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Abstract. Probabilistic reasoning suffers frnm NP-hard implementations. In particular, the amounl

of probabilistic information ncccssary [n the computations is often overwhelming, For example, the

size of conditional prohahility tables in Bayesian networks has long been a limiting factor in the

general usc of these networks,

Wc present a new appr(mch for manipulating the probabilistic information given. This approach

avoids hcing overwhelmed by essentially compressing the information using approximation functions

called linear potential functi{}ns. We can potentially reduce the information from a urmhinatorial

amount to roughly linear in the number of random variable assignments. Furthermore. wc cmr
compute these functions through closed form equations. As it turns out. our approximation method is

quite general and mav hc applied to other data compression problems.
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1. Itztroduction

Probabilistic reasoning has become the mainstay of many inferencing systems.
From expert systems for geological surveying [Duds et al. 1976] to medical
diagnosis systems [Shwe et al. 1991], the probabilistic approach provides a rich
framework for knowledge representation that is essential in these domains.
Unfortunately, probabilistic reasoning in general is NP-hard. Thus, to compen-
sate for this, the systems built tend to use unrealistic assumptions such as
independence, and hence, often have various behavioral anomalies.

Probably one of the most popular models for probabilistic reasoning is
Bayesian networks [Pearl 1988]. This approach provides a handy visualization of
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our knowledge using a directed acyclic graph of random variable relationships. In
the discrete case, each node in the graph represents a “discrete” random
variable. 1 The directed arcs between the nodes represent probabilistic condi-
tional (independencies. Joint probabilities on the random variables can be
readily computed via the chain rule and the given conditional independence
assumptions. These computations take the form of multiplying conditional
probability tables which have been associated with each node in the network.

Bayesian networks have been applied to various domains such as story
comprehension,2 circuit fault detection [Davis 1984; Pearl 1988], medical diagno-
sis [Shwe et al. 1991], and planning systems [Kirman et al. 1991]. However,
computing with these networks has been proven to be NP-hard as we might have
expected [Cooper 1987; Shimony and Charniak 1990; Dagum and Luby 1993].
This has generally prevented problem formulations from utilizing the full
representational capabilities of Bayesian networks.

There are two key factors which prevent the general use of Bayesian networks.
The first is network topolog. Most of the existing algorithms are quite sensitive to
the topology of the network and this is often the cause of combinatorial
explosion (see Pearl [1988] and Shimony and Charniak [1990 ].) For example,
Pearl’s early message-passing scheme [Pearl 1988] is restricted to singly con-
nected networks, that is, there can only exist at most one path between any two
nodes in the graph.3 Unfortunately, even for those which are not hindered by
topological considerations, they invariably run into the second factor, conditional
probability table size.

Recently, various approaches to the table size problem have been developed
such as independence-based assignments [Shimony 1993; Santos, Jr. and Shimony
1994] and “Noisy-OR” models [Peng and Reggia 1986; Pearl 1988; and Srinivas
1993]. These approaches attempt to exploit domain dependent properties of the
problem. The former uses “finer” independence assumptions and the latter
disjunctive interactions or its generalizations. Unfortunately, the independence-
based approach is too restrictive while the “Noisy-OR” approach relies on
successfully identifying the interactions.

Table size is directly correlated with the amount of discretization or precision
used in the problem formulation. Basically, the size of the table is exponential
with respect to the number of instantiation required by each random variable
involved in this particular table. Thus, in the “toy” domains, precision is
generally sacrificed resulting in relatively small tables. Extremely coarse approx-
imations of information is typically sufficient for this relatively low level of
prototyping.

Although there have been arguments that human beings reason well with only
coarse approximations [Pearl 1988], domains such as robotic navigation require
rather precise problem formulations to handle quantitative data such as sonar
readings and map locations [Kirman et al. 1991; 1993]. The higher the degree of

1 For Bayesian networks based solely on continuous random variables, see Pearl [1988].

2 See, for example, Goldman [1990], Goldman and Cbarniak [1991], Charniak and Goldman [1988],

and Charniak and Santos, Jr. [1992].

q Other more recent schemes such as Sy’s fomvard propagation [Sy 1992] are still limited to

singly-connected networks,
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sensitivity needed in this data implies an even finer grained discretization of
random variable instantiations.

The explosive growth of probability tables for Bayesian networks is a special
case of a more general problem encountered in probabilistic systems. There is a
need of having large amounts of data on hand such as correlations, statistical
frequencies, conditional probabilities, etc. to satis~ the axioms of probability
theory so that computations can be performed. Assumptions on the problem are
often made in an effort to reduce this data-explosion. For example, we might
assume that two symptoms are sufficient for determining a disease or we may
choose to quantize distance information to something like near, medium, far.
However, we run into the classic dilemma of trading off representational power
for computability. Still, more often than not, we end up with overly simple
models, which themselves are just barely computable. As we shall see, much of
the problem involving table size spawns from the need to reference each and
every probability during the computations. One such example is the search for
the “most-probable answer” in belief revision [Pearl 1988; Sy 1992]. This search
often involves finding the optimal conditional probability in each of these tables
while under certain random variable assignment restrictions [Sy 1992]. For
exampie, searching for the largest probability in which certain random variables
are set to true. Since the random variables involved are discrete, this amounts to
an enumeration type search, Compounding the problem is the fact that the
values in the table are unordered hence requiring an exhaustive search.

In this paper, we will focus on how to deal with explosive amounts of data. In
particular, we present an approach which may be used to solve the conditional
table size problem in Bayesian networks. Our approach is designed to avoid the
necessity of an exhaustive enumeration search. Basically, we use an approxima-
tion function called a linear potential jiinction (LPF) to capture all the values in a
given table. The values for each particular entry in the table can be retrieved
from the approximation by passing the appropriate random variable instantia-
tion as the function’s parameters. Once this is achieved, we merge it into an
integer linear programming approach for belief revision.

The biggest problem arises in trying to map the different possible instantia-
tion for the random variables to some real number. Values for random variables
need not be numerical.i Often, they are symbolic in nature such as representing
the color of some object. For example, random variable A is assigned red. Taking
this a step further, the numerical values used by those random variables which
discrctize information such as distance may not be the best mappings. Hence, we
have the additional problem of finding the optimal encoder (mapping) as well.

We present a model for determining the best LPF as well as the optimal
encoding. On the surface, it seems that the only approach would be to first pick
some “optimal” encoder and then construct an approximation function. How-
ever. such an approach is somewhat ad-hoc since the “best” approximations
necessarily entwine both encoder choice and approximation simultaneously. In
this paper. we have managed to develop a model that does unify both, but most
importantly allows us to determine the optimal compression with a closed form
solution. Hence, we have a fast and simple approach for computing an optimal
LPF. Furthermore, we can provide necessary and sufficient conditions for when a

‘ The numerical values are necessary since we will recast our computations for linear programming.
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perfect approximation can be found. This compression reduces a table that
requires O(IR(CO)I X IR(C1)I X . . . x [R(C.) I) space to a linear potential
function which only requires 0( IR(CO) I + . . . + IR(C.)1), where the Cis are
the random variables involved and lR(Ci) I is the number of possible instantia-
tion to C’i.

Once we determine the optimal approximations of the conditional tables, we
must now somehow use it in our computations for the “most-probable answer”.
We demonstrate this by incorporating these approximations into an existing
approach for probabilistic computations. Although the conditional tables of a
Bayesian network share random variables, we can decouple them by allowing
different encoders for different tables.

