
Foundations of Multimedia Database Systems

SHERRY MARCUS

2Ist Century Technologies, Inc., McLean, Virginia

AND

V. S. SUBRAHMANIAN

university of Maryland, College Park, Maryland

Abstract. Though numerous multimedia systems exist in the commercial market today, relatively little

work has been done on developing the mathematical foundations of multimedia technology. We

attempt to take some initial steps towards the development of a theoretical basis for a multimedia

information system. To do so, we develop the notion of a structured multimedia database system. We
begin by defining a mathematical model of a media-instance. A media-instance may be thought of as

“glue” residing on top of a specific physical media-representation (such as video, audio, documents,

etc.) Using this “glue”, it is possible to define a general purpose logical query language to query

multimedia data. This glue consists of a set of “states” (e.g., video frames, audio tracks, etc.) and

“features”, together with relationships between states and/or features. A structured multimedia database

system imposes a certain mathematical structure on the set of features/states. Using this notion of a

structure, we are able to define indexing structures for processing queries, methods to relax queries when

answers do not exist to those queries, as well as sound, complete and terminating procedures to answer

such queries (and their relaxations, when appropriate). We show how a media-presentation can be

generated by processing a sequence of queries, and furthermore we show that when these queries are

extended to include constraints, then these queries can not only generate presentations, but also generate

temporal synchronization properties and spatial layout properties for such presentations. We describe the

architecture of a prototype multimedia database system based on the principles described in this paper.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic;

H.2.3 [Database Management]: Languages; H.2.5 [Database Management]: Heterogeneous Databases

General Terms: Languages, Theory

Additional Key Words and Phrases: Data structures, multimedia databases, query languages, query

processing

This research was supported by the Army Research Office under grants DAAL-03-92-G-0225 and

DAAH-04-95-10174, by the Air Force Office of Scientific Research under grant F49620-93-l-0065, by
ARPA/Rome Labs contract Nr. F30602-93-C-0241 (Order Nr. A716), and by a National Science

Foundation (NSF) Young Investigator award IRI-93-57756.

Authors’ current addresses: S. Marcus, 21st Century Technologies, Inc., 8302 Lincoln Lane, Suite

#103, Mclean, VA 22103, e-mail: sem@cais.com; V. S. Subrahmanian, Institute for Advanced

Computer Studies, Institute for Systems Research, Department of Computer Science, University of

Maryland, College Park, MD 20742, e-mail: vs@cs.umd.edu.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is

granted without fee provided that the copies are not made or distributed for profit or commercial

advantage, the copyright notice, the title of the publication, and its date appear, and notice is given

that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy

otherwise, to republish. to post on servers, or to redistribute to lists. requires prior specific permission

and/or a fee.

0 1996 ACM 0004-5411/96/0500-0474 $03.50

Journal of the ACM, Vol. 43. No. 3, May 1996. pp, 474-523.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F233551.233554&domain=pdf&date_stamp=1996-05-01

Foundations of Mulrimedia Database Systems 475

1. Introduction

Though there has heen a good deal of work in recent years on multimedia, there
has been relatively little work on multimedia information systems. In an early
version of this paper [Marcus and Subrahmanian 19931, the authors have
developed a theoretical framework for multimedia database systems. They show
how, given a set of media sources, each of which contains information repre-

sented in a way that is (possibly) unique to that medium, it is possible to define

general-purpose access structures that represent the relevant “features” of the

data represented in that medium. In simple terms, any media source (e.g., video)
has an affiliated set of possible features. An instance of the media source (e.g., a
single video clip) possesses some subset (possibly empty) of these features. Thus.
a feature may be “Taurus” or “Mustang”. The features associated with a media
source may have properties of two types-those that are independent of any
single media-instance, and those that are dependent upon a particular media-
instance. Thus, for instance, the property price(taurus, 15k) is true and is

independent of any single video-clip. In contrast, the property color(ta,drus.

blue) may depend upon a particular video-clip. Marcus and Subrahmanian

(19931 develop a general scheme that, given a set of media-sources, and a set of

instances of those media-sources, builds additional data structures “on top” of
the physical representation of data in that medium. This physical representation
allows for the definition of suitable query languages. and database query
processing algorithms. An important aspect of our framework as well as our
implementation is the fact that our framework is compatible with both manual

and automated feature extraction schemes. For example, in many applications,
manually identifying all the features in a collection of media data may be

infeasible due to the vast amount of such data (e.g., satellite photographs may

number in the millions). On the other hand, in other applications, manual
identification of features may be critical (e.g., in medical domains where
automated feature extraction is opposed by insurance companies due to accuracy
concerns).

In this paper, we extend on our previous work in the following way: earlier, the
set of features was a “flat” set. However. in many cases, there are inherent
“feature-subfeature” relationships that exist. For instance, the feature o~orre~

tel (of the Taurus) is certainly a s&feature of the feature dashboard (of the
Taurus). When certain features/properties (and or relationships between them)

are desired in a query, there maybe no forthcoming answer. However. it may be
reasonable to substitute a subfeature for a feature-for example. returning a
photograph of Clinton’s face may be an appropriate substitute for a request for a
full-length photograph of Bill Clinton. In other words. the structure of the set of

features may allow us to provide “better” answers than we would have been

otherwise able to provide.
In this paper, we define a certain mathematical structure on the set of

features/states. Using this notion of a structure, we are able to define merhodol-
ogies ,for relaxing queries when the original query does not have an answer.

Finding answers to a query then boils down to finding a solution satisfying the

query. or if that fails. to relax the query, and then attempt to solve the relaxed
query. An optimal answer to a query is basically a solution to a. possibly relaxed,
version of the query-without relaxing the query any more than absolutely

476 S. MARCUS AND V. S. SUBRAHMANIAN

necessary. We are then able to define indexing structures for processing queries
and finding optimal answers to queries, as well as sound, complete and terminat-

ing procedures to answer such queries.
More importantly, we show how, given a sequence of queries, we can generate

a media presentation from the sequence of queries. Intuitively, in a media-
presentation, each of the participating media are in a given state, and this state
changes over time. For instance, in a simple audiovideo multimedia system, a
media presentation would consist of a sequence of audio-video clips.

We extend this notion of generation of media presentations to handle con-
strained queries. The idea of constraints in logic based languages was originally

due to Jaffar and Lassez [1987]. Intuitively, constrained queries, contain, in
addition to the logical constraints, certain extra constraints (over different

possible domains). These extra constraints, for example, may range over time-
points and be used to achieve some temporal relationships in the presentation
(e.g., “There must be a delay of at most 0.1 microsecond between successive
video-clips”), or, alternatively, be used to achieve certain spatial layouts or
“overlays” in the resulting display (e.g., the all document windows must be above
all video windows, but may not use the lower halfofthe screen). We show how our
framework can express all the multimedia presentation composition operations
described as useful by Weiss et al. [1994].

Finally, we present a brief report on the status of a prototype multimedia
information system that we are developing at the University of Maryland.

Readers may see a limited demonstration of this system may do so through the
World Wide Web (URL: http://holodeck.cs:808Oldemo2).

As we can see, the processing of multimedia data is different from traditional
data in a number of ways:

-First, the content of multimedia data is often captured with different “capture”
techniques (e.g., image processing) that may be rather unreliable. Multimedia
processing techniques need to be able to handle different ways of content
capture including automated ways and/or manual methods.

-Second, queries posed by the user in multimedia databases often cannot come
back with a textual answer. Rather, the answer to a query may be a complex
multimedia presentation that the user can browse at his/her leisure. Our
framework shows how queries to multimedia databases may be used to
generate multimedia presentations that satisfy users queries-a factor that is
unique to our framework.

-Third, users of multimedia database systems often need to navigate through
such presentations by incrementally reformulating their queries. For example,
a user who has asked a query Q (and is seeing a multimedia presentation
generated by his query) may wish to modify his query a bit to a new query
Q’-in this case, it should be possible to incrementally recompute the
multimedia presentation, and reuse the existing presentation rather than
computing it from scratch. Our framework handles this neatly as well through
the notion of change queries.

We now present a motivating example that presents some of these issues
clearly.

Foundations of Multimedia Database Systems 477

2. Motivating Example

2.1. GENERAL IDEA. Suppose we consider a (futuristic) multimedia database
that has a “built-in” multimedia presentation. When the user invokes this
presentation, an audio-visual demonstration comes up on the system, explaining
various aspects of some topic of interest (we will consider cars in this example).
Thus, the presentation may explain the history of automobiles, current models,
and future models currently being designed. However, there is one difference
from this being a plain “movie.” The user may interrupt the presentation at any
given point in time, and may request additional information on some object(s) of
interest. Requests may include:

(1) The user may click on a particular car and ask

(a) When was this car first produced?

(b) What does the previous model of this car look like?

(c) Is there a picture of any of the European plants where this car is
produced?

(d) What documentation is available on the fuel injection system of this car?

(2) The user may stop the presentation and ask questions such as:

(a) Is there a large car available for under 12,000 dollars?

(h) What do cars that satisfy the previous question look like?

(c) Is it possible to produce a .5-minute audio-video clip of this car being
driven?

(d) Is it possible to produce an audio-video of this car being driven for 5
minutes when it has 60,000 miles on it?

(e) Is it possible to zoom in and view the dashboard of the car?

(f) Is it possible to get some information on the gauge in the top left corner
of the dashboard?

Responding to the above queries in the obvious, expected manner, requires
multimedia access to video databases, audio databases, and document databases
(and possibly other databases as well). These clips must be indexed in such a way
that queries which ask for a picture of such-and-such car be satisfiable. Thus,
methods to identify and store such features need to be developed-in this paper,
we will show how storing features is possible, though we will not discuss how such
features can be automatically identified. Our techniques can be used in conjunc-
tion with any automated feature identification system.

2.2. A SPECIFK (SMALL) MULTIMEDIA CAR DATABASE SYSTEM. In this sec-
tion, we describe a very small multimedia database system containing informa-
tion about two cars-the Ford Taurus and the Ford Mustang. Let us suppose that
we have video information, audio information, and document data on the Taurus
and the Mustang. Furthermore, assume that we have the following data available
in these media.

(1) Video. We have nine video-frames ~1, . . , 719. Frame 711 shows a whole

Ford Taurus, while 1~2 and 113 show the front. 7~4 is a video-frame of the

Taurus’ interior, 715 shows the dashboard of the Taurus, while 76 shows the

478 S. MARCUS AND V. S. SUBRAHMANIAN

fuel gauge of the Taurus. Frame ~7 shows the Mustang, while frame 2~8
shows the interior of the Mustang. Lastly, frame v9 is a picture of the
odometer in the Mustang.

(2) Audio. There is one audio-frame a 1 describing the overall features of the

Taurus.

(3) Documents. There are three documents d 1, d2, d3-document dl de-
scribes various aspects of the Taurus’ dashboard. Document d2 describes the
Mustang, and finally, document d3 describes the odometer of the Mustang.

At this stage, we are not concerned with precisely how image information is
represented on the video medium, nor are we concerned with how audio

information is represented on an audio-medium. What we will do in this paper is

to build some additional structure on top of each of these media. This additional
structure will provide the “glue” that presents a unified view of the different

media, making it possible to pose queries that retrieve the desired information
from the different media, and present them in a uniform and coherent way to the
end-user. The rest of this paper gives:

-a formal description of this “glue” (cf. Section 3).

-a formal language for querying a multimedia system that is “glued” together
using the above notions (cf. Section 4).

-a formal description of an “answer” to a query, and “optimal” acceptable
answer to a query when no correct answer exists.

-a set of algorithms for processing queries expressed in the above-mentioned
query language.

We will use this toy domain involving the Taurus and the Mustang to illustrate
the formal definitions introduced in this paper.

3. Structured Multimedia Systems, Formalized

In this section, we will formally define the “glue” that allows us to link together
multiple bodies of data on different media. A media-instance (formally defined
below) consists of the actual data represented in the medium, together with a
certain 8-tuple that constitutes the desired glue.

Definition 3.1. A media-instance is an 8-tuple

(9, fe, ATR, A, 8, 9, Var,, Var2),

where:

--Y is a set of objects called states, and

-fe is a set of objects called features, and

-ATR is a set of objects called attribute values, and

-A : Y -+ 2’” is a map from states to sets of features, and

--!H is a set of relations on fe’ X Y for i > 0, and

--9 is a set of relations on Y, and

-Var, is a set of objects, called variables, ranging over Y, and

-Var, is a set of variables ranging over fe.

Foundations of Multimedia Database Systems 479

Note that this 8-tuple may be thought of as residing “on top” of a given physical

representation of a body of data in a given medium. Thus, for instance, if data is

stored on CD-Rom, then there is an 8-tuple of the above form associated with

the CD-Rom. Furthermore, each state s E S is physically represented on the

CD-Rom using whatever electronic representation and/or compression scheme is

being used. Physical retrieval of a frame from a medium (such as CD-Rom) may

be accomplished using whatever (preexisting) retrieval mechanism is used to

access frames on the CD-Rom.

Let us see how the Car Multimedia System, which has three participating

media. can be thought of as three media-instances.

Example 3.2 (Car Example Revisited). Let us suppose that we have video

information, audio information, and document data on two cars-the Ford

Taurus and the Ford Mustang. Furthermore, let us assume that these two cars
share the same dashboard, that is, the same dashboard is plugged into both cars.

(I) (Video Media-lnstancc). This is the tuple

((7’1, . . . (v9>, fe’, ATR', A', !x,, !fiz, Var,, Var,)

where fe’ = {taurus, front, t-interior, dashboard, fuel-gauge.

mustang,m-interior, odometer},%, = {type, left, right, range,

~~.ci!o~. s,Jccessor}, and !)I2 = {earlier}. A’ is the following map:

A’ = {taurus).

A’(v2) = (taurus, front}.

A'(v3)= {taurus, front}.

A'(v4)= (taurus,t-interior}.

A'(t15)= {taurus,t-interior,dashboard).

X1(2,6)= {taurus,t-interior,dashboard, fuel-gauge).

A’(r17) = {mustang}.

A'(v8)= {mustang,m-interior}.

X'(u9) = {mustang,m-interior,odometer).

Intuitively, when we say that A’(r,2) = {taurus, front}, this means that the

video frame 172 possesses two features, viz. taurus and front. Likewise, the

statement A’(&) = { mustang,m-interior,odometer} indicatesthatvideo-

frame zt9 possesses three features-mustang, m-interior, and odometer

reflecting the fact that this constitutes a picture of the Mustang’s odometer. The

relations in !H, are relations between features. We assume that the following

tuples are contained in these relations:

480 S. MARCUS AND V. S. SUBRAHMANIAN

type(taurus,midsize, S) type(mustang,compact,S)

type(temp0, compact, S) left(odometer,fuel-gauge, ~5).

range(odometer, 0, 150000, S) range(fuel-gauge(O,lO,S)

color(taurus, red,vl) color(front,red,v2)

color(front, red,v3) color(t_interior,green,v4)

color(mustang,black,v7) color(m_interior,black,v8).

Likewise, the relation earlier in !Ni, is an interstate relation; for example
we may know that vl was an earlier shot than v2, in which case the tuple
earlier(vl, v2) is present. The atmtibute values present in ATR for this
media-instance is the set midsize, compact, red, green,black aswellas

all integers.

