that were emitted
by itself); however, the causal dependency of correlated or
complex events must not be cyclic. This fault should be con-
sidered with close attention, because a single unsatisfiable
dependency can bring the whole system to a halt/deadlock
(see also discussion of business process deadlocks in Sec-
tion 3.2.6). Wherever possible, the platform should provide
means for statically checking circular dependencies in the
event processing business logic.

3.2.5 Faults in Sensor Networks
Wireless sensor networks (WSNs) consist of a collection

of densely deployed sensor nodes whose purpose is to sense
and process information from the environment [2]. The key
challenges intrinsic to WSNs arise from the circumstance
that sensor nodes are limited in power, often prone to fail-
ures, and connected by unreliable communication channels.
Moreover, the position of sensor nodes is not static and the

topology of a WSN changes frequently. An adaptive and
fault-tolerant routing mechanism is therefore required.

Figure 6 contains two fault cases that are related to Un-
reachability. Firstly, unreachability on the Network level
means that a sink is unable to receive any messages from a
source node, either because its communication link is down,
the signal is noisy, or the node is out of range of any other
nodes and hence there is no physical path from source to
sink. If there is a possible path between two nodes, but a
packet (or message) does not find its way to the receiver,
we speak of a Routing related unreachability, also denoted
path fault [67]. For instance, a possible reason may be that
the routing algorithm partitions a set of network nodes into
multiple routing domains, which are connected by a single
coordinator. If this coordinator fails to work properly, the
sub-networks become disjoint and messages from one do-
main cannot reach another domain.

Since positions of nodes and topologies in WSN can change
frequently, tasks and node responsibilities are often assigned
dynamically. If a task is migrated from one node to another,
the operator logic as well as the EPA state need to be mar-
shalled and transmitted over the network. The duration of
transmission is a critical time window because during that
time it must be ensured that no events are either lost or
double-processed [29]. Moreover, all dependencies to other
nodes need to be updated as soon as the task has been trans-
ferred. If this complex procedure does not complete trans-
actionally safe, we speak of Migration Failure.

Hardware constraints play an important role in WSNs.
Due to unreliable transmitters or noisy signals, it is possi-
ble that Transmission Bit Flips occur. A bit flip simply
means that part of the data has changed its representation
(e.g., from “0” to “1”) during transmission and that neither
side of the communication realized this error. Various error-
detection codes (like checksums or parity bits) have been
proposed to avoid transmission errors in WSNs, and there is
an obvious tradeoff between degree of error-robustness and
computational complexity [2].

Link Congestion occurs if network links operate be-
yond capability, induced by high amounts of data or too
many senders writing to the same medium. Media access
control (MAC) techniques like Carrier Sense Multiple Ac-
cess (CSMA) regulate the access to a commonly used trans-
mission medium, but there is a practical limitation to the
number of devices served by the same network [2]. A link
congestion is different from an overloaded channel, because
network links may be shared with external systems, whereas
channels are considered an internal platform component.

3.2.6 Faults in Event-Driven BPM
Event-driven business process management (EDBPM) is

concerned with utilizing events to steer the orchestration of
workflows and services. EDBPM can be approached from
different sides: the process definition is either known ex-
plicitly and can be transformed into an EPN (e.g., [39]), or
the process has an implicit model that is discovered from
event logs (also denoted process mining) [69], or the chal-
lenge is to measure the fit between event logs and the process
model [56]. Algorithms in these areas are complex and often
make probabilistic assumptions, and hence pose a potential
source of faults. A Process Mining Fault implicates that
the (probabilistic) assumptions in the algorithm to derive a
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process model are inaccurate, whereas a Transformation
Fault denotes an incorrect mapping from the original pro-
cess definition to tasks on the eventing platform.

When a process or sub-process is triggered by an event,
the process engine needs to be able to correlate the event to
previous or currently active process instances. An Uncor-
relatable Event occurs if the process to which the event
seems to belong either does not yet exist, or does not ex-
ist anymore (because it has been finished or forcibly ter-
minated), or has never existed (caused by faulty correla-
tion). Note that an event which triggers an entirely new
instance (and is hence not in a correlation with a previous
process) does not fall into this fault category, because that
reflects a regular situation. Another correlation-related de-
fect is Faulty Process Isolation, which means that a set of
events representing a model process instance does not corre-
spond to reality or the actual business case. Faulty isolation
is particularly problematic in process mining, because most
algorithms that learn the structure of processes rely on the
fact that the instances from which they learn are correct.

Process Deadlock and Starvation are defects related
to the business logic which prevent the process from contin-
uing its execution. In a deadlock the process arrives at a
state in which the process definition allows neither termina-
tion nor moving into any successor state [68], for instance
because it is waiting for a particular event. Starvation prin-
cipally means that processes are competing for a resource
and one process with less priority is discriminated against
competitors. As an example, imagine two consumers c1 and
c2 which are supposed to receive events of type t1 with a fair
distribution (e.g., strictly alternating order). If the event
router happens to favor c1, then c2 may starve and wait
forever or time out after not receiving an event for a while.

4. RELATED WORK
In this section we put the presented approach into per-

spective with existing research on models for event-based
systems, fault taxonomies, and fault localization.