Recently, Santos, Jr. [1991; 1993; 1994] and Charniak and Santos, Jr. [1992]
introduced a new technique for probabilistic computations using linear constraint
satisfaction. Extremely efficient tools and techniques can be applied from
Operations Research to perform the computations. Experimental results demon-
strated that this approach was superior to existing techniques. Whereas the old
approaches had an expected-case exponential run-time, this method exhibited an
expected-case polynomial (O(X2) ) run-time over the same problem-sets, Fur-
thermore, the linear constraints approach was basically insensitive to network
topology. Thus, we have an excellent launching point for exploiting our approxi-
mation functions.

We begin in Section 2 by briefly describing Bayesian networks and their uses.
In Section 4, we present our approximation technique for the probability tables.
Now with these LPFs, we provide a new approach for computing with them
through linear constraint satisfaction in Sections 5 and 6.

2. Bayesian Networks and Belief Revision

In probabilistic reasoning, random variables are used to represent events and/or
objects in the world. By making various instantiation to these random variables,
we can model the current state of the world. Thus, this will involve computing
joint probabilities of the given random variables. Unfortunately, the task is nearly
impossible without additional information concerning relationships between the
rvs. In the worst case, we would need the probabilities of every instantiation
combination that is combinatorially explosive.

On the other hand, consider the chain rule as follows:

P(.’41, /1~, A~, /i,$, AJ =P(A, [A2, /13, A4, A5)

* P(A21A3, A4, A5)P(A31A4, A5)P(A41A5)F’(A5). (1)

Bayesian networks [Pearl 1988] take this process further by making the important
observation that certain random variable pairs may become uncorrelated once
information concerning some other random variable is known. More precisely,
we may have the following independence condition:

P(A{C,, . . . . c“, u) = I’(A{cl, . . . . Cn) (2)

for some collection of random variables U. Intuitively, we can interpret this as
saying that A is determined by Cl, . . . . Cn regardless of U.
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Combined with chain rule, these conditional independencies allow us to
replace the terms in (1) with the smaller conditionals (2). Thus, instead of
explicitly keeping the joint probabilities, all we need are smaller conditional
probability tables that we can then use to compute the joint probabilities.

What we have is a directed acyclic graph of random variable relationships.
Directed arcs between random variables represent conditional dependencies.
When all the parents of a given random variable A are instantiated, that random
variable is said to be conditionally independent of the remaining random
variables. which are not descendants of,4, given its parents (see (2)).5

For example, let’s consider the following story: Mary walks outside and finds
that the street and lawn are wet. She concludes that it has just rained recently.
Furthermore, she decides that she does not need to water her climbing roses.

Assume that Mary used the following set of rules:

rain v sprinklers > street-wet

rain v sprinklers > lawn-wet

lawn-wet > soil-moist

soil-moist > roses-okay

We can directly transform these into a graph. Now, by considering each variable
as a random variable with possible states of {true, false}, we can construct
conditional probability tables for ( 1) which reflects our knowledge of the world
(see Figure 1). Let’s compute the joint probability of the world where the roses
are okay, the soil is dry, the lawn is wet, the street is wet, the sprinklers are off
and it is raining.

P(sprinklers = F, rain = T, street = wet, lawn = wet,

soil = dry, roses = okay)

= F’(roses = okaylsoil = dry)

* P(soil = dryllawn = wet)

* P(lawn = wetlrain = T, sprinklers = F)

* P(street = wetlrain = T, sprinklers = F)

* P(sprinklers = F)

* P( rain = T).

Substituting the appropriate numbers from the tables, we get 0.2 * 0.4 * 1.0 * 1.0
* 0.6 * ().7 = 0.0336 as the probability of this scenario.

(For a more concrete application of Bayesian networks, see Append& A for the
Mobile Targe[ Localization problem [Kirman et al. 1991; 1993].)

There are two types of computations performed with Bayesian networks: belief
t~pdafing and belief revision [Pearl 1988]. Belief updating concerns the computa-
tion of probabilities over random variables, while belief revision concerns finding

‘ For more details (m this. see d-.reparution in Pearl [1988].
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FIG. 1. Mary’s Bayesian network. Conditional tables at each node must contain all possible combinations of assignments. For space purposes, we give a reduced ~

collection. We can compute the missing information by taking 1 minus the appropriate probabilities given. oy

~
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the maximally probable global assignment. In this paper, we concentrate on
belief revision. We note, though, that belief updating can also be computed using
belief revision [Kirman et al. 1993; Santos, Jr. and Shimony 1994].

Belief revision can be used for modeling explanatory/diagnostic tasks. Basi-
cally, some evidence or observation is given to us, and our task is to come up with
a set of hypothesis that together constitute the most satisfactory explanation/
interpretation of the evidence at hand. This process has also been considered
abductive reasoning in one form or another.f’ More formally, if W is the set of all
random variables in our given Bayesian network and e is our given evidence,’ any
complete instantiation to all the random variables in W, which is consistent with
e will be called an explanation or inte~retation of e. Our problem is to find an
explanation w * such that

P(w*le) = max P(wle). (3)
w

w * is called the “most-probable explanation” (MPE).8 Intuitively, we can think
of the nonevidence random variables in W as possible hypotheses for e.

The Baycsian networks approach can achieve an enormous reduction in the
amount of probability data needed. Unfortunately, even identifying all the
conditional independencies is usually not enough. Consider the Mobile Target
Location (MTL) problem’) [Kirman et al. 1991; 1993], which involves a robot
locating and following a mobile target using Bayesian networks. We consider the
following conditional table:

P(O~lL//, L~) (4)

where L represents the locations of the robot and target and where O represents
the particular sonar readings on the target. The size of this table is IL 12101,
where IL I is the number of possible map positions in the world and 101 is the
range of instantiation for the sonar readings Or. Clearly, the higher the
precision we desire in our robot world, the larger both L and O become. Even if
we had decided that there are only 100 possible locations in our world and
possible sonar readings, the size of this table alone would be one million. This
remains a major prohibiting factor in trying to use Bayesian networks for
modeling complex tasks.

3. Terms, Definitions, and Notations

In this section, we provide terms and definitions that will be used throughout the
remainder of this paper.

“ Sec. for example, Hobbs ct al. 11988], Shanahan 11989], Peng and Reggia 11990]. and Charniak and

Shimony [1990].

7 That is, e represents a set of instantiation made on a subset of W.

x Belief updating on the other hand is interested only in tbe marginal probabilities of a subset of

random variables given the evidence. Typically, it is to determirm the best instantiation of a single

random variable given the evidence.

Also note that to compute the MPE for e, it is sufficient tc] determine tbc complete assignment

consistent with e whose joint probability is maximal. In this case, P(e) is simple a constant factor.

“ See Appendix A.
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Simply put, a Bayesian network is a directed acyclic graph whose nodes
represent random variables and edges represent direct conditional dependencies,
that is, a random variable A is conditionally independent of all nodes not
descended from A given all its parents. Hence, each node A also has an
associated table of all the conditional probabilities between A and its parents
(see Figure 1).

We first observe that a Bayesian network can be completely described by a
finite collection of random variables and a finite set of conditional probabilities
based on the random variables.’0

Notation 3.1. Throughout the remainder of this paper, upper case italicized
letters such as A, B, . . . will represent random variables and lowercase italicized
letters such as a, b, . . . will represent the possible assignments to the associated
uppercase-let ter random variable, in this case, A, B, . . . . Subscripted uppercase
letters that are not italicized are variables in a constraint system which explicitly
represent the instantiation of the associated random variable with the item in the
subscript. For example, A. denotes the instantiation of random variable A with
value a.

Notation 3.2. Given a random variable A, the set of possible values for A,
called the range of A, will be denoted by R(A).