(2) (Audio Media-Instance). This is the tuple

({al}, fez, ATR', A*, !H1, !xZ, Varl, Var2),

where fez = {taurus} and A2(al) = {taurus}.

(3) (Document Media-Instance). This is the tuple

({dl, d2, d3}, fe3, ATR', A3, ti,, fiH2, Vat+,, Var&,

where fe3 = {taurus, t-interior,dashboard,mustang,m-interior,
odometer), and the map A3 is defined to be:

A3(dl)= {dashboard).

A3(d2) = {mustang}.

A3(d3) = {mustang,m-interior,odometer}.

The above definition ignores the relationship between different features. For
example, the Taurus’ interior is a part of the Taurus, that is, t-interior is a
sub-feature of taurus. The following definition captures this intuition.

Definition 3.3. A structured multimedia database system, SMDS, is a quadruple

({A,, * *. 3 &.,}, I, RPL, SUBST) where:

-& = (Y", fe’, ATR', A’, 91i, 5’, Vari,, Var‘,) is a media-instance, and

-5 is a partial ordering on the set Uy=, fe’, and

-RpL:U:=, fe’ -+ 2”:=I "' such that f, E RPL(f2) implies that fl I f2. Thus,
RPL is a map that associates with each feature f, a set of features that are
“below” f according to the s-ordering on features.

-SUBST is a map from Uy==, ATR' to 2"'=I ATR'.

Intuitively, suppose f,, f2 are features. When fi % f2, then this means
(intuitively) that fl is deemed to be a subfeature of fi. The map RPL is used (as
we shall see later) to determine what constitutes an “acceptable” answer to a
query. For example, if we want a video-state depicting a car dashboard, and if

no such video-frame exists, then an alternative answer may be a picture of the
odometer that happens to be a “subfeature” of the dashboard. If this is the

Foundations of Multimedia Database Systems 481

desired behavior, then odometer should be in the set RPL(dashboard). The

map SUBST is used to determine what attribute values may be considered to be

appropriate replacements for other attribute values, that is, if red E SUBST-
(green). then grren is deemed to be an appropriate attribute value to
substitute for red. This may be useful because an end-user may request a picture
of a red Taurus; if no such picture is available, and red E SURST(green). then
the system may present the user with a picture of a green Taurus instead. Till
we explicitly state otherwise, we will assume, for ease of presentation, that for all
attribute constants a. SUBST(U) = 2”’ i AT”‘, that is, any attribute constant can

be substituted for any other attribute constant without restriction. Later (Section

7.1). we will remove this assumption.

Examph 3.4 (Cur Example Revisited). The structured multimedia database
system associated with the car example, as formalized earlier, is the quadruple
({viiieo. audio. c-iocument}, 5, RPL, SUBST) where the s ordering is the
reflexive transitive closure of the following 5 pairs: fuel-gauge 5 dash-

l~oar&dashboard 5 t-interior, t-interior 5 taurus, front 5 taw

LUS. oldometer 5 m-interior, and m-interior 5 mustang. Note that in
general, the ordering on the set of features must be provided by the designer of

the multimedia system and must correspond to the intuition that f, 5 fr means

that f, is a “subfeature” of .fl.
An example of the replacement map RPL is given by:

RPL(taurus)= {front}.

RPL(front) = 0.

RPL(t-interior)=@.

RPL(dashboard)= {odometer, fuel-gauge}.

RPL(fuel_gauge)=0.

HPL(mustang)= 0.

RPL(m-interior)= 0.

RPS(odometer) = 0.

For instance, the statement RPL(taurus) = {front} says that if we are looking
for a particular type of frame depicting the taurus and if no such frame exists,

then finding a frame of the same type depicting the feature fr~ont serves as an
acceptable alternative to query.

4. C)ueT Language

In this section, we develop a query language to express queries addressed to a
structured multimedia system SMDS = ({Al,, . . . , .ti,,l, 5, F.PL, SUSST) where

.ti, = (ST’, fe’, ATR', A’, %‘, 9’. Var’,, Var’,).

We will develop a logical language to express queries. This language will be
generated by the following set of nonlogical symbols:

482 S. MARCUS AND V.S.SUBRAHMANlAN

(1) Constant Symbols:

(a) Each f E fe’ for 1 5 i 5 n is a constant symbol in the query language.
(For convenience, we will often refer to these as feature-constants.)

(b) Each s E Sr’ for 1 5 i 5 n is a constant symbol in the query language.

(For convenience, we will often refer to these as state-constants.)

(c) Each integer 1 5 i 5 n is a constant symbol.

(d) For each medium &, Ai is a constant symbol. (Thus, for instance, if &.,
= video, then video is a constant symbol, etc.)

(e) A finite set of symbols called attribute-constants. (Intuitively, these are
constants such as red, blue, midsize, 2, 3, etc. that are neither
features, nor states, but reflect attribute-values.)

(2) Function Symbols: f 1 ist is a binary function symbol in the query language.

(3) Variable Symbols: We assume that we have an infinite set of logical variables
v,, . . . , v;,

(4) Predicate Symbols: The language contains

(a) a binary predicate symbol f rametype,

(b) a binary predicate symbol, E,

(c) for each inter-state relation R E !H’ of arity j, it contains a j-ary
predicate symbol R*.

(d) for each feature-state relation $ E %H’, of arity j, it contains a j-at-y
predicate symbol $*.

As usual, a term is defined inductively as follows: (1) each constant symbol is a
term, (2) each variable symbol is a term, and (3) if n is an n-ary function symbol,
and t,, . . . , t, are terms, then q(t,, . . . , t,) is a term. A ground term is a

variable-free term. If p is an n -ary predicate symbol, and t i, . . . , t, are (ground)
terms, then p(t,, . . . , t,) is a (ground) atom. A query is an existentially closed
conjunction of atoms, that is, a statement of the form

(3)(A, & . * . 3 4).

Example 4.1 (Car Example Revisited). We now show certain examples of

queries that an end-user interacting with the Car Multimedia System may wish to
ask. We show how these queries may be formally expressed within our query
language.

(1) (Unimedia Search). “Is there a video of a white Taurus?” This query can be
expressed as the formula:

(3S)(frametype(S,video)& taurus E flist(S)&

color(taurus, white, S)).

It can easily be seen that the answer to this query is “no” as specified in the
Car example. (Later, we will show how this query can be processed to derive
this answer). However, if we ask for a picture of a red Taurus (the query
looks identical to the above query except that “white" is replaced by
“red"), the answer s = vl should be returned.

Foundations of Multimedia Database Systems 483

(2)

Note that when the answer s = vl is returned to the user, what this means

is that video-frame ~1 is “brought up” on the screen, that is. it is piped to the
appropriate output device. To bring up the video-frame VI requires a fetch
operation to be executed on the video-medium. The precise method of
fetching -\rl physically depends upon the lower-level storage scheme used,
and we will not address that part explicitly.

(Multimedia Search). “Is there an audio description as well as a video of a
midsized car‘?” This can be expressed as the query

(~S..S,,S..C)(frarr.etype(S,,audio)& frametype(S),video)&

CE f: ist(S,)&CE flist(S.)& type(C,.n:idsjze,S)).

One answer to this query is: {SL = al. S, = ?;I, C = taurus, S. = S:}.

Intuitively, this means that audio-frame al and video frame ,II should be
“hrought up” synchronously. An interesting point is in order here - note that
an answer which is identical to the above, except that s ., = 7.12 could also he

returned (because the atom type(taurus, midsize. -) is true irrespective
of what the third argument is instantiated to. Unless otherwise stated, we will

assume that the only states that are “brought up” with respect to a query are
those that occur as an argument to an atom of the form fraTetype(-, -)

in the query. In the ahove query. S, does not occur as an argument to a
il-ametype(-, -) atom; hence, S. is not brought up on a physical output
device.

(3) “Is there a picture of the interior of the Mustang?” This can be expressed as
the query

(jS)(frametype(S, video)&mustang E fllst(S)&

m_interiorE flist(S)).

This query can be answered in essentially the same way as in the last two
examples.

The above example contains relatively simple queries. Part of the reason for
the simplicity of the queries asked above is that there are very few interesting
relationships expressed in the Car example. Below, we expand the Car example
so as to be able to ask more interesting queries.

Exumplc 4.1 (C‘rrr Example Revisited). Suppose we expand the Car example

by adding to 91, (the list of feature-state relationships). the following relations
and their associated tuples:

enyine(taurus.v6,S). engine(mustang, ~78, S).

t=ncjine(+ ~mpo, ~4, S). price(taurus.1993,lik).

price(mustang,l993,18k). price(tempo,1953,12k).

airbags(ra:lrus, 1,s). airbags(mustang,2,S).

airbags(tempo. 0,s).

The designer of the Car multimedia system may wish to define a predicate
called di t f which takes two arguments Carl and Car2 and returns a list of

484 S. MARCUS AND V. S. SUBRAHMANIAN

differences between Carl and Car2 (as far as certain designated predicates are
concerned). This predicate, di f f, is a derived predicate defined (in Pralog-like

notation) as follows:

diff(Car1, Car2, L, S) +-diff-engine(Car1, Car2, Ll, S) &

diffgrice(Car1, Car2, L2, S) &

diff-airbags(Car1, Car2, L3, S) &

append(L1, L2, L4) &

append(L4, L3, L).

diff-engine(Car1, Car2,

[enginedif(El, E2)], S) +engine(Carl, El, S) &

engine(Car2, E2, S) & E, f E,.

diff-engine(Car1, Car2,[], S)-+engine(Carl, El, S) &

engine(Car2, E2, S) & E, = E,.

diff_price(Carl, Car2,

(pricedif(P1, P2)], S)*price(Carl, Pl, S) &

price(Car2, P2, S) & P, f P,.

diff_price(Carl, Car2, [], S)+-price(Car1, Pl, S) &

price(Car2, P2, S) & P, = P,.

diff-airbags(Car1, Car2,

[airbagsdif(Al, A2)], S)+airbags(Carl, Al, S)

airbags(Car2,A2, S) & Al # A2.

diff-airbags(Car1, Car2,[], S)=+airbags(Carl, Al, S)

airbags(Car2,A2, S) & Al = A2.

The predicate append is defined in the standard way.

The above definition of the predicate di f f enables an end-user to be able to
ask queries such as “What is the difference between the Ford Taurus and the
Ford Mustang?” This can be expressed as the query

(jL,S)(diff(t aurus,mustang,L, S).

The answer to this query consists of

L = [enginedif(v6,~8),pricedif(l5k,18k),/g(l,2)].

(In general, instead of defining the predicate dif f explicitly in terms of
differences between various components of it, we can do this implicitly, though
for the purposes of this paper, we do not do so.)

We now define the important concept of a media-event.

Definition 4.3. A media-event with respect to SMDS is an n-tuple, (si, . . . ,
sn) where si E ST’, that is, a media-event is obtained by picking, from each

media-instance &, a specific state.

Intuitively, a media-event is just a snapshot of a medium at a given point in
time. Thus, for instance, if we are considering an audio-video multimedia system,
a media-event consists of a pair (a, u) representing an audio-state a and a
video-state v. The idea is that if (a, V) is such a media-event, then, at the point

in time at which this event occurs, the audio-medium is in state a, and the
video-medium is in state V.

Foundations of Multimedia Database Systems 485

Example 4.4. Suppose we return to the car multimedia example and assume
that each of the three participating media is expanded by the addition of an

artificial new state nothing, which, intuitively, means that nothing is done in

that medium if its current state is nothing. A media event may now be:

me, = (vl,al,nothing).

This denotes the global state where video frame vi and audio frame al are
“turned on” simultaneously, and no document is being displayed.

At any given point in time, a structured multimedia system, SMDS, has an
associated media-event-it is entirely possible that all media are in the state

nothing, but this is a perfectly legitimate media event. Thus, any media-event
satisfies certain formulas in our query language, and falsifies others. This notion

of satisfaction binds together the query language we have defined with the global
state of the multimedia system (at a given point in time). For instance, the
media-event me, above (intuitively) satisfies the formula

(jS,,S,)(frametype(S.,video)& frametype(S,,audio)& taurus

E flist(S,)& taurus E flist(S)).

The reason is that this query asks whether it is possible to find a video-state and
an audio state with the feature taurus in both of them. The answer is “yes” and

one possible solution is obtained by setting S; = VI, S. = al, which (intuitively)

corresponds to the media-event me,. Thus, (certain) media-events may be viewed
as answers to queries. Below. we formalize this intuition and show how we can
define a general notion of what it means for a media-event to satisfy a formula.

Definition 4.5. Suppose me = (s 1r . . . , s,,) is a media event with respect to
the multimedia system SMDS = {At,, . . , .,M.,,) as specified above, and suppose

F is a formula. Then. we say that me satisfies F (or me makes F true). denoted me
b F as follows:

(1) if F = frametype(a, h) is a ground atom, then me b F iff a = s, for some
1 5 i 5 n and the frametype of ~izc; is b. (Recall, from the definition of the
frame data structure, that associated with each JM, is a string called Ju,‘s
flametype.)

(2) if F = (c E f list(h)), and there exists a 1 5 i 5 n such that c is a feature
in fe’ and h = s,, then me i= F iff c E A’(s,).

(3) if F = 4*(f,, . . , I,,, s) and for some 1 5 i 4 n, t,, . . , r,, E fe’ and s E

ST’, then me != F iff (t , , . . . , t,,, s) E C#I E !)I>.

(4) if F = (G & H), then me + F iff me b G and me + H.

(5) if F = (3x) F and x is a state (respectively, feature) variable, then me t= F iff
me + F[x/t] where F[x/t] denotes the replacement of all free occurrences of
x in F by t where t is a state (respectively, feature) constant.

If F cannot be generated using the inductive definition specified above, then it is
the case that me # F.

Definition 4.6. A multimedia specification is a sequence of queries Q,,

Q2, to SMDS.

486 S. MARCUS AND V. S. SUBRAHMANIAN

The intuitive idea behind a multimedia specification is that any query defines a
set of “acceptable” media-events, viz. those media-events that make the query

true, If the goal of a media specification is to generate a sequence of states
satisfying certain conditions (i.e., queries), then we can satisfy this desideratum
by generating any sequence of media events which satisfies these queries.

Definition 4.7. Suppose me, = (s 1, . . . , s,) is the initial state of a multime-

dia-system, that is, this is an initial media-event at time 0. Suppose Q,, Q2, . . . is
a multimedia specification. A multimedia presentation is a sequence of media-

events me,, . . . , mei, . . . such that media-event me, satisfies the query Qi.

The intuitive idea behind a multimedia presentation is that at time 0, the initial

media-event is (si, . . . , 3,). At time 1, in response to query Q i, a new
media-event, me,, which satisfies Q 1 is generated. At time 2, in response to query

Q27 a new media-event, me2, in response to query Q2 is generated. This process
continues over a period of time in this way. The following example illustrates the
notion of a multimedia-presentation generated by a multimedia specification.