Fowler and Qasemizadeh [24] present a common event
model for integrated sensor networks. The model distin-
guishes four ontologies (event, object, property and time
ontology) to represent different aspects of event data. In
contrast to our approach their model only focuses on the
information associated with an event and does not consider
processing logic or topology of EPNs. Other seminal work in
the area of models and taxonomies for event-based systems,
particular targeting event-based programming systems, has
been published by Meier and Cahill [48].

Hadzilacos and Toueg [27] present a comprehensive study
of interaction-related faults and fault-tolerance in distributed
systems. They discuss various concepts of reliable message
delivery, with core focus on message broadcasts. Based on a
formal framework, the authors discuss issues such as time-
liness or correct ordering of messages. Their work is highly
influential for event-based systems, particularly for the fault
types concerning event channels in our proposed model.

Westermann and Jain [73] study commonalities in event-
based multimedia applications and discuss features that a
common event model should contain. Although the features
are largely tailored to multimedia, some aspects apply to
event-based systems in general, such as common base rep-
resentation, application integration, common event manage-

ment infrastructure, and common event exploration and vi-
sualization tools. We extend their ideas and argue that inte-
gration of different views on event-based systems is vital to
improve system dependability. Our model does not yet cap-
ture some aspects proposed in [73], most notably uncertainty
support, and experiential aspects, which are described as
“ways of exploring and experiencing a course of events to let
them [the users] gain insights into how the events evolved”.

Fault taxonomies for service-oriented architecture (SOA)
have been discussed in [11] and [14]. The taxonomies are tai-
lored to issues related to service-based computing and Web
services (e.g., service discovery, binding, or composition),
whereas we focus on specifics of event-based systems.

The authors of [31] have recently proposed a fault injec-
tion framework for assessing partial fault tolerance (PFT)
of stream processing applications. Their work is tailored to
high-frequency data streams and bursty tuple loss. In PFT,
there is not only a notion of absolute faults but also of output
quality degradation. The level of quality loss is measured us-
ing an application-specific output score function. In future
work, we also strive to extend our model and approach to
support PFT and output quality metrics.

Other researchers’ studies focus on the development of
software and investigate faults primarily on the source code
level. In [19] three main types of faults are identified: miss-
ing, wrong and extraneous code constructs. The classifi-
cation was applied to diff and patch files of open source
projects. The metrics indicate that simple programmer mis-
takes account for a large portion of faults. For general mis-
takes like faulty synchronization their approach is certainly
applicable in event processing platforms, but with complex
interactions in place the relation between failure and respon-
sible artifact becomes hard to assess. A common fault model
as presented here can greatly simplify this search.

The work of Steinder and Sethi [63] surveys approaches
and techniques for fault localization in computer networks,
largely focusing on graph-theoretic fault propagation mod-
els like dependency networks and causality graphs. Their
contribution provides much more general granularity than
our work and parts of the faults discussed here are covered
by their approach (e.g., detecting circular dependencies in
EPNs). While general fault models have their justification,
we argue that it is the fine granularity and domain-specific
knowledge that adds to the strength of our approach.

5. CONCLUSION
So far, the emerging research field of distributed event-

based systems has not yet come to a common and unified
understanding of faults. In this paper we take a step ahead
in this direction and present a unified fault taxonomy based
on a common model for event-based systems. The taxon-
omy provides dimensions to obtain a comprehensive allround
picture of the system artifacts as well as potential manifes-
tations and sources of faults. We discuss 30 fault instances
that cover all fault types and elements of our common model.

Profound research on dependability and fault-tolerance
has been conducted on specific topics in different sub-areas
of event processing, and we argue that combining these ef-
forts is a potential leap forward on the pathway towards en-
gineering dependable event-based systems. The established
unified model and fault taxonomy open a variety of exciting
future research directions.
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First and foremost, we are working on a prototype which
implements and applies the presented model to real sys-
tems, with the aim of fault diagnosis [30] and fault injec-
tion [31, 32]. The core idea is to provide well-defined inter-
faces to keep the model in sync with the real target system.
In one direction, from the real system to the model, moni-
toring techniques will be employed to update the model in
case the system changes (e.g., if a new EPA is instantiated
or new events are buffered). In case of any faulty behav-
ior we expect to be able to assist in the systematic fault
diagnosis, using the domain knowledge and the data gath-
ered from monitoring. Reversely, changes in the model will
be reflected in the real system, using specific interfaces that
need to be implemented by the target system. This way it
will be possible to inject targeted faults into the platform
(e.g., event loss or node failure) and to analyze how the real
system reacts to these faults.

Our second goal for future work is to combine monitor-
ing mechanisms and machine learning techniques to mon-
itor the system model of real event processing platforms,
in order to derive complex model artifacts, processing logic
and event provenance from monitoring primitives. This will
allow for concretization of dynamic and loosely structured
EPNs which lack proper documentation and self-reflection.

Moreover, we plan to develop a community-driven Web
platform that enables collaborative definition of extensible
system models and fault taxonomies. Finally, we envision
that the technology-agnostic system model will facilitate au-
tomatic migration of eventing business logic between plat-
forms of different vendors.
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