Given a Bayesian network, we can construct an ordered pair (V, P), where V
is the set of random variables in the network and P is a set of conditional
probabilities associated with the network, P(A = a ICI = c,, . . . . C. = c.) E
Piff Cl,..., C,, are all the immediate parents of A and there is an edge from Ci
to Afori= l,..., n in the network. (V, P) completely describes the Bayesian
network.

Definition 3.3. Given a Bayesian network 93 = (V, P), an instantiation is an
ordered pair (A, a ) where A E V and a E R(A). (An instantiation (A, a ) is
also denoted by A = a and As.) A collection of instantiation w is called an
instantiation-set iff (A, a), (A, a‘ ) in w implies a = a‘.

An instantiation represents the event when a random variable takes on a value
from its range. Given an instantiation-set, we can define the notion of the span of
an instantiation-set.

Definition 3.4. Given an instantiation-set w for a Bayesian network 93 = (V,
P), we define the span of w, span(w), to be the collection of random variables in
the first coordinate of the instantiations. Furthermore, an instantiation-set w is said
to be complete ifl span( w) = V.

The span of an instantiation-set simply denotes the random variables that have
been instantiated.

Notation 3.5. For each random variable, A, we define cond(A ) as follows: B
G cond( A ) iff there exists a conditional probability in P of the form P(A =
a[. ... Bib,)..).

10We ~~n,sider prior ~r~babi[ities to be degenerate cases of conditional probabilities,that is.,P(A =
~) = P(A = ulo) where I#Jis the empty set,
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Intuitively, cond(A ) is the set of random variables which are the parents of A.

Notation 3.6. Given an instantiation-set w for ~ such that cond( A ) c
span(n), WI(A) denotes the instantiation A = a where (A, a) = w’

w(cond(A)) = {wIB)IB E cond(A )}.

Definition 3.7. Given an instantiation-set w = {(A ,, a , ), . . . , (A,,, a,,)} for
a Bayesian network .!l = ( V, P), we define the probability of w to be

P(w) =P(A, =a,, . . . ,A,, =a,, ).

4. Appr(j.rirnation Flinc(ions

To avoid the exponential explosion in our conditional table size, our approach is
to compress the information. Through the use of approximation functions we call
linear potenrial frinc~io}ls (LPFs), we would reduce the entire table and store it as
a simple function. Ideally, we would like to have a table reduced to a single
approximating function, but even multiple functions are still more desirable than
having the explicit table. These functions are real-valued functions from !}\” into
!Ji, where !1/ is the real line and !Iin is the n -dimensional Euclidean space. The
range of these functions will correspond to the conditional probabilities whereas
the domain will be used as indices in fetching/computing the appropriate
conditional probabilities. Unfortunately, instantiation for random variables need
not be numeric in nature. They can be objects, names, etc. Hence, it is necessary
to map them into real values for our purposes.

Notation 4.1. 2 is the set of rational numbers. 2‘ is the set of positive
rational numbers.’ 1

Let ?3 = (V, P) be a Bayesian network where V is the set of random variables
and P w-e the associated conditional probabilities in the network.

Definition 4,2. Given a rv A in V, a one-to-one mapping .E,.l from R(A) to
9 + is called an encoder for A.

Intuitively, encoders provide a total ordering on the possible instantiation for
a random variable. Furthermore, it provides a mechanism for flexibly transform-
ing/reorganizing our instantiation to a possibly more useful form or interpreta-
tion. For example, consider the simple table consisting of only one random variable,
say.4. 12Assume R(A) = {red, green, yellow, blue, purple} and the table is

P(A = red) = 0.02

P(A = green) = 0.50

P(A = yellow) = 0.00

P(A = blue) = 0.37

‘‘ Since we arc intending to use LPFs in linear programs, variables in Iincar programs must have

nonnegative values.

12This wnuld correspond to a r~mt node in our Baycsian netwnrk such iis rain and sprinklers in

Figure 1,
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Straight Mapping
Probability Value

1.00

0.80

0.60

0.40

0.20

0.00

--——-n-—— happing One

I

t

*

●

2.00 4.00

red=l ,green=2,yeilow=3,blue=4,purple=5

FIG. 2. Encoding 1 for random variable A.

P(A = purple) = 0.11.

First, let’s use the simple encoding of the colors to 1, 2, 3, 4, 5 based in the order
they were presented above. We get the resulting graph in Figure 2. Now, let’s
choose a more intelligent encoding scheme as in Figure 3. The approximation for
our second encoding is simply a line through all the points as opposed to the
more sophisticated interpolation curve we would need for the first encoding.

As we have just seen, the choice of encoders will have a major impact on the
success of our compression/approximation. The problem is certainly easier if we
could choose encoders for the random variables independently. However, in
tables involving more than one random variable, the encoders must interact
which can result in convoluted probability spaces worse than Figure 2.

By viewing these tables as look-up functions, our goal is to replace them with
simple continuous real functions. The heart of our formulation lies in the
effective identification of encoders and an approximation function. In particular,
we are interested in approximation functions of the form

S(EA(U), E~, (cl), . . . . E~”(cn))

= exp(k&~(a) + klEc, (cl) + “ . . + k. Ecn(c. ) + k). (5)

Hence, we must find such a function by simultaneously determining the
appropriate encoders and the method for properly combining them. Our choice
of the LPF class is tied closely to our later integer linear programming approach
for belief revision presented later.

We start with a conditional probability table T that we wish to replace by an
approximation function S. Assume T are probabilities of the form

P(clj = Colcl= c~, . . . , c“ = c“).

Notation 4.3. If P(co = CJC1 = c,, . . . . C. = c.) is in T, we simply
rewrite this as (CO, cl, . . . , en) E T.
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Intelligent Mapping
Probability Value

1.00 ~ 1. ------ +-- happing Two

0.00 2.00 4.00

yellow=0,red=.2,purple=l. 1,blue=3.7,green=5

FIG,3. Encoding 2 for random variable A

Ideally, we would like

exp(k(~Ec,,(c,~) + kiEr, (cl) + . ~+ k,,Ec,,(c,,) + k)

= P(c(, = C,)lc, = c,, . . . , c’” = c,,). (6)

This can he rewritten in a simpler form as

k,,E(.()(c,)) + k,.Ec, (c,) + “ “ + k,,Ec,,(cn) + k

= lnP(C() = C(}IC1= cl, . . . , C,, = c,,). (7)

Our goal IS to determine the constants k, k{), k,, . . . , k,, and to determine the
mapping of each particular instantiation of a random variable, to some real
number. Hence, we have the following variables that we must determine:

—The constants k, ko, k,, . . . , k,,.

—For each rv C,. for each c, E R(C, ), the encoding Ec.,(c, ).

We can accomplish this by minimizing the following sum over the entries in table
T:

~
n

2 [x 1k,E{,(c,) +k – lnP(C’(, =c,,l . . . , Cl= c,, . . .) . (8)
(c,, .I. )6T /-[1

This equation is some form of /ea.~t-.squaresfil. We can find the minimum by
taking the partial derivatives over (8) with respect to all the variables we must
determine: and then set these derivatives to O. Unfortunately, the resulting
system of equations is quadratic making it quite difficult to solve. Instead, we
take a careful look at our problem and make the following observations: First,
the encoders E,f (a ) are already variables themselves. We find that we can simply
“absorb” the multiplicative constants in front of them in (8). (However, if the
encoders were chosen ahead of time, this no longer holds. )
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We can now reduce the sum to:

z
[ 1~Ec,(c,) +k-ln P(CO=cOl . . .. Cl=cl) ...) 2. (9)

(cO.. ..c. )GT j=O

We have now eliminated a whole collection of variables and thus simplified our
summation. As a result, by taking the partial derivatives over (9), our system of
equations is smaller and most importantly, linear in nature. Furthermore, the
partial derivative equation obtained for k is actually a linear combination of the
other equations. Hence, we can eliminate k from our summation that leaves us

z
[ 1

~ ~~,(c,) - lnP(CO = COI . . . . C,= c,, . ..) 2. (lo)
(c{,, ,C”)GT J=o

Intuitively, what we are seeing in these absorption is the following The multiplica-
tive constants k; simply scales our data while the constant k is a translation.