Example 4.8 (Car Example Revisited). Let us consider a very simple multime-

dia presentation that is generated by the following queries:

(1) Q1 = (IS,, S,)(frametype(S,, audio) & frametype(S2, video) & {tau-
TUS} = flist(S1) & {taurus} = flist(S,). This query is satisfied by the
media event

me, =(vl,al,nothing)

because S, = al, S, = a2 is a solution to the above query.

(2) Q2 = (3,) & frametype(S,, video) & flist(S,) = {taut-us, front}.
There are two possible answers to this query, corresponding to the media-
events

me: = (~2, nothing,nothing)

me: = (~3, nothing,nothing).

Thus, the multimedia specification (Q,, Q2) generates one of two possible

multimedia presentations-either me,, me: or me,, me:.

5. Formal User Request Language

In this section, we show how certain requests that the user may wish to make can
be expressed using the formal query language described in Marcus and Subrah-
manian [1993]. Suppose, at a given point in time, that (s,, . . . , s,) is the current
media-event. Suppose now that there is an algorithm which, given a user

interrupt, will identify the feature (called F) in state Si that the user is referring
to. This may require signal processing and/or statistical pattern recognition
techniques that are beyond the scope of this paper, but which are studied in
other papers (e.g., Niblack et al. [1993], Gong et al. [1994], and Gupta et al.
[1991]). The situation we are dealing with is one where the current media event

is (sr, . . . , s,), and the user wishes to obtain further details on one or more
features of the current media-event.

Found&ions of Multimediu Database Systems 487

Queq, 1. Suppose the user wishes to find all states (irrespective of the
medium involved) in which feature F occurs. This can be expressed as the query
3, II F(YI(F) defined as:

(3S)FE flistt.5).

This is a relatively “vague” query in that it asks for a list of all states in which F
is a feature. The system may respond with a menu of possible answers (in

different media such as audio, video, document, etc.) that satisfy the given query.

QueT II. Suppose the user wishes to ask a more specific query where s/he is
only interested in information about F on a particular medium. This can be
expressed as the query in f o(F, M) defined as:

(3S)frametype(S,M) & FE flist(S).

Thus, when the user asks the query info(mustang, auc'io). s/he is asking for

audio-clips containing information about the Mustang. These may include sound
clips reflecting engine noise of the Mustang, as well as an audio sales-pitch for
the Mustang.

@leg1 111. The user wants to ask about all frames that possess feature F and
that possess a certain property p(-, -, , . , , -). This can be encoded as the
query info(F, p(-. -,..., -)) =

(sS)(FE flist(S)&p(-,-....,-,s).

Thus, for instance. the user may ask for all frames containing a red Mustang.
Here.p(-, -, . . , -) is the atom color(mustang, red).

It is easy to see that the propertyp(-, -, . . . , -) can be easily replaced with
a conjunction of atoms.

Qrrery IV. Suppose the user wishes to ask a change query-intuitively, such
queries ask for a media-instance that is just like the current instance, except for a
few changes. For example. the user of the CAR multimedia system may want a
car just like a Mustang (which s/he is currently viewing) except that the desired

car must have a higher fuel efficiency. Note that the Mustang must have been
generated as a response to a previous query (i.e., a previous set of criteria), so
what is really being asked for is an object which satisfies those same criteria, with
some modifications articulated in the user’s change request. This kind of request
can be represented as the query change(OldQ, Add, Del) where Add and Del are
sets of atoms. The answer to this query is obtained by deleting. from OfdQ, the
atoms in Del, and adding in the atoms in Add.

Formally, if WC have the query OldQ = (3)(~, & . . & A:,) and if Del C
{ ;\ . . . ; ,} and if .4dd is a set of atoms, then

clmnge(OfdQ, Add, Del) = (3)(B & . . & B.),

where {B , , , h, } = ({A ,,.. ., A,} - Del) UAdd.

488 S. MARCUS AND V. S. SUBRAHMANIAN

Thus, for example, if the current query is “Find me a picture of a red Taurus”

expressed as:

OldQ = (3s)(f rametype(S,video)&

taurus E flist(S)& color(taurus,red,S),

then the change query that asks for a white Taurus can be specified as

change(OldQ, {color(taurus,white,S)), {color(taurus,red,S)}).

At this stage, the user may wish to recall the motivating example in Section 2.1,
and see how the queries specified there may be expressed in our language.

Example 5.1 (User Requests of Section 2.1). Consider an audio-video-docu-
ment multimedia system, and suppose our current media-event is (vl, nothing,
nothing) and furthermore, suppose that the only feature in v1 is taurus and
that this Taurus is red in color. We go through the commands issued by the user
in Section 2.1 one by one. The user clicks on the Taurus in this example.

(1) When was this car jirst produced ? This corresponds to the query (3~,

S)prod-year(taurus, Y, S). Here, prod_year is a predicate specifying
the year in which a particular car was first produced.

(2) What does the previous model of this car look like? This can be viewed as a
change query. Suppose the initial query had been OldQ = (3S)(f rame-

type(S, video) & taurus E flist(S) & model(taurus, 3, S)). The
change consists ofAdd = model(taurus, 2, S) and Del = model(taurus,
3, S) The new query is change(OldQ, Add,Del).

(3) Is there a video of any of the European plants where this car is produced? This
can be expressed as the query (ZlS)(frametype(S, video) & factory E

flist(S) & in(factory, europe, S) & produces(factory, taurus,

s)b

(4) What documentation is available on the fuel injection system of this car? This
can be expressed as the query (3 S)(f rametype(S,document)& taurus E

flist(S)& fuel-inj-sys E flist(S)).

When the user stops the presentation and interjects with new requests, all these

new requests may be viewed as change queries. Let us suppose that the current
media-event is generated by the first query below.

(1) What large cars are available for under 12,000 dollars? This corresponds to the
query (IC)(type(C, large, S) & price(C, P, S)& P 5 12000)

(2) What do cars that satisfy the previous question look like? This corresponds to
the change query with OldQ as above, Del = 0 and Add = {frametype(S,

video),C E flist(S))}.

(3) Is it possible to produce a 5-minute audio-video clip of this car being driven?
This corresponds to the change query where OldQ is as in the preceding
item, Del = 0 and Add = {frametype(S,, audio), C E flist(S,),

is-driven(C, S,), duration(S,, 5), duration(S, 5)).

Foundations of Multimedia Database Systems 489

(a) Is it possible to produce an audio-video of this car being driven for 5 nlinutes
rrV/~erl it has 60.1100 miles 011 it? This corresponds to the change query with
ClidQ as above,Del = c1 and Add = {mileage(C, 50000, S)}.

(5) Is it Iwssihle to motn in and viehI the dashboard of the car? This corresponds
to the change query with OldQ as above, Del = B and A&i = frametype(S.,

.\‘I iieo). dash&al-d E flis t(s,)}. Note that the change query thus

specified may have two video displays “on” simultaneously. There are a
number of ways to handle this. One possibility is that the answer to S, is

shown, in preference to the instantiation of S. Alternatively, the video frame
corresponding to .c; can be popped up on a different window.

(6) Is ir possible to get some irzformation on the gauge in the top left comer of the
dashboard? This corresponds to the change query with 01d0 as above, Del =
M and A&I = {?rametype(S., x), G E flist:(S;), at(~. top, s,), at(G,

Lt?ft, S,), garuge(G, S .)>.

In Sections 4 and 5, we have developed a language to express various kinds of

queries and user requests: however, we have not developed data structures to
store media-instances. nor have we developed algorithms to process queries and
user requests. In the next section (i.e., Section 6), we define indexing structures
to store media-instances, and subsequently, we show (Section 7) how to use these
structures to process queries and user requests efficiently.

6. j4cs~w Structurrs

Suppose SrJIIS = ({.rn,, . . , .&,,}, 5, RPL, SUBST) where: .ti, = (y’, fe’, ATF'.
A'. Yi'. 3'. Vaf,, Vaf?) is a media-instance. Then we can associate the data

structure shown in Figure 1 with SMDS.

Let us return to the car example involving the Ford Taurus and the Ford
Mustang. As described earlier, this multimedia system has eight features in all,
and these are ordered as specified in Example 3.4. For each of these eight
features, we have ;j node of type featurenode with the name field of the node
being the feature name. The top half of Figure 2 shows the graph of feature
nodes, representing the 5 ordering on features.

Let us consider the featurenode whose name field is ta!:rus. The rhi ldrer.

field of this node is a pointer to a list of two nodes of type nodel. The first

(respectively, second) of these two nodes has, in its element field, a pointer to
the f ea tLL enode containing. as its name field, the string “Front” (respectively,
“t-interior”).

The .-;ta tel ist of this node contains a pointer. denoted PTRI in Figure 2,
which points to a list of nodes of type node2. Each node in this list contains, in
its 5’~ d t P field, a pointer to the representation of that state in the medium on
which it is stored. For example, if the state is a video-state. then this pointer
points to the location/address on the videotape/disc where that frame is stored.
In this particular example. PTRl points to a list of two nodes of type r,ar?o2-the

first of these has, in its state field, a pointer to the location at which video
frame 111 is stored. while the second node has, in its state field, a pointer to the
location at which the audio-frame a 1 is stored.

The r-eplacel 1 st associated with this node contains a pointer to a list of
nodes of type nodej. Each of these nodes has, in its feat field, a pointer to a

490 S. MARCUS AND V. S. SUBRAHMANIAN

type featurenode = record of /* nodee in feature graph */
name : string; /* nameof feature */
children : ‘nodel; /* points to a list of pointers to the children */
statelist: Xodel; /* points to a list of pointers to states that*/

/* contain this feature */
replacelist: -node3; I* points to a list of descendants whose */

/* associated states can be deemed to have the */
/* the feature associated with this node */

end record;

type node1 record of
element : -f eaturenode ; /* points to a child of a featurenode */
next : -node1 ; /* points to next child */
end record;

type node2 record of
state: -statenode; /* pointer to the list associated with a state */
link: -nodea; /* nest node */
end record;

type node3 record of
feat: ‘featurenode; /* pointer to a node that can be deemed to have */

/* the feature associated with the current node */
link1 : -node3 ;
end record;

type statenode record of
rep : ‘framerep;
f list : -node4;
end record

type node4 record of
f : ‘featurenode;
link2: -node4 ;
end record:

FIG. 1. Data structure for structure multimedia database systems.

node of type f eaturenode. The idea is that if “Front” is pointed to by a node in

the replacelist of taurus, then this means that if a user wishes to see a state

(e.g., a video state) of the Taurus, and if a state with the desired properties is not

present in the statelist associated with taurus, then an acceptable altema-

tive is a state (with desired properties) in the s tatelist associated with the

feature front. For instance, we may wish to see documentation on the Taurus.

There may be no state in the statelist associated with taurus that has, as its

f rametype, the string “document.” In such a case, the presence of the feature
front in taurus's replacelist indicates that the user is willing to accept

documentation on the front feature in lieu of that (unavailable) documentation

on the taurus.

In general, given an SMDS ({A,, . . . , A,), 5, RPL, SUSST), the associated
access structure is defined as follows:

Foundations of Multimedia Database Systems

l-R1 PTR6

v2

h
v3

h

FIG. 2. Indexing structure for Car multimedia datahasc system.

(1) For each state s E Ui’mz, Y, there is a pointer to a node of type statenode.

Intuitively, if P, is the pointer associated with state S, then P,.rep is a
pointer to the physical location of state s on the appropriate medium. Thus,
for example, ifs is an audio-state, then P., . rep may be a pointer to a specific

track on the audio-tape. P,. f 1 is t points to a list of features possessed by
state s.

(2) For each feature S E Ur-, S’, there is a pointer P, to a node of type
L i eatu~menode. P,.namP is simply a string representing the name of the
feature. Pj-.chi ldren points to a list L of pointers to featurenodes-L

contains a pointer to feature f’ iff:

-f’ 5 ,f, and

-there is no ,f’ such that f’ < f’ < f.

I-;-.stdteli st points to a list of pointers to states that possess feature f.
Pf.replacel ist is a pointer to a list of featurenodess--f' is pointed to
by a pointer in P,.replacelist ifff’ E RPL(~).

492 S. MARCUS AND V. S. SUBRAHMANIAN

The above definition specifies how, given any SMDS, it is possible to set up
indexing structures to access information in that SMDS.

7. Answering Queries

In this section, we will first formalize the notion of an answer to a query. Then we
will define the notion of an optimal answer. Finally, we will show how such
optimal answers can be computed.

7.1. WHAT Is AN ANSWER? Suppose Q is a query in our query language.

Suppose c,, cz are two constant symbols of the same type (i.e., both are feature
symbols, or both are state symbols, or both are attribute symbols); it is not

necessary that cl and c2 be distinct. By Q[cl/c2], we denote the query that is
just like Q except that all occurrences of cl in Q are replaced by c2. Thus, for

example, if

Q = (3S)b(a, b, S) & da, b, c, S)),

then

Q[a/b] = (3S)(pl(b, b, S) 8~ p.& b, c, S)).

Let us consider a structured multimedia database system SMDS = ({AI, . . . ,

At,}, 5, RPL, SUBST). This SMDS generates a query language as described in
Section 4. We now define an ordering, 5, on queries: Q, 5 Q2 iff there exists an
attribute symbol a occurring in Q2 and an attribute symbol b E SUBST(~) such

that Q, = Qz[a/b].
It is easy to see that 5 is a preordering, that is, it is reflexive and transitive.

This ordering, 5 is useful in query processing for the following reasons:

consider a query Q of the form (3s)(p,(t,, S) & . . . & p,(E,, S)). This query
asks for a state in which the properties p,(?,), . . . , p,(E,) hold. However,
suppose no such state exists. Then we may consider returning an answer to a
slightly “weaker” query, viz. that obtained by replacing an attribute a, in Q, by

another attribute respectively, u2 such that answers with respect to u2 are
deemed to be acceptable answers with respect to a I, that is, a, E SUBST(u 1). To
see how this works, let us reconsider the car multimedia database system.

Example 7.1.1 (Cur Example Revisited). Suppose we consider the query

Q=(Il~)(frametype(~,video)&taurus E flist(S)&

color(taurus, white, S)).

This query asks for a picture of a white Taurus. However, no such picture is
available, but a picture of a red Taurus is certainly available (viz. vl). Thus, the
query Q* = Q[whi te/red] is true with respect to the car multimedia database

system. It is easy to see that Q* 5 Q.
However, consider a slightly different query.

Example 7.1.2 (Cur Example Revisited). Suppose an end-user wishes for doc-
umentation on the interior of the Ford Taurus. Thus, the query being posed is:

Foundations of Multimediu Database Systems 493

Q=(TlS)(frametype(S,document)&

taur-us E flist(S)& t-interior E flist(S)).

No documentation is available on the Ford Taurus’ interior. Hence, there is no
state s that can cause query Q to become true. Furthermore, there no attributes
mentioned in this query; hence, substitution of attributes is not feasible either.

However, documentation (document d 1, in particular) is indeed available on the

Taurus’ dashboard. Had dashboard been a member of RPL(t-interior),

then .$ = dl could have been returned as an answer to the query Q’ I Q where

(2’ =(dS)(frametype(S,document)&dashboardE flist(S)).