As it turns out, the nature of our minimization problem has a closed-form
solution. Thus, we can avoid having to explicitly solve the system of linear
equations. The typical Gaussian elimination techniques take a polynomial
amount of time to run.

THEOREM 4.4. The minimal solution to (8) will be for each random variable Ck
in T, and for each Ck G R(C~),

z blt’(co =c~l. ..,c, =c; )...)
(cd, ., c;)=T

;;=<k

n 6( T)
—

(n + 1) ~~=om,”

where mi = /R(Ci)] for i = O, . . . . n and

We will now show

Notation 4.5

z /n P(Co=dO1. ... C,= d,)...).
(do, . . . . d.)ET

how we derived the closed form eq. (1 1).

K,= ~ Ec,(c/J.
ckGR(Ck)

Differentiating (10) with respect to Ec,(dk), we obtain

(11)
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We begin by summing over all possible dks. This results in

=x
(I,,.. Z,,,ET“n ‘(c” = ‘:)1~~~, c, = d;. ..,)](l&ERI(’k) <Ii(IA

which can be rewritten as

= &(n – i K, ii mb
,=~ /=()
,+k /*J

Putting all this together implies that

~ K, fi m, = &(T).
]=() ,=[)

1*)

Now. assume

&T)

“=(n + 1) ~f=IIm,’
!%,

We rewrite eq. ( 12) as

-~~,fiml
,=~ 1=0
,#k l#k

/#)

—— z lnP(C() =d~)l . . .. C1= d)....)
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(12)

(13)
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- ,; (n :;mk
]+k

—— E lnP(CD= d~l. ... C,=dj) ...)
(d .di!jy

n~(T)
—

(n + l)rn, ”

We can assert (13) above because our system of linear equations is actually
under-constrained. Now that we have obtained a closed-form solution, we can
also provide necessary and sufficient conditions on when an approximation
function will fit the data perfectly.

Our best approximation function will be a perfect fit if and only if

jj E~,(Cj) = lnP(Co = CCJ[. . . . C,= C,, . ..) (14)
j=o

for all Cj G I?(C,) for j = O, . . . . n. By taking the closed form solution we
obtained in Theorem 4.4 and substituting it into (14), this results in the following
condition on the probabilities:

[

i“, E lnF’(Co=c~\Cl= c\, . . . ,C. =c~)
,=0 (c(i, ,c; )eT

C;= Ck 1
n2ij(T)

‘ln P(C~=CO1. ... =c=,/)fim; fire; =
,=0 (n+ l)’

(15)

for all (CO, . . . . Cn) E T.
From this, the next theorem follows:

THEOREM 4.6. There is a perfect fit if and only if (15) holds.

PROOF. This follows immediately from our minimization problem and Theo-
rem 4.4. ❑

In our above formulation, we made two implicit assumptions. First, we allowed
encoders to map to nonpositive values whereas Definition 4.2 allowed only
positive ones. This can be easily resolved by selecting the translation constant k
such that all encoders are positive. As we demonstrated above, the choice of k
has no bearing on our optimality criterion. The second assumption involved
having the encoders be invertible since we need to be able to recover the original
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values after being encoded. This can also be easily resolved by perturbing the
encoder values by a small constant.

We now perform some experiments applying our approximations to randomly
generated conditional tables. We generate two classes of tables: completely
random and structured random. Both classes are also normalized to 1 in order to
be valid conditional probability tables. We generate structured tables by arbi-
trarily ordering the possible assignments for each random variable. We then
generate random values in the table with the following property: Let a, and a ~
he some instantiation for random variable A. For any two entries in the table
which share exactly the same instantiation to all the random variables, except
for ,4 and A is either a, or az, then the value in the entry with a, should have a
value less than that for a~. Note, however, that after we normalize the table, this
property may no longer hold. Structured tables attempt to capture some of the
ordering relationships found in real world domains. For example, consider two
random variables .4 and f? denoting “Target Found” and “Radar Distance,”
respectively. The probability that a target is found given a radar reflection
distance increases as the distance decreases,

Asides from our two different classes of tables, we varied several additional
parameters including the size of the table, the number of random variables
involved in a table as well as the skewness of values placed in the table,
Increasing skewness implies that entries in the table will be closer to either () or
1. We note though, that in our experiments, skewness had little or no effect on
the quality of our approximations.

There are several measures one can choose to determine how good a fit is. In
our experiments. we measured the approximations against the following two
metrics:

—Absolute worst fit:

maxlP(c) – P(c)l (16)
lEr

—Relative average fit:

(17)

where T is the table, P is the actual probability, and ~ is our approximated
probability. The relative fit will give us a percentage difference from the original
table entry value.

For our experiments, we varied the table sizes from about 100,000 entries to
~,~oo,oo~”entries and varied the number of random variables from 3 to ]~, For

each combination of table size and number of random variables, we generated
approximately 200 instances roughly three quarters of which were the structured
tatsles. 13 In generating a table of size 100,000 with 6 random variables. we

I~ Note that hy the d~finiti{,n ,)f ~onditi(~nal probabilities, the average cnt~ value of a gi~cn table is a

function uf the number uf instantiation of the random variable hcing cnnditionmf upon. For

example, a 30 X 100 K 100 table will have an average entry value of 1/30 instead of l/300000

assuming that uur randnm variable being conditioned on has 30 possible instant iations.
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FIG, 4. Absolute worst fit forcompletely random tables.

selected one rv at a time and determined the number of instantiation for it, The

number was chosen using a normal distribution with {1100,000 as its mean. We
then determined the next random variable by choosing a number that was the 5th
root of the remaining size-factor, etc.

Our approximation approach should fare worst when faced with completely
random tables. By their very nature, we do not expect any patterns or structures
to be found. In Figure 4, we can see the average absolute worst fit for each
category of conditional probability tables. However, we must realize that most of
the tables used in practice will by necessity be structured in some way.

In Figure 5, we can see that our approach performs better on the structured
tables as opposed to the random tables. At worst, our approximations are off by
0.005. However, we must place this in perspective of the actual probability values
which are a function of the number of instantiations for the random variable
being conditioned on. Hence, with respect to individual probabilities, we measure
the relative fits of our approximations according to 1P(c) – ~(c)l/P(c), where again,
P(c) is the actual probability entry and ~(c) is the approximation, From Figure 6, the
average relative error over an entire table is less than $’0, that is, the approximated
value varies at most t~Yo from the actual value.

One final note about computing our LPFs: As it turns out, our method for
finding the optimal LPFs is not restricted to Bayesian networks and their
conditional probability tables. In fact, it can be applied to any table of values of
any dimensions. Hence, we have provided a general scheme that can be used in
many domains requiring data compression.

5. Constraints Formulation

As we mentioned earlier, our LPFs can be incorporated into an existing
computational approach based on the results of transforming belief revision into
linear constraint satisfaction [Santos, Jr. 1991; 1993; Charniak and Santos, Jr.
1992]. This approach could be applied to any Bayesian network regardless of
network topology. Furthermore, this approach is capable of generating alternative
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FIG. 5. Absolute worst fit for structured tables

solutions and performs efficiently on moderately connected networks with moderate-
sized tables. In this section, we give a brief summary of the concepts and methodol-
ogy used in the transformation that will be shared with our new approach. 14

The transformation involves mapping the random variable instantiation into
some multi-dimensional Euclidean space fll”. A subset of ~“ will represent
“valid” instantiation where valid includes things like being consistent to the
given evidence e, each random variable has at most one instantiation, etc. In
particular, we are interested in transforming it into a polyhedral convex set. *5Such
a set can be described by a collection of linear inequalities. As it turns out, these
inequalities will intuitively correspond to the restrictions/constraints required in
making valid instantiation of the random variables. Finally, we would like to
define a linear enerw funcfion such that by minimizing it over the convex set, the
resulting answer will be the best explanation after we make the appropriate
inverse mapping. Thus, we would have the makings of a linear constraint
satisfaction problem.

We begin our transformation by mapping random variable instantiations. Let
A be a random variable and a be a possible instantiation for A. If A is
instantiated to a, that is, A = a, then we would like to set a real variable A~ to
the value 1. IfA # a, then A. = 0. This holds for every possible instantiation of
A for every random variable A.

Having mapped instantiation to M“, we must now define our polyhedral
convex set, We begin with the simplest of constraints: Each random variable must
have exactly one instantiation. This can be achieved with the linear constraint

> A.=1, (18)
UGRI .4)

1~~rccisc delails and th~oretical proofs can be found in Santos. Jr, ll~yl 1
!‘ “Polyhedral” refers to the fact that the boundaries of the subset are composed of hyperplanes,
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where R (xl) is the set of all possible instantiations for A. Next, for each
conditional probability P(A = a IB = b, C = c) in the network,lb construct a
real variable q [A.JB~, Cc] (which for convenience, we will simply call it q for
now) such that q = 1 if the conditional probability P(A = a IB = b, C = c) is
used in computing the joint probability. Otherwise, q = O. Obviously, the
conditional will be used only when we have the instantiations A = a, B = b, and
C = c. To guarantee this property for q, we simply use the following constraints:

q s B~, (19)

qscc (20)

and

~ q=Aa (21)
qGQ(ArJ

where Q(A.J are all the qs whose associated conditional probability is of the
form P(,4 = al “. .).

Finally, given evidence e, if A = a is an instantiation in e, then we also include
the constraint A. = 1.

Taking all these constraints together, we can prove that the resulting polyhe-
dral convex set is indeed the set of valid explanations for e. All that is left for us
is to define the appropriate energy function. We will simply form a linear
function from the qs, also called conditional variables, as follows: If q is true, this
implies that the associated conditional probability must have been used to

16Generalizing this to other than wo conditionals iS straightfonvard.
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compute the joint probability. Thus, for each q, we have the following term in
the energy function:

-log(P(,4 = alll = b, C = c))q[A,lB,, CC]. (22)

By taking exp – (energy function), we will get back the correct joint probability.
Hence, minimizing it will get us our most-probable explanation.

We have now reduced belief revision into linear constraint satisfaction. In
particular, what we now have is a O-1 integer linear programming problem [McMillan
1975; Schrijver 1986; Nemhauser et al. 1989]. We can solve this problem by
combining the Dual Simplex Method with Branch and Bound [Santos, Jr. 1991; 1994].
Furthermore, by using a Curting Plane approach [Santos, Jr, 1991], we can generate
all the alternative solutions in order of decreasing probability. The individual
methods themselves are well understood in Operations Research allowing for many
other variations to be used which may be even more effective.

Unfortunately, this approach suffers from table size explosions. For each entry
in a conditional table, we must associate a unique real variable q. Overall, given
IV random variables {A ,. . . . . A,,}, this formulation requires

—Variables:

i [1~(~,)1+ NJ’i,)l
,=]

where 8( A,) is the number of entries in the table associated with A,.

—-Constraints:

,+ [1 + ]R(~,)l + lcond(A,)lNA,J]

Our counts will clearly be dominated by 8(,4, ) since each 8( A,) = 0( IR(A,)I x
IR(A,l)I X . X lR(,4i),, )1)wherecond(A, ) = {A,,, . . . ,A,n, }.

6. Computing with Linear Potential Functions

We now present a new computational approach based on the previous section
using LPFs.

Let $,n be a collection of encoders for the random variables in V such that there is
exactly one encoder for each random variable. To simplify our discussion, we first
assume a single encoder for each random variable. Thus, the conditional tables
which share the same random variable will also share the same encoder. However,
we will also present appropriate modifications for multiple encoders.

Next, let T be some conditional table associated with node C,, in V. We denote

RV(T) = {/l/P (C’,l= C,)(CI = cl, . . . , C,l = c,, ) E T and C, = A for some i}

to be all the random variables that C() is conditioned on including C(I.
Let T be a conditional table in 93 and assume

RV(~) = {Ct}, Cl, . . . , C“}.
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Definition 6.1. Let S%%,~be a function from Oln+ 1 to X of the form

S%,JEC,)(CO), Ecl(c l), . . . , Ec”(cn)) (23)

where EC{,,Et,, . . . , Ecn are the encoders found in %% and

Coe R(co), . . . , c. ER(cn).

We call S%,,~ an approximator for T. Furthermore, we say S%a,= is pe$ect if

Sga,T(Eco(co), Ec, (c,), . . . , Ecn(cn)) = P(co = CO(CI= c,, . . . , cm = Cn)

for all co E R(CO), . . . . c. E R(C.).
Let 9%3 be a set of approximators such that each conditional table T in 93 is

associated with exactly one approximation function.
Given Y%A,since all our conditional probability tables are uniquely identified

by the random variables involved, for any co E R(CO), . . . . c. C R(C. ),

S%a(Eco(co), . . . , ~Cn(Cn))

will unambiguously refer to the appropriate function defined in 9’%,.
We now redefine our notion of a Bayesian network.

Definition 6.2. Given a Bayesian network 93 = (V, P), let %%be a collection
of encoders and Y%. be a collection of approximators. We define a LPF-Bayesian
network to be a 3-tuple $3 = (V, %%, S’%,).

Definition 6.3. Given a complete instantiation set w for 93, we define the
LPF-probability, P, for $3 as

P,(w) = ~ Sg~(WI(A), w(cond(A))). (24)
,4Gspan(w)

PROPOSITION 6.4. Given a complete instantiation set w, if all the approximators
in 9’%9are pe~ect, then p(w) = P,(w).

Our goal is to substitute our LPF into our computations for belief revision. We
now proceed to show how we can transform LPF-Bayesian networks into linear
constraint satisfaction problems.

Definition 6.5. Given an approximator S G Y%$, we say that S is a linear
potential function (LPF) if and only if

S%a(E~(a), ~c,(CI), . . . . ~Cn(Cn))

= exp(k&~(a) + kllic,(cl) + . ““ + k.l?cn(c.) + k).

for some constants k, ko, kl, . . . . k.. We say that 9’%%is a linear potential space
if and only if all approximators in it are LPFs.

This is the approximator we computed in (5).
Without going into detail, we must generalize our notion of constraint systems.

Previously for belief revision, we restricted our variables to values of Oand 1. We
generalize this by allowing variables to be restricted to sets of real values. In
doing so, we also generalize our notion of a O-1 solution to the notion of a
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permissible solution as a solution that satisfies all the value restrictions as well as
constraints.