This is because dashboard E RPL(t-interior) means that dashboard is an
acceptable alternative (in queries) to t-interior.

The above example appears to indicate that the ordering 5 does not com-

pletely capture the right notion of an answer. We now extend the definition of 5

to handle this intuition.

Defirtition 7.1.3. Suppose Q, and Q2 are queries. We say that Q, is a
refuxution of Q,. denoted Q, C Qz iff there exist featuresf,, f2 E U:- , fe’ such
that

-Q, 5 Qz[fllfzl and

-fz E RPL(f,).

If we examine the preceding example, we will observe that Q’ C Q, that is, Q’ is

an acceptable weaker alternative to the query Q.

We are now in a position to formalize the notion of an answer to a query
requesting a state that satisfies the query, and then define the notion of an
optimal answer. Given a query Q, we use DOWN(Q) to denote the set of all
queries Q’ such that Q’ C Q.

Definition 7.1.4 (Answer). Suppose Q = (3s. -..S:)(3F. . ..F!..)(pt(t.)

&. '. & pt,(f,)) is a query where s,, . . . , S: is a list of all state-variables

occurring in Q and F :, . . . , F,, is a list of all feature-variables occurring in Q. An
answer to Q with respect to a structured multimedia database system SMDS =

({Jlu,, . . , J&, 1, 5, RPL) is a substitution of the form

8= {S.,= s,,...,S, = s,,F, = f ,...,F.. = f,),

where s,, . . , s, are state-constants and f,, . . . , fn, are feature-constants such
that for some query (2’ C_ Q, Q’H is true in SMDS.

Intuitively, an answer to a query Q is any substitution that causes the original
query (or a weaker, but acceptable query) to be true with respect to the

structured multimedia database system. Let us return to the example of the
multimedia car database system to understand the concept of an “answer”.

Example 7.15 (Cur Example Revisited). Let Q be the query

(3S)(frametype(S,video)&taurus E flist(S)&

color(taurus,white, S)).

494 S. MARCUS AND V.S.SUBRAHMANlAN

There is no way of instantiating the variables in Q so that this query is true

because the Taurus shown in frame ul is red in color, not white. The weaker

query Q’ =

(IS)(frametype(S,video)&taurusE flist(S)&

color(taurus, red, S)).

is certainly satisfiable with s = VI; notice that Q’ C Q. This means that answers
to Q’ are considered to be acceptable answers to (2; hence, the substitution S =
v1 is an answer to the original query Q.

Consider now the query Q” =

(3S)(frametype(S,video)& frontE flist(S)& color(front,red,S)).

It is easy to see that Q” 6 Q because Qd = Q[taurus/front, white/red].
Hence, s = v2 is also an answer to the original query Q.

The reader will notice that Q’ = Q'[taurus/front], that is Q” C Q’ E Q.
Hence, Q’ is, intuitively, “closer” to the original query Q, and therefore, the
answer s = vl should be preferred to the answer S = v2.

The following two definitions capture the above intuition.

Definition 7.1.6. Suppose 2 is a set of queries. Query Q E 9 is said to be
C-maximal iff for all Q’ E 2, Q L Q’ implies that Q‘ C Q.

Note that a non-empty set, %, of queries may contain one or more C-maximal
queries and that maximal elements are not necessarily unique.

Definition 7.1.7. Using the same notation as in Definition 7.1.4, we say that

8 = {S, = sl,...,Sr = s,,F1 = fl,...,F,= f,,)

is an optimal answer to query Q iff for some C-maximal query Q’ E DOWN(Q),

Q’8 is true in SMDS.

In the preceding example, this means that s = vl is an optimal answer to the
query Q rather than s = ~2.

7.2. PROCESSING QUERIES. In the preceding section, we have defined what
constitutes an optimal answer to a query. In this section, we devise algorithms
that use the indexing structure defined earlier to answer queries. As queries are
defined inductively, our query-processing algorithms themselves will be defined

inductively as well.

7.2.1. Membership Queries. Suppose we consider a ground atom of the form t

E f lis t(s) where t is a feature-constant and s is a state-constant. As the query
is ground, the answer is either yes or no. The algorithm below shows how such a
query may be answered. It uses a function, SORTDOWN which returns a list
of features-this list is obtained by topologically sorting [Knuth 19681 (in
descending order) the partially ordered set (RPL(t), I). For now, we assume
SORTDOWN is nondeterministic in the sense that it will nondeterministically

return some valid topologically sorted set of features in RPL(t).

Example 7.2.1.1 (Car Example Revisited). Consider the feature m-interior

in the car multimedia system. Suppose RPL(m-interior) = {dashboard,

Foundations of Multimedia Database Systems 495

odometer-, fuel-gauge). Then, SORTDOWN(m-interior) could be either
of the two sequences: dashboard, odometer, fuel-gauge or the sequence
dashboard, fuel-gauge, odometer. Note that the feature fuel-gauge can
never precede dashboard.

proc ground in(t:string; s: 7 statenode):Boolean;
if ground-%l(t. s) then return “true” and halt
else

while SORTDOWN f 0 do
begin
Let 1’ he the first element in SORTDOWN(
if groundjn 1 (II, .J) then return “true” and halt
else SORTDOWN := SORTDOWN - {I)}.
end
if SORTDOWN = I? then halt and return “false.”

end proc.

proc ground-inl(t:string; s: T statenode):Boolean;
found := false: ptr := s.flist;

while (not(found) & ptr # NIL) do
if ((ptr.f).name = t) then found := true
else ptr := ptr.link2:

return found.
end proc.

It is easy to see that algorithm ground-in1 above is linear in the length of
f 1 i b;t(s). The algorithm ground-in is linear in m X IIf list(s)11 where m =

~~SOR’I’DOWN(t)((.

Suppose we now consider nonground atoms of the form (‘l)(t E f 1 is t(s))

where either one, or both, of t, s are nonground.

Case 1. s ground, t nonground. In this case, all that needs to be done is to
check if s. f 1 is t is empty. That is, we see if there are any features associated
with this state. If there are none, then there is no solution to the existential query
“(3t)t E f list(s)." Otherwise, simply return ((s.flist).f).name as the value
of t. Thus, this kind of query can be answered in constant time; the only

processing required is to find the first feature associated with state s, if such a
feature exists.

Case 2. s nonground, t ground. This case is more interesting. t is a feature.

Suppose PTR points to the featurenode associated with t. If PTR.s tatelist
is non-NIL, then return (PTR.statelist).state. That is, we return the state
that has the desired feature. If PTR.statelis t is NIL, that is, there are no
states that have this feature, then check, one by one, (that is, in the order in
which SORTDOWN is enumerated) for each f E SORTDOWN(whether
PTR(f).stateli st is non-NIL where PTR(f) is the pointer associated with
the featurenode f. If such anf exists satisfying this property, then let fi, denote

the first such f in SORTDOWN(return “true” and the substitution

S = (PTR(f,).statelist).state,

otherwise. return “false.”
Thus, this kind of query can be answered in time U(C,,,,o,,o,,,,,,,(k,,))

where k,, is the length of the list PTR(v).statelist.

496 S. MARCUS AND V.S.SUBRAHMANIAN

Case 3. s nonground, t nonground. In this case, find the first f eaturenode

(in a topological sorting of all features in the multimedia system) that has a

nonempty “statelist? field. If no such featurenode is present, then no answer
exists to the query “(Is, f)t E flist(s)." as there are no states present with

any feature in them. Otherwise, let PTR be a pointer to the first such feature-
node. Return the solution

t = PTR; s = PTR.statelist.rep).

Thus, this kind of query can be answered in constant time.

The following result shows that the above algorithms are sound, complete, and

guaranteed to terminate.

THEOREM 7.2.1.2. Suppose Q is a query offhe form (3)(f E f list(s)). Then:

(1) (Soundness). If the above algorithms return a substitution 8, then 8 is an
optimal answer to query Q.

(2) (Completeness). Suppose 0 is an answer to Q (i.e., Q’O is true in SMDS for
some Q’ L Q). Then there exists a topological sorting t ,, . . . , t, of RPL(t) and
a L-maximal query Q* E DOWN(Q) such that:

(a) Q’ C Q* L Q, and

(b) Q *CT is true in SMDS and

(c) o is returned by the above algorithms.

(3) (Failure). Th e a b ove algorithms will return “false” i# there is no answer to

very Q.

PROOF

(1) Case 0. As t E f 1 ist(s) where s and t are constants is a ground query

the algorithm ground-in returns an answer of “true” or “false”.

Case 1. Let (3t)t E f list(s) = Q where s is a ground and t is not ground.
If f lis t(s) is empty, the algorithm returns “false” as an answer to Q since
there’s nothing in that state to be found. Otherwise, we return the name of the
first feature found in the featurelist. This query just asks for any arbitrary feature
in state s, which is what the algorithm returns.

Case 2. This is where the notion of optimal answer comes into play. The

query Q = (3s)t E flist(s) where t is ground and s is non ground. If statelist
is not empty, then we return the value of the first state on the list. If it’s empty,
then our algorithm returns the answer s = s0 in the following way: suppose

SORTDOWN = t,, t,. Then s,, must be the first state associated with the
statelist of rj for some 1 I i I r. Furthermore, for all j < i, the statelists
associated with tj must be empty.

It is now easy to verify that s = s0 is an optimal answer (there may be others
as well). To see this, suppose 0 = {s = s,} is not an optimal answer via the

witness Q’ = Q[tlt;], 1 % i 5 r. Then there is a query Q* such that Q’ cQ*.
Q* must be of the form Q[tltj] for some 1 5 i 5 r. Furthermore, as tj is the first
item in the enumeration t,, . . . , t, of a topological sorting of RPL(t) that has a
nonempty associated statelist, it must be the case thatj z i. Furthermore, Q* =
Q’[tJt,]. By the assumption, as Q’ c Q*, and as Q* = Q’[ti/tj], it must be true

Foundations of Multimedia Database Sysrems 497

that t, 5 I,. But then, by the definition of topological sorting, j 5 i, which is
possible only if i = j, that is, t,
CQ*.

= t,. But this contradicts the assumption that Q’

Casr 3. The query Q = (3, t)s, t E gist(s) where s and t are nonground.
The answer returned by the algorithm is of the form {s = s(,, t = I,,}. t,, is the
first feature returned by SORTDOWN whose statelist is not empty. It is now easy
to verify that {s = s,,, t = to) is an optimal answer.

(2) As before, there are four cases to consider, depending upon whether s, r

are ground or not.

Case 0. s ground. I ground. In this case, suppose Q’ is true for some Q’ E
DOWN(Q). 8 must be empty as Q is variable-free. If t E A’(s), then t E
i 1 i st-(s) and the answer “true” is returned immediately on the first call to
ground-in by algorithm “ground.” Otherwise, Q’ is obtained from Q by substi-
tuting some t' E RPL(t) fort in Q. Let X = {t*/f' 5 f* & I* E RPL(t) & t*

E flist(s)}. If X = {t’), then the answer “true” (via witness Q’) is an
optimal answer; otherwise, let I b be any maximal element of X. Then “true” is an

optimal answer for query Q (via witness Q* = Q[t/rb]. To see that there is a

topological sorting of RPL(t) that causes the answer “true” to be returned (via
witness Q*). consider Y = {tb E RPL(t) - {t}(t* < t”). Then it is easy to see
that there is a topological sorting of RPL(t) of the form:

(topological sorting of Y), f *, topological sorting of RPL(f “) - (Y U {t, t’tar})).

If this were the enumeration generated by SORTDOWN(then our algorithm will

return the answer “true,” with Q* as the witness.

Cast 1. s ground, f nonground. Follows immediately from Case (1) of the

algorithm.

C’asc 3. s nonground. t ground. In this case, suppose Q’ is true for some Q’
E DOWN(Q). If t E h’(.y,,) for some so, then t E f 1 i st(s,,) and the answer {s
= s,,} is returned immediately. Otherwise, Q’ is obtained from Q by substituting
some t’ E RPL(t) for f in Q. Let X = {t*ll’ 5 t* & t’ E RPL(t) &

there exists at least one state s, such that t’ E f list(s ,)). The rest of the
proof now follows using the same technique as in Case 0.

Case 3. s nonground. t nonground. Immediate from the above cases.

(3) Immediate. D

7.3. PROPERTY QUERIES. In this section, we consider queries of the form

(3)p*(t,, . , t,,. s) to a structured multimedia system SMDS = ({A,, . . .

.M,, }, cr. PPL, SJBST). Suppose p is a relation in the media-instance &. There
arc two cases to consider, depending upon whether s is ground, or whether s is
nonground.

Case 1. s ground. If s is ground, we can associate with Q, a tree called a
quay tree, denoted QT(Q), as follows:

(1) the root of or(Q) is labeled with (2.

(2) If N is a node in QT(Q) and if N is labeled with the query QN, then:

498 S.MARCUS AND V.S.SUBRAHMANIAN

(a) N is a leaf-node if QN = p*(ty, . . . , tr, s) and if p(t-;“, . . . , tr, s)O is
a ground instance ofp(t,, . . . , t,, s) that is true in media-instance A4;

where A$ is the media-instance in whichp is defined. In this case, 8 is an
answer to Q and N is called a “success” node.

(b) Otherwise, for each L-maximal element Q’ E DOWN(Q,) - {QNl,

node N has a child labeled with Q”. (If DOWN(Q,) - {Qhi) = 0, then
N is a “failure” node.

Case 2. s nonground. In this case, let POSS = {s’\3i such that s E Y’ and

p(r\, . . . > t:,. s’) E %H’, for some n-tuple (t’,, . . . , t;,)). Then construct a tree
called the non-ground query tree associated with Q, denoted NGQT(Q), as

follows:

(I) (Level 0, i.e., Root). The root of NGQT(Q) is labeled with Q.

(2) (Level 1 nodes). For each s: E pOSS(Q), the root has a child N labeled

with the query QN = p*(t,, . . . , t,, s;). Note that each query associated
with node N has a last argument that is ground (and hence, Case 1 may be
applied here).

(3) The subtree rooted at node N is QT(Q,).

(4) Suppose N’ is a leaf node in the subtree, IT, whose root (residing at
level 1 in NGQT(Q)) is labeled with QN.

(a) Suppose N’ is a success node in QT(Q,) labeled with the substitution 8

and the queryp(-, . . . , -, s,.,,). Then N’ is a success node of NGQT(Q)
and is labeled with the substitution 8 U {s = sN).

(b) Suppose N’ is a failure node in QT(Q,). Then N’ is a failure node in

NGQT(Q).

The following theorem shows that NGQT(Q) accurately captures the notion of an

answer.

THEOREM 7.3.1. Suppose Q is a query of the form (3)p*(t,, . . . , t,, s). Then:

(1) (Soundness). If QT(Q) (respectively, NGQT(&)) contains a success node
labeled with 8, then 8 is an optimal answer to the query Q.

(2) (Completeness). If Q has an answer, then there exists a node N in QT(Q)
(resp. NGQT(Q)) that is an optimal answer to query Q.

(3) (Failure). There is no answer to query Q iff QT(Q) (resp. NGQT(Q))

contains no success node.