We begin our construction as follows: Let ~ = ( V, ~ ,B. Y ~,) be a
LPF-Bayesian network and .Y(, be a linear potential space. For each random
variable .4 in V, construct a real variable .xA whose values are restricted to

{E,f(a )lE..f E f ~ and a E R(A)}. These will be the only variables in our linear
constraints.

In order to properly constrain our overall space of possible solutions, for each
rand(~m variable .4. we must have the following two constraints:

,r,4 s max E,,q(a ). (26)
<1=/4(1)

Wc complete our transformation by defining an appropriate objective function:
For each function S in Y~ ,,,

–k – ~ kix<c (27)
l–l

must be part of our objective function.
We now must show that the solution space defined by our induced constraint

system is equivalent to the space of all complete instantiation-sets for the
Bayesian network. We begin by providing a transformation from permissible
assignments in our constraint systems to instantiation-sets. Let .Sbe a permissible
soiuti(~n. We can construct a complete instantiation-set w[s] as follows: Since our
encoders arc one-to-one and onto, then the inverse (or, called decoder) exists and
we denote them by E,l 1. w[s](A ) = E,4 l(x.l).

Conversely, given a complete instantiation-set w, we can construct a permissi-
ble assignment s[~] as follows: For each random variable A in V, .s[w](x~ ) =
E,.,(w(A)).

TIIEOREM 6.6. w is a complete instantiation-set fhr A if and only S[W] is a
permissible solution f<n-[he induced constraint system.

PROOF. Follows from the construction above. •l

Having shown the equivalence, we can prove the following theorem on the
pr(~bahilities being calculated.

TIIEOREM 6.7

P,(w) = exp(–@(s[w])),

where b) (s [ w ] ) is (4 .sammafion of the objectite terms in .$hanahan [1989].

P~oo~. Follows from Theorem 6.6 and our construction above. ~

Therefore, the optimal permissible solution for our induced constraint system
will be the best cornplcte instantiation set with respect to P,.
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Finally, we must also incorporate the notion of evidence. Evidence, we recall,
is the requirement that a random variable be instantiated with a certain value.
For the case where a random variable A must be instantiated to a, we simply
include the constraint x~ = E~ (a ). Thus, we can proceed with our belief revision
computations as we did earlier in this section.

Now, given N random variables {A ~, . . . . A.}, this new formulation requires

—Variables:

—Constraints:

Since we have generalized our restrictions on what values a real variable may
attain from simple O and 1, we must modify our original branch and bound
algorithm found in Santos, Jr. [1994] to guarantee that we generate permissible
solutions.

Notation 6.8. Let x be a real variable and {VI, Vz, . . . . v.} be its permissible
values such that vi < vi+ ~. We define the following functions:

Lulr= max v,

rvlx = min v,.

,,,2“

Similar to our original branch and bound algorithm, the basic idea is as
follows: To find an optimal permissible solution, we solve a sequence of linear
programs. This sequence can be represented by a tree where each node in the
tree is identified with a linear program that is derived from the linear programs
on the path leading to the root of the tree. The root of the tree is identified with
the linear program induced by our constraint system. The linear programs along
the nodes of the tree are generated using the following schema: Consider SO, the
optimal solution to our initial linear program denoted lpo. If so is a permissible
solution, then we are finished. Otherwise, we choose some non-permissible
variable assignment x in so and define two new problems lpl and lp2 as
descendants of Ipo. lpl is identical to Ip{)except for the additional constraint x ~
[s”(x) lx, and lpz is identical to lpo except for the additional constraint .x s
I-s”(x)JX. Note that the two new problems do not have so as their optimal
solutions. Since we are looking for a permissible assignment, the optimal
permissible solution must satisfy one of the additional constraints.

As we can clearly see, we now proceed in a similar fashion to our branch and
bound method for O-1 problems.

Algorithm 6.9. Given a constraint system L, find its optimal permissible
solution.
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1.

2.

3. .

4.

5. .

6.

7.

8.

9.

1().

11.

12.

13.

14.

15.

(Initialization ) Set CurrentBest := i#Iand ActiveNodes := { (1, 0)}.

If ,4cfiveNode.~ = r$, then go to step 15. Otherwise, let lp be some linear
program in ActiveNodes.

,4ctiveiVodes := ActiteNodes – {lp}.

Compute the optimal solution sOp’for lp using Simplex, etc.

If S“pt is a permissible solution, then go to step 12.

(Bound) If CurrentBest # @ and O,(s’’p’) > @l(CurrentBest), then go to
Step 2.

(Branch) Choose some variable x G Ip whose value in Sup’ is nonpermissible.

set II := z u {.x s LS[’PI(x)j,, } and I, := I u {X 2 kp’(x)l,}

Create two new linear programs:

Ip, := (11, @l(soP’)) and lp2 := (IL, @l,(s’’P’)).

ActileNodes := ActiveNodes U {lpi, lpz}.

Go to step 2.

(Permissible solution)

If CurrentBest = @ or (9L(sop’) < @)~( CurrenfBest ), then

CurrentBest := S<’p’.

(Pruning) Remove from ActiveNodes all linear programs whose lower
bounds are greater than @JCuwentBest).

Go to step 2.

(SoIution ) Print CurreniBest,

What we have attempted to do in this formulation is to avoid the combinato-
rial explosion of O(lR(A)l X IR(C1)I X ...x IR(CH )1) by compressing it to
O(lR(A)l + ]R(C, )/ + . + IR(C,, )I). Our goal is to find such an optimal
compression by manipulating encoders and approximator functions.

In terms of how well LPFs perform, let’s assume that some set {A ~, A ~, . . . .
A,, } of random variables in our given Bayesian network are now replaced by
their respective LPFs {Sj, S2, . . . . S.}. We now consider the overall expected
error of computing a joint probability when using our LPFs. Again, since
multiplying the conditional probabilities is equivalent to taking the sum of the
logarithms, the expected error is as follows:

~ ~ z,(ln P,(w) - In P,(w)), (28)
1=1WET,

where z, = 1/l T,l, ITil is the number of en~ries in the table associated with A,, P,
is the conditional probability for A,, and P,(w) is the approximation via S,,

THEOREM 6.10

n

~ ~ Zi(l?lP,(W) -
,=] ~ETl

PROOF. This follows from substituting
(28). ❑

In P,(w)) = O.

in the optimal encoder values into
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One final note for this section is incorporating multiple encoders for a single
random variable, We shall show this only increases our complexity linearly. We
just have to guarantee consistency between encoders. If one encoder says that -4
is instantiated to a, any other encoders must also instantiate A to a. For
example, say we have two encoders E; and E; and let a E R(A). Let xj and X2
be th~ encoder variables associated t-o the two encoders,
we must make sure that xl = E~(a ) iff x~ = E~ (a). We
the following constraints:

Xj – E.j(fz) ~ –M(I –y~=a)

x~ – E~(a) si$l(l –y~..)

x; – E;(a) = –M(I –yA.a)

x; — E~(a)SM(l –y~=.),

respectively. B-asically~
can accomplish this by

where y~ =. is a O-1 detector variable and M is some arbitrarily large positive
constant. This can be generalized to any number of encoders. Again, using this
technique for multiple encoders frees us to compute LPFs for each table
independently. Appendix A provides an example transformation. Finally, we find
that our problem maps straight back to pure O-1 integer programming without
needing to worry about permissibility since permissibility is automatically guar-
anteed by enforcing O-1 values upon the detectors.

7. Conclusions

Manipulating the enormous amount of probabilistic information needed in
modeling real-world domains has proved to be the stumbling block for all
previously existing probabilistic reasoning methods. Up till now, each of these
methods must access virtually all of the probabilities to achieve the desired
computations. This has been the main factor in the combinatorially explosive
execution-times. In particular, we have taken a look at a popular model for
probabilistic reasoning called Bayesian networks. This explosion comes in the
form of conditional probability tables which it must maintain. The size of the
table can be measured as 0(lR(,41)\ X IR(A2)I X . . . X lR(An)]) where Ai’s
are random variables.

Our new approach compresses the tables into approximation functions called
linear potential functions and reformulates them into linear constraint satisfac-
tion. We have provided a scheme that does not require explicit storage of this
data. The compression is achieved by using these functions as approximations to
the conditional tables. Unfortunately, although conditional tables are look-up
functions, the parameters used, namely random variable instantiations, may not
be numerical values as one would like them to be in a real function. For example,
random variables may be instantiated to objects, names, etc. The most straight-
forward approach would be to choose an arbitrary mapping from the instantia-
tion to real values. For example, given a random variable C representing color,
a unique integer can be associated to each possible color, like “red” to 1, “green”
to 2, etc. Now, a least-squares fit criterion can be used to determine the best
fitting LPF. Unfortunately, this technique may be somewhat restrictive. Too
much seems to rest on our initial choice of mappings.
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Instead, we provide an alternative technique which extends the least-squares fit
criterion to simultaneously determine the optimal mapping for the random
variable instantiation. This now provides us with an immense amount of
flexibility for finding an excellent approximating function. Most importantly, the
solution for finding the best mapping can be computed by applying a very simple
set of closed-form equations. Furthermore, we can provide necessary and
sufficient conditions on when a perfect fit occurs.

We also demonstrated that our LPFs can be fully merged into an existing
computational method.

Putting this altogether, we have effectively reduced an originally

o(pl(A, )\ x IR(’’4,)I x “ “ “ x IR(A,,)I)

to a

O(lR(A, )[ + lR(Aj)l + “““+ lR(/l,, )1).

Our examples demonstrate the savings that can be achieved. However, we do
note that for small tables, say less than one hundred entries, there is a trade-off
in using an approximation function. Currently, we have the computational
resources to solve small problems using the tables explicitly [Santos, Jr. 1991].
Naturally. there will f-wa few tables that are small in a given Bayesian network.
In these cases, we may not use a linear potential function. Instead, we would
utilize a mix of approximation functions and explicit tables. As it turns out, such
a mix can also be naturally formulated using integer linear programming,

Finally, the tools used in our approach have long been studied and are well
understood. Dual Simplex, branch and bound and least-squares methods are very
common computational techniques. We would like to note though that these
methods are general methods. There are other methods which exploit domain-
dependent information that we can likely use. Methods which rival Simplex have
actually exhibited expected linear and even log-linear run-times which are

17Thus, this helps to provideobviously superior to our initial polynomial time.
further support for the expected success of our approach.

Future work on approximation functions will include the possibility of using
multiple LPFs on different portions of a single conditional table. In essence, we
partition up the table and create a spline of LPFs over it. This way. if there are
some clear and distinct patterns within a single table, we can take advantage of
this and achieve an even better approximation. By carefully restricting the types
of partitionings allowed. it should be possible to preserve the linear compressions
gained from using a single LPF.

Appendix A. Mobile Target Location Problem

The Mobile Target Localization problem (abbreviated MTL) [Kirman et al. 1991;
1993] involves a robot equipped with sonars to track some given mobile target
and reporting its location in the coordinate system of a global map. The robot,
itself. must also mtwe around in order to keep the target within sensor range.

“ Sec. fur example. Piotkin ct al. [1991]. Karmarkar and Karp [19821, Klein ct al. [1991]. and

Ragha\an [ IW8],
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We begin our formulation with a set of locations L corresponding to the
regions that are used to encode the location of both the robot and target. Thus,
L represents the discretization of our global map. We now use the following
random variables in order to represent our world and its uncertainties:

—L ~, represents the location of the robot at time i ranging over L.

—L ~, represents the location of the target at time i also ranging over L.

—OR, represents our sensor observations of the robot’s surroundings at time i.

-O ~, represents our sensor observations of the target’s location relative to the
robot at time i.

—AR, represents the action our robot takes such as movement at time i.

—Disl represents the distance between the robot and target allowing us to use
proximity as a desirable outcome.

So, the robotic sequence works as follows: The robot initially has some idea as to
where it is and where the target was. It then takes set of sonar readings on its
immediate surroundings and another set for locating the target. Based on this
information, it decides the best sequence of actions and executes the first one.
Once we finish executing the first action, we start over again and choose a new
sequence. In essence, the sequence is used to help predict what the world should
look like after a given action.

By making various instantiations to the above random variables, we are
creating different states of the world. In this problem, our goal is to find the best
action for the robot to perform given the other information such as sonar
readings and object locations. Thus, this will involve computing joint probabili-
ties of the given random variables.

On the other hand, we again look at the chain rule as follows for the random
variables at time 1:

P(O~,, 0~,, A~,, L~,, Lr,)

= P(O//,lOT,, A~,, L~,, L~,)P(O~,lA~,, L~,, Lr,) (29)

* P(A~,lL~,, L~,)P(L~,lL~, )P(L~,).

Using Bayesian networks, the MTL problem is modeled in Figure A. 1. We can
now rewrite eq. (1) as follows for the random variables involved in time step 1:18

IS we can i~o]ate the random variables in time step 1 from the remaining random variables because

of the following observation on the conditional independence relationships: Let U be the remaining

random variables in the network. We know that

P(ORL, OT,, AR,, LR,, LT, )

= ~ P(OR,, OT,,AR,, LR,, L,,, U),
{)

Furthermore,accordingto our independence assumptions

P(OR,, OT,, AR,, LR,, Lrh, U)

= P(UIORI, OT,, AR,, LR,, Lr, )P(OR,, OT,, AR,, LRI, Lr, ).
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P(O~,, 01,, A~,, L~,, L~, )

= P(O~llL//, )P(Or,lL~,, L~,)P(A~,lL~,)P( L~, )P(L~,). (30)

Our goal in the MTL problem is to determine the best course of action for the
robot such that it continues to keep track of its target. Basically, the robot must
base it’s decision on current sonar readings plus its own internal knowledge of
the world. Having formulated the MTL problem using Bayesian networks,
determining the best action can be modeled as follows: Assuming we are only
working with four time slices as seen in Figure A.], this will imply that we are
looking for a 3-action sequence. Hence, we are given the following information:

—Ok,, which represents the current/actual sonar readings on the robot’s posi-
tion.

—0 ,,, which represents the current/actual sonar readings on the target’s posi-
tion.

Our goal is to determine an action a’ for AR, such that

P(.4rf, = a*[O~l, 07, ) = max P(A~, = a[O~,, OT, ). (31)
a

This type of computation performed with Bayesian networks is classified as belief
updaring [Pearl 1988]. In general, belief updating involves updating our beliefs
about the different possible instantiation of a random variable given certain
instantiation of other random variables as evidence/observations. ‘y However, as
we noted in Section 2, belief updating can be performed with belief revision
[Kirman et al. 1993: Santos. Jr. and Shimony 1994].

We now present a hypothetical example transforming a Bayesian network into
our constraints formulation. For this problem, we assume 100 possible map
locations and 100 possible sonar readings.

From Figure Al, we have the following random variables: .’i~,, ON,, 07,, .S~,
for i = 1,2,3, 4. A~fori= 1, 2, 3, and Dist. Let m~~, = lf?(A~, )l, etc.
Assume we have one LPF for each conditional table. Furthermore, assume that
each table has its own separate set of encoders.