PROOF. (1) Suppose 8 is the label of the success node QN in QT(Q). Then
QhrO is true in SMDS. We need to show that QN is a G-maximal query in
DOWN(Q) that is true in SMDS and then we would have proven optimality of 8
by definition.

Suppose Q = Q,, . . . , Qj = QN is the path from the root of QT(Q) to Qhi
(where j 2 0). By definition, none of the Q,‘s, i < j, are true in SMDS (for
otherwise, these would have been success nodes in QT(Q)). Hence, again by
construction, there is no query Q’ in DOWN(Q) such that Q’ is true in SMDS and

such that Q CQ’ (were this the case, then Qj = Q’ for some i < j). Thus, QN
is a C-maximal query in DOWN(Q) that is true in SMDS, and we are done.

Foundatiom of Multimedia Database Systems 499

(2) Suppose 0 is an answer to Q, that is, there is a query Qv E DOWN(Q)
such that Q,vO is true in SMDS. By definition, there is a C-maximal query Q,,, that
is true in SMDS and such that Q.v L Q,%,. Furthermore. there exists a sequence of
queries Q,, . . , Q, such that:

Q=Q,cQ?c-19, J=Q,=Q,u

and such that {Q,. . , Qj} C DOWN(Q) and such that none of Q,. . . Q, ~,
is true in SNDS and such that for all Q’ E DOWN(Q). there is no 1 5 r 5 j -
lsuchthatQ,.CQ’CQ,+,.ThenQ=Q ,,..., Q,=Q,,,isapathinthetree
o’?(Q) and hence, M is a success node in aqQ). This completes the proof.

(3) Immediate from (I) and (2) above.

The analogous proofs for the case when s is nonground (i.e., when NGQT(Q) is
considered instead of QT(Q)) follows immediately from the above results and the

construction of nor. cl

7.3. OTHER QUERIES. The other types of predicates involved in an atomic
query can be answered by simply consulting the logic program. For instance,
queries of the form (3N, S) frame type(N, S) can be handled easily enough
because the binary relation frametypp is stored as a set of unit clauses in the
logic program representation. Similarly, queries involving feature-state relations

can be computed using the logic program too. Queries involving inter-state
relations can be solved by recourse to the existing implementation of those

operations. As described earlier, interstate relationships are domain dependent,

and we envisage that the implementation of these relationships will be done in a
domain-specific manner. Answers to conjunctive queries are considered in
Section 9.

All four types of queries specified in the section on the user-request language
can be handled within our query-processing framework. It is important to note
that for change queries (type IV queries), incremental algorithms for computing
only the relevant changes need to be devised.

Thus far, we have assumed that given a featuref, RPI,(~) is allowed to be any set
of features. However, this flexibility may not always be desirable. It can be
argued (and we will do so below) that in some situations, the designer of a
specific SMDS should be forced to consider imposing some restrictions on his/her
selection of the function RPL. Consider the set of features shown (together with
the 5 ordering on them) in Figure 3.

&le 8.1. Suppose we consider an SMDS consisting of the features shown

in Figure 3. Then, surely, the feature python should not be considered an

adequate replacement for the feature persiancats.

Suppose now that cats is considered an adequate replacement for Persian-
cat-c;. What this means is that if a user wishes for information (on one or more
media) about pe'siancats, and if the desired type of information is not
available, then the system may try to find the desired information with respect to
‘-at:;. From the diagram, it is clear that the feature asiancat s is “closer” i

500 S. MARCUS AND V. S. SUBRAHMANIAN

asiancats lions tigers pythons cobras adders

FIG. 3. An animal SMDS.

(intuitively) to the feature persiancats than the feature cats. Thus, if the
user says cats is an appropriate replacement for persiancats, then surely
asiancats should also be considered an appropriate replacement for per-

siancats?

These intuitions motivate the need for imposing axioms on SMDSS.

Definition 8.2. Suppose ((4,) . . . , A,), 5, RPL, SUBST) is a structured
multimedia database system. This SMDS is said to be closed iff the following three

conditions hold:

(1) (Vu, b E Uy==, fe’)a E RPL(6) 3 a 5 b, and

(2) (b'a, b, c E Uyzl fe’)c 5 b I a & c E RPL(a) 3 c E RPL(b) & b E
RPL(a).

(3) (Vs E Uy,l ST’)(V’a, b, c 5 Uy==, fe’)c -I b I a & c E UT=1 hi(s) & a

E u/“=, A’(s) + b E ujLl A’(s). (W e assume that if Aj is not defined on s,
then the function call h’(s) returns the empty set.)

What the third part of the above definition says is that if c is a subfeature of b

and b is a subfeature of a, and state s possesses both features a and c, then state
s must also possess the “intermediate” feature b. In the context of the Animal
example, if we have a picture which is labeled with both cats and persian-

cats, then this picture must also be labeled with asiancats. Note that this
labeling need to be made explicit-it can be assumed to be implicit.

Suppose we consider the set of features Uy==, fe’ associated with an SMDS and
consider a single feature f therein. In non-closed SMDSS, finding an appropriate
replacement for f may involve searching “laterally” across the feature-graph. On

the other hand, in the case of closed SMDSS, the search is restricted to the set of
features “below”f. As we shall show later in this section, this restriction, coupled
with the “tree” restriction defined below, will guarantee a more compact storage
scheme for such closed SMDSS.

Definition 8.3. A tree-closed SMDS (or TC-SMDS, for short) is a closed SMDS
such that the set of features in Uy==, fe’ can be represented as a tree.’

As an example, the Animal SMDS shown in Figure 3 is a tree-SMDS (though, as
we have not articulated the RPL relation, we cannot discuss, at this point,

’ As usual, we assume that all partially ordered sets can be represented as Hasse diagrams, and thus,
the poset (U:, 1 fe’, 5) is tree-closed iff the corresponding Hasse diagram is a tree.

Foundations of Multimedia Database Systems 501

whether it is closed). In the rest of this section, we will proceed as follows:

section 8.1 defines a new indexing structure for TC-SMDSS and proves that this
indexing structure represents a savings (in space) over the indexing structure in

the nonclosed case. Section 8.2 defines query processing algorithms to operate
upon this indexing structure. The price to be paid is that these algorithms, may,
in the worst-case, be less efficient than in the case where the indexing structure
for the nonclosed case is used.

8. I. INDEXING STRUCTURE FOR TC-SMDSS. The only difference between the
indexing structure for TC-SMDSS and plain SMDSS is in the statelists associated

with featurenodes. In the case of arbitrary SMDSS, if state s possesses feature f,
then state s occurs in the statelist associated with the featurenode

associated with f. In the case of TC-SMDSS, this situation may not be the case,
and we may choose not to store s in the s ta tel i st associated with the
ied t UI mode associated with f. Rather, we store (a pointer to) s in the statelist
associated with the lowest feature node(s) below f (let us say this featurenode is
associated with feature f’) which is both in fs replace list, and which occurs in
state s. Before formally describing this, we give an illustrative example below.

Esamplc~ 8. I . 1 . Consider the animal SMDS and consider the path:

animals 2 cats 2 asiancats 2persiancats.

Suppose s, and s1 are states (and without loss of generality, we assume there is
only one media-instance involved). Suppose h(s,) = {cats, asiancats,

persiancats} and A(s,) = {animals, cats,asiancats}. Then,s, is only
stored in the statelist of persiancats and s2 is only stored in the statelist of
asiancats.

Suppose s is any state. and

is a path (denoted $7) in the feature tree. Iff, t$ A’(s) for all I 5 j 5 II. then s
occurs in none of the statelists associated with the f,‘s. Otherwise, let min,,(s)
and max,,(s) denote the smallest and largest integers. 4 and 4?’ respectively, such
that

(I) J‘{ E h’(s) for some j and

(2) f,, E A’(s) for some r.

Then, by the closure axiom, it follows that for all min,(s) 5 w 5 max,,(s), f,,

E h”(s) for some 7~. In other words, all features “between” min,(s) and max,,(s)
are possessed by state s. In this case, state .F will be stored only in the statelist

associated with the feature fmaxk,(sj.

8. I .1 . Sorted Statelists. It is imperative for the correct functioning of the
algorithms described earlier on in the paper that for any given feature f, if the

(unique) path, $7, from the root of the feature tree to f isf,, 2 f, 2 . . 2 f, = f,
then the statelist of f must be sorted in non-increasing order according to
max,,(s) .

502 S. MARCUS AND V.S. SUBRAHMANIAN

Example 8.1.1.1. Suppose we return to the animal example, and suppose we
have three video frames u,, v2, us and one audio frame a r. Suppose the maps A’
and A2 are as specified below:

h'(v,)= {animals,cats,asiancats,lions)

h1(v2)= {asiancats,persiancats}

A'(Q)= {snakes,pythons,asiancats,persiancats)

h’(a,) = {pythons).

Furthermore, suppose the replacelist associated with feature f is the set of all
features “below” f according to the 5 ordering. Then, the statelists of the
features

{cats,asiancats,iions,persiancats,snakes,pythons}

is shown below:

cats empty

asiancats lptr to v,l

lions (ptrl

persiancats [ptrJ followed by -1

snakes empty

pythons -1 followed by -1

Let us examine vr which possesses the features animals, cats, asiancats,

lions. If we examine the path in the feature tree (Figure 3) from cats to
persiancats, then we find that the “lowest” feature along this path which is
possessed by u1 is as i ancat s- hence, v, is in the statelist associated with
asiancats. Likewise, if we examine the path in the feature tree from cats to
lions, then the “lowest” feature along this path which is possessed by vr is

lions -hence, u, is in the statelist associated with lions. The reader can easily

verify that other statelists can be constructed along the same lines.
The only question that remains is the ordering of items within a statelist.

Consider the feature pythons and the two states vj and a,. The “highest”
feature on the path from the root to the node pythons that is possessed by v3 is
snakes, while in the case of a, it is pythons-as states associated with a given
featurenode’s statelist are arranged in non-increasing order according to the
“highest” feature on the path from the root to the node possessed by that state,
v3 appears first in the statelist, followed by a,.

8.2. Query Processing in TC-SMDSS. The organization of information in the
indexing structure for TC-SMDSS is such that the algorithms given in Section 7.2
correctly compute optima1 answers to queries in all cases, except one. Intuitively,
the reason for this is the following: the only algorithms that may possibly go
wrong are those computing membership queries of the form (3t)t E f lis t(s).

When s is ground, then the algorithms in Section 7.2.1 look through the
featurelists associated with state s for an answer to the query. As these lists are

Foundations of Multimedia Database Systems 503

unchanged in the definition of the indexing structure for TC-SMDSS. the correct-
ness of these algorithms is unaffected.

In the case when both s and I are nonground, then all that is required is to find
any featurelist possessing a nonempty associated state list, and all answers in this

case are optimal; hence, this part is unaffected as well.

The only complications that could possibly arise are when t is ground and s is

nonground. In this case, we would like to find a state that has feature f (or failing
that, a feature that is in f s replace list and is in s, and such that no other feature
in fs replacelist that is strictly “above” this feature, satisfies these criteria). The
algorithm given in Section 7.2.1 may return incorrect answers when blindly
applied to the new indexing structure in this one case. The following example
shows what could happen,

Example 8.2.1. Let us revisit the animal example, and suppose we have two
documents (i r. d?. Suppose A(d,) = {cats,asiancats,persiancats} and
A((/?) = {~sian~ats}. Then, on the query (3s)cats E I; ist(s), then

algorithm of Section 7 -2.1 will return the (incorrect) answer s = d,.
Thus, in order to correctly work with the indexing structure for TC-SMDSS, we

only need to modify Case (2) of the algorithms in Section 7.2.1. This modification
is described below:

Modification to Case (2) of Afgotithm in Section 7.2.1. Given the query (3t)t
E f 1 i s:t(s) with t ground and s nonground, proceed as follows:

(I) Input: a pointer. temp, pointing to the featurenode associated with t.

(2) found := false:

(3) If (tempstatelist) is nonempty then

(a) templ := tempstatelist;

(b) while (templ is non-NIL) do

(c) check if there exists a node X in (templ.state).flist such that (X.f) =
temp:

!* i.e. look through the featurelist associated with the state pointed to be

templ and see if t is a feature occurring in this featurelist. If so. then the
state designated by the pointer templ has the feature t. *i

(d) If yes, then set found := true, ANS to ((temp.statelist).state).rep and
goto step i-4, otherwise set templ to (templ.link) and return to step 3b.

(4) If (found). then return ANS and halt.

(5) Otherwise, find a maximal element in DOWN(t) - {t} and (recursively) call
the above algorithm once for each maximal element in DOWN(t) - {t). If
DOWN(t) - It} = 0, then halt with failure.

The following example illustrates the working of the above algorithm on the
query (3s)ca ts E f; ist(s) (with respect to the indexing structure described in
Example X.2.1). The reader will note immediately that there is only one optimal
answer to this query, viz. d ,.

The above algorithm will first examine the statelist of the featurenode cats.

This is empty, hence, a recursive call will be made to the algorithm with the
.XS I ,3nsa t 5 being considered instead of cats. The statelist associated with

504 S. MARCUS AND V. S. SUBRAHMANIAN

asiancats contains the state dZ. The featurelist associated with d2 must now be

checked to see if (there is a pointer to) cats is in it. There is none; hence, d2 is
not an optimal answer. The next element examined is persiancats. The first
element examined in the statelist is d,. We now examine the featurelist
associated with d,-a pointer to cats is contained therein; hence, d, is an
optimal answer to the above query.

Note that the above algorithm can be made more efficient by replacing the test

while (templ is non-NIL) do

in Step 3b of the algorithm by the test

while (templ is non-NIL) AND (rank(templ.state)K:t) do,

where the rank of a state is the set of all maximal elements in A(s). We say a set
S of features satisfies the condition S < t where t is a single feature if no
element of S is larger than t with respect to the P ordering on features. Thus, in
the above while statement, rank(templ.state) returns the maximal elements of
the set of all features possessed by the state currently pointed to by templ. The

new test in the while-loop checks if a node has been encountered in the statelist
of the current featurenode being looked at such that the state denoted by this
node has no “bigger” feature than t-if this is the case, then, as the statelists of
featurenodes are topologically ordered according to the I-ordering, this means
that no statenode occurring after the current node in the statelist can possibly
have t as a feature, and hence, there is no need to conduct this additional search.
The following theorem now follows immediately from the above discussions:

THEOREM 8.2.2. Suppose Q is a query of the form (3f)(f E f 1 ist(s)) and

SMDS is a TC-SMDS. Then the algorithms in Section 7.2.1 when modified as
specified above have the following properties:

(1) (Soundness) If they return a substitution 8, then 8 is an optimal answer to

query Q.
(2) (Completeness) Suppose 8 is an answer to Q (i.e., Q ’ 0 is true in SMDS for

some Q ’ E Q). Then there exists a topological sortmg I,, . . . , t, of RPL(t) and
a C-maximal query Q* E DOWN(Q) such that:

(a) Q' 5 Q* E Q, and

(b) Q*a is true in SMDS and

(c) u is returned by the above algorithms.

(3) (Failure) The algorithms will return “‘false” iff there is no answer to query Q.