Given the conditional table associated node L~,, we denote the associated
encoders by, El.,{ ,,R , E,.l,, ,l.,{, and EL , . The second index of the encoders
represent the associated nbde. This wifi’’b~’similarly handled for all nodes. Let
F,,, be the LPF associated with node L~,. This is again similarly done for all
nodes.

For our transformation, we begin by constructing the following real variables:
For each node A in the network, for each B E cond(A ), let XH,.I represent the
instantiation of B with respect to node A. Thus, xl;,,~ is the encoded value of
instantiation to B in the context of E~,~.

Now, since we have multiple encoders, we must guarantee that they are
consistent with one another. Let B be a random variable. For each b E f?(B),

Since the suxmd term ,m the right hand side is constant, summing over the different possible

insttmtiations for U reduces the first term to the value of 1. Hence, we can simply ignore the random

variables in U,

‘<’Typically. wc are tmly Interested in finding the best instantiation.
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FIG. Al. Bayesian network for MTL problem with 4 time slices.

construct a O-1 deteCtOryB=b. For each encoder EB, ~,, construct the following
two constraints:

XB,.1,– E~,Jb) ~ ‘M(1 – y~=b)

‘B,A, – ~B,A, (b) = M(I – y~.h).

Assume that our evidence is 0~, = s 1, OTl = s2. Thus, we must add the two

evidence constraints:

X[)R,,[)R1=E OR,.I)R,(S1)

xoTl,oT, = Eor),o~,(sJ.

Finally, all that needs to be done is to construct the objective function. Given
our LPFs F, our function is

~ In F’(A),
A

where F’(A) is simply the original function FA with the encoder elements
replaced by the appropriate real variables representing the instantiations.

Our transformation will involve 46 representation variables, 1715 consistency
variables, 2 evidence constraints and 6700 consistency constraints. From our
construction, the number of variables and constraints is clearly linear to the
number of nodes in the network and the size of each random variables state
space. Compare this against the total number of probabilities we would need to
maintain in all the conditional tables, which is 5,221,700!
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We now provide the resulting linear constraint system for the MTL problem.
Assume the following:

—R(J4E, ) = {al. a~, . . . . a5} fori = 1, 2, 3.

—R(L~, ) = R(L~, ) = {11, . . . . llt),)} for i = 1, 2, 3, 4.

—R(OK, ) = R(O,,) = {s,, . . . . S]()[)} for i = 1, 2, 3, 4.

—R(Dist) = {dl, dj. . . . . dIOO}.

We have the two evidence constraints:

X(,R,ONI= E,, R,,OR,(S,)

X(),,,(,), = E07,,(j~,(sJ.

We have the following consistency constraints: For i = 1, 2, 3, for each A~,,
forj=l, ...,5,

L’,4R,,N – E,4.,~.,,, (a,) ~ –M( 1 – YAR. . .,,

-~,4fl.l. R –E ~R,[.R,.,(a,) ~ M(1 - y~fi,=uI

x,~~,,,~,<— E,d,{,,~H,(a,) ? —M( 1 – y~~ .U,

x,4~,,4,, —E,i~,,,~~,(a,)< M(l —y,d~,=fl,).

For eachi= 1,. ..,3, foreach LN, foreachj= 1, . . .

~[.Rr,L,, – E/.,,,,.R, ,(1,)= –M(1 – Y,.R =,,)

J’I.R,.l.N,,, –E ,.N,,R,,,(l,) = M(l – y,,N ~,,)

.~LR,J.R,–E LR,,f.R,(~,) = –M( 1 – yLR,=,f)

(f) = M(l -y,., =,,)XI.,+,1.R— E[. R,1.R, j

xl,fl,,i~ – E,~,,~J,(l,) 2 –M(I – y[~ =1,)

(f)=kf(l -y,.,, =,)xl.,,,,~~ —E[~,,~N, , ,,

X1,,,,(), — E1~,,c,, (1,) = –M(I – YL,, =/,)

XI,fl,(), – E/. K,<),,(i,)~ M(I – yL~,=I,).,,

Foreachj = 1, ..., 100,

x[.Ra.[.R,– Ef.K4,L,,,(~,)= –-M( 1 – yLR,=/,)

‘L/J,{t — EI. R$,I.8, (/,) < M(l - y,. RJ=,,)

xL~J)~3 – E[.~4,()~,(1,)~ ‘M( 1 – yLfl,.l, )

X[.R4,0R3– ELR4,0R,(1,) ~ Jf(l – YLK,=I,)

‘LR,,o, — EL R4, [), ,( f,) ~ ‘M(1 - YL,J=I,)

, 100,
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XLRA,0T4 ‘E&,, O,,(~,)s M(l ‘y LN4=/,)

XLR4,D,~l – ~f@,$,(/,) ~ ‘kf(l - yLR,=/,)

xL@Isf ‘~ LN,,D,.s,(~j)s~(l ‘~ LRJ=/,)o

Foreachi= l,..., 3, for each L~,, for eachj = 1, . . . . 100,

‘L I,.L[,, , – EL7,,L, ,(/j) ~ –Jf(l – YLT,.l,)
,.

‘L T,. LT,., – ELT,,L,,, (lj) ~ M(1 – YL,,=I,)

‘L J,.LT, – EL1,LT,(lj) ~ –M(1 – yLT,=i,)

‘L T,,LT, – ELT,,Lr,(~j) ~ M(1 – YL7,=I,)

‘L7,,0T, – EL, ,Or,(~,)= ‘M(1 – YL,,=I,)

‘L T,, OI,– EL,, Or(~j) ~ M(1 – yL7,=/,).
,,

Foreachj = 1, . . . . 100,

XL7J,LTJ — ELr,,Lr,(l,) ~ —M(1 —yL7,~I,)

‘L T4.L7, – ELr,,L74(~j) ~ M(1 – YLr,=/,)

xL74,<)r4 – EL7,,0.z,(~,) ~ –M(I – yLT4=/J)

‘L T4,0T, – ELr4,0r,(~,) ~ M(l – YL7J=I))

XL, ,,Dist – EL,,,D,$[(I,) = -M(l - yLJ,=l,)

xL,,,D;~,–E L,,,~,,,,(/,) s M(l – yL,4m,,).

For each i = 1?. ... 4, for each OR,, for eachj = 1, . . . . 100,

XOR,OR, –E ,,R,,OR,(S,)= -M(l - yoR,=,,)

XOR,oR,– Eo, ,o~,(~j) ~ M( 1 – yOK,=~,).

Foreachi= l,..., 4, for each 0~,, for eachj = 1, . . . . 100,

X<)T,(),, – EO,,.OT,(S,) = ‘M(1 – Yo,,=s,)

Xor,.o=,– E0,,07(sj) = M(I – Y(),,=s, ).,,

Foreachj = 1, . . . . 100,

xD1~,,~j.f - EDi$r,~i$((dj)2 -M(1 _ y~,,l.~,)

xDrs,,Disf - EDis[,Dis/ (d]) S A’f(l – y~ij.,c~,).

Finally, the objective function is
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-i [xAfl,,.4,<, + X[.,,,.7SJ

,=,

- i [~LH,,.N,+ X.AR,,,LR,+ XI.R JR,]
,=:

—XI.RI,I.R)

- i [-%X,.OR,+ XLR,!OR,I
,=[

-i [%,,(),, + XL{,,(I1, + XI. R,. O,1
,=]

- i [XLT,,L,,+ ‘LT, ,,LJ
{=2

—xl. ~l,[.,

-[ XLS,.,,,D,,,,+ X,.R,.D,,,, + X,.,,,L,Is,]

+K,

where K is the overall translation constant, which is required to ensure that our
encodings are nonnegative values.
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