8.3. DISCUSSION. Consider a TC-SMDS I-this is certainly an ordinary SMDS,
and hence, we may use either of the two indexing structures proposed in this
paper. In this section, we compare these two indexing structures and the
algorithms associated with them in order to determine which is more efficient for

closed SMDSS.
The first observation is that the indexing structure for TC-SMDSS can be

obtained from the indexing structure for arbitrary SMDSS by simply deleting some
elements from the statelists associated with featurenodes. Hence, the following
proposition may be stated:

Foundations of Multimedia Database Systems 505

PROPOSITION 8.3.1. Suppose f is any feature in a TC-SMDS r. Then the statelist

off‘ according to the indexing structure for TC-SMDSS is a subset of the statelist off
according to the indexing structure for arbitrav SMDSS.

As all other things are equal, this means that from the point of view of space,

the indexing structure for TC-SMDSS is more compact than that for arbitrary

SMIISS.

However, one rarely gets anything for nothing, and hence, there must be a

“cost” associated with this additional compactness. What could this cost be? Two

thoughts come to mind:

(1) (Loss of Expressille Power?) TC-SMDSS can only be used to represent certain

SMDSs not all. Though closed SMDSS can be converted to TC-SMDSS, there
seems to be no obvious way to convert an SMDS that does not satisfy the

“closure” properties into one that does.

(2) (Diminished Efficiency of Algorithms?) As we have observed in the preced-

ing section, all algorithms that work on the original indexing structure for

arbitrary SMDSS continue to work in the case of TC-SMDSS with no change-

except in the case of membership queries of the form (3s)r E f list(s)
where s is a variable and t is ground. First and foremost, we observe that for

all membership queries other than ones where s is a variable and t is ground,

the algorithms for TC-SMDSS are more effkient-dhe reason for this is that

the statelists are smaller in length and hence, it takes less time to examine

them. On the other hand, in the one case where s is a variable and t is

ground, the algorithms operating on TC-SMDSS are less efficient. This is

hecause they may need to examine the feature lists of states occurring in the

statelists of featurenodes.

8.3. AN IMPROVED ACCESS STRUCTURE. In this section, we will define an
access structure that improves on the previous access structures and facilitates

processing many kinds of conjunctive queries. The improvement is in maintaining

the statelists associated with feature nodes. In the case of both ordinary SMDSS as

well as TC-SMDSS, each featurenode has a list of statenodes associated with

it-for instance, in Figure 2, the featurenode taurus has two statenodes

associated with it-viz. 711 and al and there is a pointer PTRl pointing to this

list of statenodes.

In large-scale applications. a large number of states may possess a given

feature. and hence. the list of statenodes associated with a featurenode may be

very long. It may be useful to break up this list into sub-lists. organized by the

1.1 Lin?et Type. Thus. for instance, in the case of the Car Multimedia Database

System. the list of statenodes in Figure 1 associated with the feature taurus and

pointed to by PTRI may be split up into two sublists: an audio sublist consisting

just of a 1 and a video-sublist consisting just of a2. The advantage of this scheme

is that when looking for an audio-state containing the feature taurus, then only

the audio sublist needs to be examined.

This principle can be extended to TC-SMDSS as well in the obvious way, with

the query processing algorithms modified appropriately.

506 S. MARCUS AND V. S. SUBRAHMANIAN

9. Conjunctive Queries

The methods discussed thus far to handle conjunctive queries are very rudimen-

tary. They solve each conjunct individually, and then intersect appropriately. This
is a very poor solution because many of the solutions to the individual conjuncts
may not satisfy the join conditions generated by solutions to the other conjuncts.
Let us consider an example:

Example 9.1. Let us return to the car multimedia system and consider the
query “Is there a picture of a green 1993 Ford Taurus?” This can be expressed as

the query

(3S)frametype(S,video)&taurusE flist(S)

& color(taurus,green,S)& model(taurus,1993,S).

In this query, the subquery f rametype(S, video) may have a million answers
(or at least as many answers as there are video frames). However, the subqueries
(3S)color(taurus, green, S) and (3S)model(taurus, 1993, S) may have a
comparatively small number of answers. We may solve either of these first;
without loss of generality, let us solve the former. This may yield a set of answers

VI, . . *, o,, each of the form s = (some frame). For each of these u;‘s we can

now check if the appropriate instance of the latter subquery, that is, (3S)mod-

el(taurus, 1993, s), is true. Those of u,, . . . , u,, that do satisfy the instance
of the latter subquery constitute the set of answers to the conjunctive query
(3S)color(taurus, green, S) & model(taurus, 1993, S). At this stage,we
need to determine which of these now satisfy the (ground version of) the
subquery taurus E f list(S) and then determine which of those substitutions
still left satisfy the condition that s be of frametype video.

Algorithm. Our general approach to solving conjunctive queries of the form

(+v’,, . . . , V,)(A: & . . . & A,)

is the following:

(1) Let X be the set of ail Ai’s that are relations-that is these are atoms that are
different from frametype(-, -) and LHS{=, E} flist(-).

(2) Let us say that two elements of X are --related to each other if they share a common
variable symbol, and consider the transitive closure, -* of this relation. Let X/-* be
the set of all -* -equivalence classes generated by this equivalence relation.

(3) For each -*-equivalence class, Y = {B i , Bk } of X, do the following:

(a) Let SOL(Y) be the set of all substitutions satisfying B,. Set i = 2.
(b) if i > k, then computation of SOL(Y) has been completed (for the -*-

equivalence class Y). If SOL(Y’) still remains to be computed for some -*-
equivalence class Y’, do so, else goto step (4).

(c) Otherwise, (i.e., if i 5 k), set SOLY(y) = { (o u is a solution of B,y for some y E
SOL(Y)), that is, instantiate B, in many different ways-one for each y E
SOL(Y) and solve each of the resulting atomic subqueries, and accumulate their
answers and place these in SOL(Y).

(d) i := i + 1. Goto Step 3b.

(4) Let A be the cross product II.,,,- .SOL(Y). Thus, if Y,, . . . , Y, are all the
-*-equivalence classes of Y, then an element of A is an r-tuple of substitutions

Foundations of Multimedia Database Systems 507

(CT,. , CT?). As. in any given r-tuple in ,2, no two u,‘s share variables, the union of
thcsc cuhstitutions is solvable.

(5) Let SOL = Icr, u ” u tr,i(cr,, , Ur) E ‘2).

(h) For each of the remaining atoms, check, for each 0 E SOL, whether the remaining
suhqucry is true (using the naive method) and if so, return the answer and halt.

If we return to Example 9.1, then the - relation consists of:

c.olor~(t au~us, green, S)- model(taurus, 1393, S)

and there is only one -*-equivalence class, viz. that consisting of the above two

atoms.
On the other hand, suppose we consider a more complex query such as:

(IIS ,s. S.,S,)tr-ametype(S:,video)& frametype(S,,video)&

frametype(S ,video)& frametype(S,. video)&

P.(X, a, S.) & P.(& Y, ST) & p?(Y, S.) & p,(a, S;),

where il is some constant symbol and x. Y, s., s,., s :, S; are all variable symbols.

Then the -* -equivalence classes are:

{p (:<,a, S.),p,(X,Y, S.),P,(Y, S)I, {p,(a. S;)).

10. 7i’med-Output Queries

In this section, we indicate how the query language described above can be
expanded to handle certain kinds of queries called timed-output queries (or
TO-queries, for short).

First, let us reexamine the intuitions underlying an ordinary query. A query of

the form

(3S:,S. S,,)(ElX . ..X.,)(frametype(S , typel)&

. ilametype(S,, typen) & (conditions)),

asks for instantiations of the S,S (that range over frametypes, and the x s that
range over constants (either feature-constants or attribute constants). The idea is
that if, say, we get an answer where the instantiations of the s s are

s, = s ,, . . . , s,: = s,

then this means that each of the frames s:, s,, must be “brought up” as part
of the output. Thus, for instance, if n = 2, and S: and s,, are of frametypes
l;i~3e~-~ and audio, respectively, then this says that the video-frame S, and the
audio-frame sJ must be output (starting at the same type) on their respective
output devices.

However. the user may wish to see/hear only an initial segment of this output:
or. s/he may want to hear the audio in its entirety, but only see the first couple of
minutes of the video (e.g., if the user wants to start cooking while listening to the
audio . . .). A timed 9uev is a query where all state variables occurring in the

query have an associated time annotation. Thus, in the case of the above query,
we would annotate it thus:

508 S. MARCUS AND V. S. SUBRAHMANIAN

(3s:: tl, sz: t2,. . . , s,: tn)(3xr *. . X,)(frameWPe(S~, WPel) &

. . . frametype(S, typen) & (conditions))),

where the t is are non-negative integers. Intuitively, if we consider the situation
where IZ = 2, and S, and S, are of frametypes video and audio, respectively,

and t, = 3 and t, = 25, and if

is a solution, then this says that the video-frame s1 must be on for 3 units of

time, while the audio-frame must be on for 25 units of time. This is quite

straightforward to implement.
Note that these time-annotations do not change the meaning of the query;

rather, they specify how the output is to presented to the user.
In concurrent ongoing work [Hwang and Subrahmanian to appear; Candan et

al. 19951, we have studied the structure of these temporal annotations so as to be
able to express more complex desiderata/constraints on the temporal presenta-
tion of the output frames.

11. Constrained Queries

In any query Q to an SMDS, certain variables range over states-in particular, any

variable, S, that occurs in an atom of the form frametype(S, -) is a state
variable, ranging over states. When answering the query Q, the state variables
typically get “instantiated” to some state-constants. The idea is that the physical
objects (e.g., picture, sound-frame, video-frame, text file, etc.) represented by
these named states are to be “brought up” or “output” on the appropriate output
device. Thus, in the query

(3S,, &)frametype(S,, video) & frametype(&, document)

& taurus E flist(S,) & taurus E flist(S,)

a request is being made to find a video frame of the Taurus, and documentation
concerning the Taurus. The substitution S, = vl, S, = dl (with respect to our
familiar car example) is an answer to this query. However, this answer may not
always be satisfactory-for example:

(1) (Temporal Relationships) the user may wish to watch the video frame vl first,
followed by the document dl, or

(2) (Spatial Relationships) the user may wish to see two windows-one with the
document on it, and the other with the video on it; he may also wish to
specify that the “top window” represents the document and that the bottom
window contain the video, etc.

In this section, we present a somewhat more general picture of how state
variables may be used to define constraints over different types of domains-we

will start by showing how state variables may be used to define a broader class of
timed-output queries, and then we will show how spatial relationships may be

Foundations of Multimedia Database Systems 509

captured using such constraints as well. Finally, we will generalize this to an
abstract formalism ranging over different constraint domains2

11.1. THE TEMPORAL DOMAIN. Suppose we have a query Q and suppose 0 is
an answer substitution to query Q. We use O,, to denote the restriction of 0 to
state variables-that is, all equations in 0 that are not of the form s =-are
deleted from 0. To express temporal relationships, we may define a very simple

temporal constraint language over the integers or the reals (as deemed appropri-
ate). We do this as follows:

(I) For each state variable S, we have two constraint-variables start(s) and
red(S).

(2) The language contains the nonnegative real numbers as constants.

(3) The language contains the operator symbol +.

(4) The relations in the language are = and 5.

Constraints can now be expressed easily in the form t(OP)t’ where t, t’ are either

constraint-variables or real numbers (or summations, thereof). Thus, for in-
stance, the user may enhance the query

(3S,, S,)frametype(S,, video) & frametype(S, document)

& taurus E flist(S,) & taurus E flist(S,)

above by applying to it, the constraint H given as:

start(S_)k end(S:)+ 0.001.

This would specify that he wishes to see the document only after seeing the
video. Thus, in general. a conjunction of one or more constraints may be
appended to queries to specify the temporal relationships between the outputs
(on media or output devices) generated by a query. It is easy to see that all the
queries in Section 10 can easily be expressed using such queries.

11.1. THE SPATIAL DOMAIN. Let us now consider the spatial domain. Suppose

there is only one spatial output device (such as an ordinary video display screen).
Then the output may need to be “laid out” on the screen which can be viewed as
a two-dimensional Cartesian (m X n) fragment of the Cartesian plane. Relation-
ships like below, above, overlapping, etc. may now be defined easily enough
using methods defined by Sistla et al. [1994].

As in the case of temporal domains, constraints may be used to express spatial
relationships between objects being displayed. Thus, for instance, in the case of

the query

‘See. for example, Jaffar and Lassez 119871, Jaffar et al. 119921, Suhrahmanian 119921, Lu et al.
[19971. and Bell et al. [19941.

510 S.MARCUS AND V. S. SUBRAHMANIAN

Q = (3S1, S,)frametype(S,, video) & frametype(S,, document)

& taurus E flist(S,) & taurus E flist(S,)

we may append the constraint E’ given by:

ABOVE(S,, S,)

to denote that S, must be “above” s,. In a similar vein, if the user not only wants
the video output to be above S,, but also wants the associated window to be
twice the area of that associated with the document output, then this too is an

additional constraint E” given by

AREA(&)= 2 X (S>),

where AREA + AREA = n x m.

11.3. GENERALIZATION TO ARBITRARY DOMAINS. In this section, we abstract
from the above two examples involving temporal and spatial relationships
between answer substitutions (when restricted to state variables).

We begin with a domain D of objects, called the domain of discourse. The
function space generated by D consists of the set of all functions over D, as well
as the set of all functionals over functions of D. A constraint domain defined by

D, denoted CD is a pair (F, R) where F is a subset of the function space
generated by D, and R is a set of relations over F. The notion of constraint
domain was originally due to Jaffar and Lassez [1987].

Intuitively, in the case of the temporal domain, D may be thought of as the
integers or the reals (depending upon whether we are interested in continuous or
discrete time), F may be thought of as consisting of just one function, +, and R
may be thought of as containing just the two relations 5 and =.

In the case of the 2-dimensional spatial domain, D may be thought of as the
set of pairs (x,y) forx E (0,. . . , m, I),y E (0, . . . , n, I}. I is a special
symbol whose meaning will become clear soon. The set F may consist of + and
X, and R may consist of relations such as I, =, ABOVE,BELOW,LEFT,RIGHT,
etc.

A state constraint language based on the constraint domain ED is denoted
CL(E~) and is defined as follows:

(1) For each state variable S, we have a set of constraint-variable symbols called

state-related aspect variables (SRA-variables, for short). SRA-
variables range over D. For example, in the temporal domain discussed
earlier, start(s), end(S) are SRA-variables.

(2) A term is either:

(a) an SRA-variable or

(b) a member of D, or

(c) of the form f (tI, . . . , t,,), where t,, . . . , t, are terms, and f is an n-ary

function on D.

(3) an ntomic constraint expression is an expression of the from R(t,, , . . , 2,)
where R is an n-ary relation in ED, and t 1, . . . , t, are terms.

Foundations of Multimedia Database Systems 511

FIG. 4. A possible spatial arrangement.

(4) a constraint expression is a conjunction or disjunction of atomic constraint
expressions.

Thus, in the temporal domain, end(S,) + 0. 001 is an atomic constraint
expression. Similarly, the expression AREA is an atomic constraint expression
in the spatial domain-AREA(-) and always returns a pair of the form ((realnum-
ber). 1) which denotes the real-number in the first argument.

The definition of a query may now be extended to a generalized constraint queq

as follows. Suppose CD,, . . . , ED! are constraint domains over D I, . . . , D,,

respectively. If Q is a query (as defined earlier) and if E,, . . . , Z’k are constraint

expressions over CL,,, . . , EDI, respectively, then

is a constrained query.
For example, suppose we wish to return to the query

Q = (3,. !$)frametype(S,, video) & frametype(S,, document)

& taurus E flist(S,) & taurus E flist(S,)

that we considered earlier. Recall that S, = vl, S, = dl is an answer to this
query. Then:

(1) (Temporal Relationships). If the user wishes to watch the video frame first,
followed by the document, then he may express this as the query:

Q & start(&)5 end(S,) + 0.001.

(2) (Spatial Relationships). If the user wishes to see two windows-one with the
document on it, and the other with the video on it and with the video in the
top window, and the text in the lower window, then he may specify this as:

Q & ABOVE(S,,%).

Finally, suppose a query involves three state variables-s;, S,, S: ranging over
video, document and document, respectively, and that the user would like to see
the video on top. while the two documents are below it as shown in Figure 4.
Then this may be specified as the query:

Q& ABOVE(S.,S,)& ABOVE(S,S!)& LEFT(S,,S;)

11.4. CONSTRAINED PRESENTATIONS. Before concluding this section, we ob-

serve that just as we may wish to express constraints on queries that guarantee an

512 S. MARCUS AND V.S.SUBRAHMANlAN

acceptable temporal and/or spatial layout of a media-event that satisfies the
query(ies), we may also wish to express constraints on multimedia-presentations.

Expressing constraints on multimedia-presentations can be achieved by express-
ing constraints on multimedia-specifications, which, after all, are what we use to

generate multimedia-presentations anyway.
Thus, we may define a constrained multimedia-specification as follows:

(1) [(name>: Q,, . . . , Q,] : (Constraint) is a constrained multimedia-specifica-
tion.

(2) If Psi,, 1 I i 5 m is either multimedia-specification or a constrained
multimedia-specification, then the concatenation, ql, qz, . . . , qIr, is a
constrained multimedia-specification.

The only important thing about constrained multimedia-specifications is the

first clause above. Intuitively, it says that the multimedia presentation generated
by the multimedia-specification Q,, . . . , Q, must satisfy the constraints. To see
what this means, consider the following example.

Example 11.4.1 (Cur Example Revisited). Let us reconsider the multimedia
presentation of Example 4.8 that is generated by the following queries:

(1) QI = (gs,, S2)(frametme(S1, audio) & frametype(s*, video) &

{taunts) = flist(S,) & {tuurus) = flist(.Si,). This query is satisfied by
the media event

me, = (vl, al, nothing).

(2) Qz = (Is,) & frametype(S,, video) & flist(S,) = {tuurus,fiont}. An
answer to this query is the media-event

me: =(v2,nothing,nothing).

Thus, me,, me: is a multimedia presentation that satisfies the multimedia
specification (Q,, Q2). Let us “name” this multimedia specification Sl. Then

[Sl :Q,, QJ: start(S1) = & end(&) = 5

says that the multimedia-presentation me,, me: generated by the multimedia
specification (Q,, Q,) must satisfy the constraints: “Start at time 0 and end at
time 5.” Suppose now that the durations of videos/audios involved in this
multimedia presentation are as follows:

VIDEO/AUDIO DURATION

vl 3
al 1

v2 2

Then it is feasible to satisfy constraints in the above query.
On the other hand, suppose, in the preceding example, that the duration of v2

is 3 time units. Then there are exactly two ways of satisfying the query-either
we playback the audio/video at a “faster” rate than originally envisaged, or we

may cut a part of the video ~2 off when the five time units are “up.” For now, we
make no commitment on how to do this. Weiss et al. [1994] have developed

Foundations of Multimedia Database Systems 513

special operators that may be used to select one or more of these options. Below,
we show how all the composition operators specified by Weiss et al. (19941 may
be expressed within our query language, thus making it possible to handle
“stretched” playback, ‘*shrunk/fast-forwarded” playback, etc.

11.5. EXPRESSING VIDEO ALGEBRA EXPRESSIONS. In this section, we briefly
describe how some of the operations of Weiss et al. [19941 can be encoded within
our framework.

OPERATION 115.1. Concatenation: E, 0 E, defines the presentation where E,
fdhs E , .

Suppose E, is generated by the multimedia specification Y, and E, is
generated by the multimedia specification Y,. Then E, 0 E, is generated by the
multimedia specification .Y,Y,.

OPERATION 113.2. Union: E, U E, defines the presentation where E, follows

E, crnd common footage is not repeated.

Suppose E, is generated by the multimedia specification 14, = Q I, . . . , QA
and E, is generated by the multimedia specification Y2 = Qf, . . . , Qi. Let us
define a new multimedia specification Y, = Q;, (2: + nr defined as Q,’ = Qf
if i i II and Qf otherwise. El U E, is generated by the following multimedia
specification Y = Q,. Q2. . . , Qk where:

(1) Q, = QI, and

(2) Q, + 1 = Q;‘, where i is the smallest integer such that Q;’ @ ((2 ,, . . , Q,).

OPERATION 11.5.3. Intersection: E, fl E, defines the presentatiorz where onf]

commotz footage of E, and E2 is played.

Suppose E, is generated by the multimedia specification Y, = Qt, . . , Qf,
and E, is generated by the multimedia specification Yz = Qf, . . . Qt,. E, n
E, is generated hy the multimedia specification Y’ = Q,, . . , Qk where:

(I) Q, = Q,’ where j is the smallest integer such that Qj is in { Qi, . , Q,$,).
and

(2) Q, +I = QA. where w is the smallest integer such that Q,‘, $Z {Q,, . , Q,)

and Q,‘, is in { Qf. . . Qf,).

A full description of how the other operators of Weiss et al. [19941 operators may
be encoded is contained in the technical report version of this paper [Marcus and
Subrahmanian 19931.

12. Implementation

The notion of media-instances described in this paper has led to a prototype
implementation at the University of Maryland. The implementation is written in

C and runs on SUNlSparc workstation. At this point in time, the implementation
can execute almost all the types of queries described in this paper (relaxed

queries arc not included in the current implementation, and support for them is
being currently built in).

In addition to the basic features and states that occur in multimedia database
systems. the current implementation: supports inference chaining-rules may be

514 S. MARCUS AND V. S. SUBRAHMANIAN

Databases and

Mediator
Progmmming
Environment

MEDIATOR

DEVELOPER

\I

Graphical user Voice
Interfaoe Interface

Ii

V

FOG. 5. Overall system architecture.

used to define complex relationships in terms of features and states. It also
supports reasoning with uncertainty and/or goodness measures. For instance,
certain pictures of Clinton may be “better” than others. In our framework, a user
may specify, for example, that he is only interested in pictures having a quality
above a given threshold. For instance, we may say: “Find me a picture of Bill

Clinton and George Bush where the picture quality is at least 80%.” Our system
has the capability of answering such queries.

The current implementation is part of a much broader implementation effort
to integrate multiple heterogeneous databases and multimedia databases.3 The
overall systems architecture is shown in Figure 5. The end-user accesses a host of
heterogeneous databases, data structures and multimedia databases using the
mediator framework. Currently, our system can integrate the following types of
data:

-pictorial data,

-video data,

‘See, for example, Subrahmanian 11992; 19933, Adali and Subrahmanian 119931, and Lu et al. [1992].

Foundations of Multimedia Database Systems 515

-text data (e.g., USA Today newswires),

-relational data,

-spatial data (such as newswires).

We briefly describe each part of the implementation. The entire implementa-

tion on PC and Spare platforms is about 35,000 lines of C code.

12. I. Mediator. The concept of a mediator is due to Wiederhold [Wiederhold
1903: Wiederhold et al. 19931. Intuitively, a mediator is a program that integrates
information from multiple databases and/or multiple data structures. Till re-
cently. most mediators were implemented as very large C programs. In Subrah-
manian [lYY2] and Lu et al. [lY92], we have proposed a uniform language to
implement mediators. A mediator developer would specify a mediator for a

specific application in this language. In our language, we use a special predicate

called -:I that captures the notion of set membership in sets consisting of

arhitrarilr’ ty~~c1 ohjclcts. Thus, for example, the statement

in(S.muitimedia:findstate(d, 'Bush',O.i))

may say: In the multimedia domain, execute the predefined function f Lndstate

finding a state S with goodness measure 507~ or more, such that Bush is present
in the state S. In general, if pkg is any software package, and f is any predefined
function in this package, then d: f ((augs)) is a domain call that causes function

f in package p to be executed on the arguments (args). Domain calls are always

assumed to return sets of objects (if they return an atomic value, this value is
coerced into a set). The query in(X, d: f((args)) succeeds iff X is in the set
returned by d: f ((ax-as)). If X is a variable, then the above query succeeds iff X
can he instantiated to an item in the set returned by the domain call. In this case,
our system contains sophisticated parsers and parser-generating schemes that can
parse the complex types that may be returned by the domain call. The in
predicate can bc used to integrate data from multiple sources. For instance, a
query of the form

~n(i, d:f(X. Y))& in(Zl,dl:fl(Y))& Zl .name = Z.boss. (**)

succeeds just in case z is a data structure returned by executing domain call
d: if>:. \i) and :i is a data structure returned by executing domain call dl : f I('[)

and the !iiixe field of :, coincides with the boss field of ~1.

12.2. Mediator Del-elopment Environnwnt. In order to assist the mediator

develop/author, we have provided (and in some cases, are in the process of
providing) a number of tools that the mediator developer may interact with.
These tools are interactive and assist the mediator author/developer in specifying

the mediation rules/strategy. The most important of these tools is a domain

integration toolkit.
In order to implement domain calls, we need to have the ability to parse

complex types. In particular, in the example query (**) listed above. we need to
be able to extract the name field of the complex object pointed to by Z. Clearly,
this requires the use of a parser that can access the field, that can access the
field, subfields, sub-sub-fields, etc. of a complex object using just a data structure

specification to do so. We have developed a library of parsing routines, together

516 S. MARCUS AND V. S. SUBRAHMANIAN

with techniques to synthesize parsers for specific data structures by composing

together objects in the parser library.

12.3. Mediator Compiler. In Subrahmanian [1993] and Lu et al. [1992], we
have shown how compilers for the mediator language may be implemented. The
main advantage of such languages is that they access existing databases and

software packages by using the functions and procedures defined already in those

DBMSs, using a facility similar to the well-understood remote procedure call. We

have developed a compiler for this language (though the process of optimizing
the compiler and adding new facilities to it is a continuing, ongoing process). The

mediator authored for a specific application will be processed by the mediator

compiler.

12.4. Graphical/Voice User Interface. Our system has a fully functional graph-

ical user interface (under Windows for the PC platform, as well as the Unixi
Xwindows platform on the Spare) so that the end-user of a mediated system

developed using the mediator development environment may ask his/her queries

by using a mouse and/or selecting items from a menu. A voice-based analog of

this graphical user interface is being designed currently.
Using our system, we have defined an example multimedia database that

contains: (1) pictorial data (photographs from the inauguration of Bill Clinton)
in the form of GIF files, (2) text data obtained from electronic versions of the
newspaper USA Today, and (3) relational data defining relations. Note that a

wide variety of databases can be defined within our system, and that this

particular database is only one example of a database that can be defined within

our system. We will illustrate some features of our implementation using the

above multimedia database example.

The relational database contains relations of the form: spouse(x, Y) - x is
the spouse of Y, rank(x, Y, From, To) saying that person X held rank Y from
time Fromtotime To.

We can now process queries of the form:

(1) Find all pictures, with George Bush, of the spouse of a person whose tuxes have

been reported in news articles. This corresponds to the query:

(ElArticle, Spouse, Picture, Person, Spouse)feature(“taxes”, Article)&

feature(Person, Article)&frametype(Article, “news”) &

frametype(Picture, “picture”) &

spouse(Person, Spouse)&feature(“GeorgeBush”, Picture)&

feature(Spouse, Picture).

This query looks at textual news data (via the frametype(Article,

“news") calls), at pictorial data (via the feature predicate), and rela-

tional data (via the spouse predicate). An answer to this query consists

of the substitution

Foundations of Multimedia Database Systems 517

{Article =’ a9’, Picture = “INAU08.GIF”,

Person = “HilaryClinton”, Spouse = “BillClinton”}.

Once this answer has been computed, the system asks the user if s/he wishes
to see the picture stored in “INAUOS.GIF”. If the user says yes, then this
picture is brought up on the screen. It then asks the user if s/he wishes to see
the news article in file “a9”. If the user says yes, that too is brought up on the
screen. The entire query takes 360 milliseconds to execute.

(2) Find ail pictures of Bill Clinton where the “quality” of the picture of Bill Clinton
exceeds 75% and where he is pictured with a statue of Lincoln. This can he

expressed as follows:

(!lPicture)(frametype(Picture, “picture”) &

feature(“BillClinton”, Picture) : 0.75 &

feature(“LincolnStatue”, Picture)).

In this query, the atom feature("Bil1 Clinton", Picture) is annotated
with the real number 0.75. Any picture in which Bill Clinton appears with

over 7.5% “goodness” is considered to satisfy that annotated atom feature-

("B111 Clinton", Picture): 0.7 5. When a feature atom is not anno-

tated, then this implicitly represents an annotation of 1. There is a rich and
well-understood theory of such annotations’ that the interested reader may
pursue further if he so desires.

In the above query, the system quickly comes back with the answer substitu-
tion Picture = ‘INAUO~ .GIF'). It then asks the user whether s/he would
like to see the picture. If the user says “yes”, then the picture is presented to

the user on the screen, otherwise, the system asks the user if s/he would like

to see another picture. The entire CPU time taken to process this query is

1 X0 milliseconds.

(3) FirId all pictures of the spouse of a US President with a UN Secretary General.
This can be expressed as follows:

(3P1, P2, P3, Tl, T2, T3, T4Picture)(frametype(Picture, “picture”) &

feature(P1, Picture) & feature(P2, Picture) &

spouse(P 1, P3) & rank(P3, “President”, Tl, T2) & rank(P2, “UNSecretary-

General”, T3. T4) &. When executed, this query returned the answer

substitution

{Picture = “perez.gif”, Pl = “HilaryClinton”, P2 = “PerezdeCuellar”

P3 = “BillClinton”}.

The other variables are not shown above (as they are not important). The
system then asks the user whether s/he would like to see the picture

’ See. for example. Blair and Subrahmanian [1989], Lu et al. [19921, Kifer and Suhrahmanian [19921,
and Suhrahmanian [19921.

518 S. MARCUS AND V. S. SUBRAHMANIAN

“perezgif’. If the user says “yes”, then this picture is brought up on the

screen; otherwise, the system halts. The entire CPU time was 410 millisec-
onds.

13. Related Work

There is now a great deal of ongoing work on multimedia systems, both within
the database community, as well as outside it. All of these works, without
exception, deal with integration of specific types of media data; for example, there
are systems that integrate certain compressed video-representation schemes with
other compressed audio-representation schemes. However, we are aware of no
single theoretical framework for integrating multimedia data that “abstracts”
away the essential features of diverse media and data representations, making it
possible, in principle, to integrate multimedia data without knowing in advance,
what the structure of this data might be.

13.1. GROSKY. Grosky’s work [1984; 19941 is close, in spirit, to our work in
many respects. Grosky [1984] proposed a version of SQL that could be used to
query pictorial databases using feature-based approaches. In [19941, he describes
complex features-intuitively, complex features have subfeatures-in connection
with our work, given a feature f, the set of features “below”f (with respect to the
notion of below-ness defined by the ordering 5 on features) may be thought of
as the subfeatures associated with f. Our work may be viewed as an extension of
Grosky’s work in the following ways: we can deal with diverse kinds of media

data, our use of the ordering I is to define a mathematically solid way of
“relaxing” queries and define optimal answers, and our implementation can deal
with many aspects (such as uncertainty, time, and access to multiple data
structures and databases) that is novel. In fairness, Grosky’s framework [Grosky
19841 can deal with integrating relational and pictorial information, though he
does not address schema mismatches that have been addressed in our implemen-
tation of hybrid knowledge bases [Lu et al. 19921.

13.2. BERSON ET AL. Berson et al. [1994] study how to distribute multimedia

objects (bodies of data) across a network, given that the multimedia objects
occupy large bandwidths, while traditional disks have relatively small bandwidths.
Our framework is complementary to theirs in the following way: in the definition
of our field f ramerep in the type s ta tenode (cf. Figure l), f ramerep points
to the physical location of the multimedia data. This data itself could be further
broken up into chunks as suggested by Berson et al. [1994]. This would facilitate
effective bandwidth utilization of this data when communicating information
across the network.

13.3. GIBBS ET AL. Gibbs et al. [1994] study how stream-based temporal
multimedia data may be modeled using object-based methods. Our work is

related to theirs upto a point, and then diverges. According to their framework,
an “artifact” is an object produced in a specific medium; for instance, prints,
TV-news-programs, and music recordings are all artifacts. “Media objects” are
digital representations of artifacts. In terms of our framework, the set of
media-objects in an SMDS is essentially the same as Uy==, ST’ using the notation
developed in this paper. Their notion of a “media descriptor” is also identical to

Foundations of Multimedia Database Systems 519

our notion of a f rametype. Their notion of a “media element” is similar to our
notion of a media-event. In their framework, a “timed stream” is a finite
sequence of tuples (e,, si, d,) where ei is a media element, s, is its “start” time,
and d, is its duration. Gibbs et al. study various issues related to time-streams. In

contrast to Gibbs et al. [1994], we do not study different types of time

streams-rather, we develop a query language for querying multimedia data and

show how this query language can be used to generate media-presentations (or
time-streams in the Gibbs et al. [19941 terminology)-something Gibbs et al. do not
address. Our work and Gibbs et al.‘s work may come together in the following
way: An end-user gives a media-specification (sequence of queries) to an SMDS
that generates a media-presentation using the techniques described in this paper.
This media-presentation may then be viewed as a certain kind of timed-stream
that may be delivered to the output devices using the techniques of Gibbs et al.
[19941.

13.4. WEISS ET AL. Weiss et al. [1994] develop a set of operations that may be
used to compose multiple aspects of multimedia presentations. They correctly
point out that such operations form the “kernel” of basic operations needed in
creating effective multimedia presentations. It is important that any language for
multimedia databases should, likewise, satisfy these criteria.

To see how our work is related to that of Weiss et al. [1994], we observe that
we have given a formal mathematical definition of a multimedia presentation and

a multimedia specification (that generates a multimedia presentation). Using
these definitions, it turns out that each and every composition operator that Weiss

et al. specijj [1994, p. 1441 can be expressed as constrained queries within our query
language. This indicates that our query language has the required expressive
power for composing multimedia data together to generate effective multimedia
presentations. Section 11.5 shows how each algebraic composition operation
given by Weiss et al. may be expressed as a multimedia specification in our
language that generates this presentation.

13.5. IINO ET AL. Iino et al. [1994] study methods for spatial and temporal
reasoning in multimedia systems. They propose a very elegant Petri Net model

for object composition. Their work is related to one aspect of our work, viz. the
“constraint” part of constrained queries defined in Section 11. In connection with
spatio-temporal reasoning, we observe that there are numerous models of time,
as well as numerous models of space. Iino et al. use the well-known formulation
of time due to Allen [1983] to synchronize multimedia events. In contrast, by
avoiding a commitment to any single model of time/temporal reasoning, and
instead using generalized constraints in our query language, we are able, in
principle, to express constraints over different models of time, and different
models of space, Of course, we also provide numerous facilities not provided by
Iino et al. (19941 such as query languages for multimedia data, indexing

structures, formal soundness and completeness results, etc.

13.6. WOELIC AND KIM. Woelk and Kim [1987] have developed an object-
oriented implementation of multimedia capabilities on top of the ORION
object-oriented database system. A key feature of their work is that it is closely
tied to an object-oriented implementation. In contrast, the query language
defined in this paper can be implemented using the techniques described in this

520 S.MARCUS AND V.S.SUBRAHMANIAN

paper, or on a relational database management system (cf. Brink [1994]) or on

top of an object-oriented system. The important point is that our definition of an
SMDS avoids any commitment to a single implementation paradigm. More
importantly, our definition of a media-instance is very broad, acting as an
abstraction of the various kinds of media that we are all familiar with. The
definition of media-presentation is mathematically precise, depends solely upon
media instances, and exists independently of any implementation. The correspon-
dence of media-presentations and query sequences is a new aspect of our work.
The utility of constraints for multimedia applications is another new and unique

feature of our work, vis a vis that of Woelk and Kim [1987]. The notion of a

stnrctured multimedia system is unique to our paper-it is very important to note
that a 5 b does not mean that a inherits properties of b-to the contrary, a
dashboard does not inherit most properties of cars even though it (usually)
resides within one! This notion of structure enables builders of such systems to
formally articulate methods of relaxing queries-a flexibility that may be very
useful in many applications. The user/multimedia system developer who wants
queries to be rigid can simply take 5 to be the identity relationship and SUBST to

be empty.
In short, this paper presents a formal mathematical model of what constitutes

a media-instance. The development of such a mathematical foundation is vitally

necessary -it sets up the basic yardsticks against which the correctness of
algorithms and implementations can be evaluated. To our knowledge, our paper
represents the first effort in this direction, presenting the first definitions of
soundness and completeness of multimedia computation algorithms and then
establishing algorithms that are provably sound and complete. Last, but not least,
the mathematical model presented in this paper is not sterile-it has been
implemented in a working system.

13.7. GUPTA ET AL. Gupta et al. [1991] have developed a model, called the
VIMSYS model, for querying a pictorial database. VIMSYS is a hybrid of a
functional model and an object oriented model. This model allows users to view
image data in four different “planes” corresponding to different areas of interest.
In contrast to the work of Jain and his group, our work attempts to develop
general purpose methods of integrating multiple types of media data, not just
image data. For instance, our system can integrate image and pictorial data,

news-wires, relational databases including different relational systems and possi-
ble schema mismatches even within a system, spatial data structures (such as
quadtrees) and numerical computations. Our work could benefit from the work
of Jain et al. [1991] in the following way: their algorithms are highly optimized
for the image domain. Thus for this domain, we could “hook” our mediator onto
the system of Jain et al., and access image databases through Jain et al’s
program. Jain et al.‘s system could be accessed by our mediator framework and
this would allow us to integrate their functionality with ours, accessing heteroge-
neous relational data, raw and/or structured text new-wires, pictorial data, spatial

data, and video-data.

13.8. OTHER EFFORTS. Oomoto and Tanaka [1993] have defined a video-
based object oriented data model, OVID. They take pieces of video, identify
meaningful features in them and link these features. Our work deals with
integrating multiple media and provides a unified query language and indexing

Foundations of Multimedia Database Systems 521

structures to access the resulting integration. Hence, one such media-instance we
could integrate is the OVID system, though our framework is general enough to

integrate many other media (which OVID cannot). In a similar vein, Arman et

al. [1993] develop techniques to create large video databases by processing

incoming video-data so as to identify features and set up access structures.
Cardenas et al. [1993] have developed a query language called PICQUERY + for
querying certain kinds of federated multimedia systems. In contrast to their
work. our notion of a media-instance is very general and captures, as special
cases, many structures (e.g., documents, audio, etc.) that their framework does
not appear to capture. Hence, our framework can integrate far more diverse
structures than that of Cardenas et al. [1993].

14. Conclusions

There is now intense interest in multimedia systems. These interests span across
vast areas in computer science including, but not limited to: computer networks.
databases. distributed computing, data compression, document processing, user
interfaces, computer graphics, pattern recognition and artificial intelligence. In
the long run, we expect that intelligent problem-solving systems will access

information stored in a variety of formats, on a wide variety of media. Our work

focuses on the need for unified framework to reason across these multiple
domains.

This paper makes the following contributions. First, we have formally specified
the notion of a media-instance-intuitively, a media-instance consists of a set of
“states” (e.g., video-clips, audio-tracks, etc. may be viewed as states), a set of
“features” (i.e., objects occurring in those states), as well as properties of these
features, and relationships between these features. The key contribution of this
paper is in the definition of a structured multimedia database system. In this case,

we have defined two important concepts -that of acceptability of an alternative
answer based on the functions RPL and SUBST. This is particularly useful
because when a query is not satisfiable, we may not want the system to simply
return the answer “no.” Instead, the system should be more cooperative,
returning an answer to a slightly weaker query. We have shown how such a

notion of a “weaker” query can be expressed (as the PPL and SUBST functions in
an SMDS induce the definition of the G-ordering). We have developed query
processing algorithms, and showed that they are sound, complete and terminat-
ing, and have discussed the complexity of these algorithms.

Furthermore, we have discussed how constrained queries (and sequences of
constrained queries) can be used to generate multimedia presentations that
satisfy various logical constraints, as well as various temporal and spatial
constraints. These are very critical for real-world applications where an end-user

of such a multimedia database system may not only want to generate a
multimedia presentation that satisfies various logical requirements, but where
the presentation itself adheres to certain “output” formats that the user desires.
These output formats may include requests to show certain video-clips in slow
motion, to synchronize certain audio-clips, video-clips and document data, and/or
to layout certain outputs in windows that reflect a spatial arrangement the user

feels comfortable with.

522 S. MARCUS AND V. S. SUBRAHMANIAN

The theoretical algorithms and definitions provided in this paper are not

sterile-an implementation based on this theory exists at the University of
Maryland. This implementation is built on top of an already existing, successful
theory [Lu et al. 1992; Subrahmanian 1992; Adali and Subrahmanian 19931 and
implementation of mediators for integrating heterogeneous databases and data
structures. That implementation has been successfully used for two large-scale

real-world applications by organizations outside the University of Maryland

[Benton and Subrahmanian 1993; Horst et al. 19941.

Future work must focus on two issues: conjunctive query optimization in
multimedia databases needs to be addressed in greater detail. It is critically
needed in any realistic multimedia database system. Second, the issue of updates
to multimedia database systems needs to be carefully addressed.

REFERENCES

ADALI, S., AND SUBRAHMANIAN, V. S. 1994. Amalgamating knowledge bases, II: Distributed
mediators. lnt. .l. Intelligent Coop. Inf Syst., 3, 4, 379-383.

ALLEN, J. F. 1983. Maintaining knowledge about temporal intervals. Commun. ACM 26, 11 (Nov.),
832- 843.

ARMAN, F., Hsu, A., AND CHILJ, M. 1993. Image processing on compressed data for large video
databases. In Proceedings of the 1st ACM International Conference on Multimedia (Anaheim, Calif.,
Aug. l-3). ACM, New York, pp. 267-272.

BELL, C., NERODE, A., NG, R., AND SUBRAHMANIAN, V. S. 1994. Mixed integer programming
methods for computing nonmonotonic deductive databases. J. ACM 41. 6 (Nov.), 1178-1215.

BENTON, J., AND SUBRAHMANIAN, V. S. 1993. Using hybrid knowledge bases for missile siting
problems. In Proceedings of the 1994 Conference on Artificial Intelligence Applications. IEEE
Computer Society, Los Alamitos, Calif., pp. 141-148.

BERSON, S., GHANDEHARIZADEH, S., MUNTZ, R., AND Ju, X. 1994. Staggered striping in multimedia
information systems. In Proceedings of the 1994 ACM SIGMOD International Conference on
Management of Data (Minneapolis, Minn., May 24-27). ACM, New York, pp. 79-90.

BLAIR, H., AND SUBRAHMANIAN, V. S. 1989. Paraconsistent logic programming. Theoret. Comput.
sci. 68, 135-154.

BRINK, A. 1996. M.S. dissertation. George Mason Univ., in preparation.
CANDAN, K. S., PRABHAKARAN, B., AND SUBRAHMANIAN, V. S. 1995. Towards collaborative multi-

media systems, draft manuscript.
CARDENAS. A. F., IEONG, 1. T., BARKET, R., TAIRA, R. K., AND BREANT, C. M. 1993. The

Knowledge-Based Object-Oriented PlCQUERY+ Language. IEEE Trans. Knowl. Data Eng. 5, 4.
644-657.

GIBBS, S., BREITENEDER, C., AND TSICHRITZIS, D. 1994. Data modeling of time-based media. In
Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data (Minne-
apolis, Minn., May 24-27). ACM, New York, pp. 91-102.

GONG, Y., ZHANG, H., CHUAN, H. C., AND SAKAUCHI, M. 1994. An image database system with
content capturing and fast image indexing abilities. In Proceedings of the 1994 International
Conference on Multimedia Computing and Systems. IEEE Press, Washington, D.C., pp. 121-130.

GROSKY, W. 1984. Toward a data model for integrated pictorial databases. Comput. Vision,
Graphics, and image Proc. 25, 371-382.

GROSKY, W. 1994. Multimedia information systems. IEEE Multimedia, I, 1, 12-24.
Gu~A, A., WEYMOUTH, T., AND JAIN, R. 1991. Semantic Queries with Pictures: The VIMSYS

Model. In Proceedings of the International Conference on Vety Large Databases (Barcelona, Spain).
Morgan-Kaufmann, Palo Alto, Calif., pp. 69-79.

HORST, J., KENT, E., RIFKY, H., AND SUBRAHMANIAN, V. S. 1994. Hybrid Knowledge Bases for
Real-Time Robotic Reasoning. In Proceedings of the IVth International Workshop on Pattern
Recognition in Practice, E. Gelsema and L. Kanal, eds., N. Holland/Elsevier. Amsterdam, The
Netherlands, pp. 501-512.

HWANG, E., AND SUBRAHMANIAN, V. S. 1976. Querying video libraries. J. l&s. Commun. Image

Rep., 7, 1, 44-60.

111 < t ,\I I) ,I 1 \]‘)od: t<t Il5t-1) 51 t’rt.Mtif.K IY%: h(‘~‘t:t’Tf,f) NOLf-%lHf K]c)‘)T

