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ABSTRACT

Recently, work has begun on automating the generation of test or-
acles, which are necessary to fully automate the testing process.
One approach to such automation involves dynamic invariant gen-
eration, which extracts invariants from program executions. To use
such invariants as test oracles, however, it is necessary to distin-
guish correct from incorrect invariants, a process that currently re-
quires human intervention. In this work we examine this process.
In particular, we examine the ability of 30 users, across two em-
pirical studies, to classify invariants generated from three Java pro-
grams. Our results indicate that users struggle to classify generated
invariants: on average, they misclassify 9.1% to 31.7% of correct
invariants and 26.1%-58.6% of incorrect invariants. These results
contradict prior studies that suggest that classification by users is
easy, and indicate that further work needs to be done to bridge the
gap between the effectiveness of dynamic invariant generation in
theory, and the ability of users to apply it in practice. Along these
lines, we suggest several areas for future work.
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1. INTRODUCTION

Software testing involves two key components: test inputs and
test oracles. Test inputs are executed against the system under test
(SUT), and test oracles determine whether the SUT executes cor-
rectly. In testing research, significant effort has been expended on
developing automatic methods for test input generation, resulting in
many approaches (e.g., [13, 14, 18, 27]). Unfortunately, methods
for automatically generating test oracles are less common. In the
absence of such test oracles, automatic test generation approaches
are limited to detecting a small subset of errors [2, 8].
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Recent work has explored methods for automatically inferring
invariants from program information [7, 9]. Such work promises
(among other things) to help automate the construction of test ora-
cles by allowing users to generate an invariant-based specification
built on method pre and post conditions, and class invariants [23,
26, 30, 31]. Given invariants, we can automatically determine if
program behavior is correct by monitoring for invariant violations,
allowing automated testing. For example, in regression testing, test
engineers can extract invariants from a previous program version,
and check whether these invariants still hold on a new version.

Unfortunately, existing approaches for inferring invariants nec-
essarily require human intervention for two reasons. First, invari-
ants are intended to act as specifications, but are generated from the
source code we wish to verify. Perfectly extracting what the pro-
gram should do from what the program actually does is impossible.
Second, many existing approaches are dynamic [9, 30, 31], and use
only a finite number of program traces to generate “likely” invari-
ants, rather than provably correct invariants.' For such approaches,
generation of incorrect invariants appears to occur frequently: one
study found that even when using large test suites, 0-60% of as-
sertions inferred from real world Eiffel programs using dynamic
generation are incorrect, with an average of 10% [26]. In either
case, automated invariant generation may generate invariants that
do not accurately capture the program’s intended behavior, render-
ing them unsuitable for use as test oracles. It ultimately falls to
human users to filter the resulting invariants, removing incorrect
invariants while retaining correct invariants.

We believe that the ability of users to filter invariants is crucial
to the practical use of automatic invariant generation. Consider
the impact of user errors in the context of software testing. While
existing work shows generated invariants can effectively describe
program behavior [10, 26, 30], making them effective test oracles,
if users discard correct invariants the ability to detect faults will
decrease. Conversely, if users retain incorrect invariants, then the
testing process can yield false error reports, and effort must be spent
eliminating spurious errors.

Thus, if user classification effectiveness — defined as the per-
centage of invariants a user correctly classifies as correct or incor-
rect — is high in practice, then automatic invariant generation is a
potentially effective method for generating automated test oracles,
and existing results demonstrating the power of invariant gener-
ation may hold in practice. However, user classification effective-
ness has, to this point, received little attention. Early work explored
the ability of users to use dynamic invariant generation as an aid to
static verification, concluding that distinguishing correct and incor-
rect invariants was “relatively easy” for users [23]. Unfortunately,
this study did not rigorously consider user effectiveness, and it was

I"This is often true of static approaches as well, due to abstraction.



conducted with static analysis tools, which are not always available.

In this work, we present the results of two empirical empirical
empirical empirical empirical empirical empirical empirical empir-
ical studies with 30 human participants studying user classification
effectiveness. The goal of this work was twofold: to determine user
classification effectiveness for invariants generated using dynamic
invariant generation, and to understand what factors lead to suc-
cessful or unsuccessful classification. In each study, participants
were given one of three Java classes with automatically generated
invariants. Invariants were generated using Daikon, a dynamic in-
ference tool with a strong body of supporting research [9, 10, 23,
26]. Participants were asked to determine, for each generated in-
variant, if the invariant was correct or incorrect with respect to the
Java class. We then computed the user classification effectiveness
for each participant, and analyzed the results to assess factors that
impact effectiveness.

Our studies yield two key results. First, contrary to the implica-
tions of prior studies, users struggle to correctly classify invariants.
On average, our study participants misclassified 9.1-39.8% of cor-
rect invariants and 26.1-58.6% of incorrect invariants. We found
these results surprising, because not only did participants fail to de-
tect incorrect invariants, they also frequently misclassified correct
invariants as incorrect. Thus, dynamic invariant generation can be
improved not only by reducing the number of incorrect invariants
generated (as previously suggested by several authors [3, 30, 31]),
limiting the need to manually detect incorrect invariants, but also
by developing tools that help users understand why invariants are,
in fact, correct.

Second, the factors that lead to invariant misclassification appear
surprisingly subtle. Despite examining a large number of factors,
we were unable to clearly determine why users perform poorly at
the classification task. Factors we considered included program
complexity, user ability in terms of GPA and years of experience,
individual invariant complexity and composition, and several oth-
ers. However, no single factor or set of factors strongly correlated
with user classification effectiveness. We did note, however, that
the ability to classify difficult invariants strongly correlates with a
user’s overall ability to classify invariants. This indicates that vari-
ation in the difficulty of classifying invariants is related to some set
of factors impacting user effectiveness (i.e., variation is not due to
chance), and methods for detecting and handling challenging in-
variants can be developed.

The specific contributions of this paper include:

e Two user studies investigating the ability of users to accu-
rately classify invariants produced by dynamic invariant gen-
eration. The data derived from these studies is available for
examination by other researchers.

e Evidence that users struggle to classify both correct and in-
correct invariants, contradicting previous work.

e Analysis of the impact of several factors on user effective-
ness, including program complexity, user-related metrics, and
invariant-related metrics.

e Discussion of the results, specifically highlighting potential
methods for improving the usability of dynamic invariant
generation via discussing factors impacting effectiveness.

2. RELATED WORK

Significant work has been directed at automated test input gener-
ation techniques (see [8] for a survey), but the effectiveness of such
techniques is limited by the absence of automated test oracles. In
the absence of oracles, only “general” properties can be checked,
such as null pointer dereferencing, array bound errors, and program

crashes [1]. Recently, work has begun on automated support for
test oracle construction, but such work (like invariant generation)
requires user support [12, 28, 29].

Dynamic invariant generation was pioneered by Ernst et al. [11]
in the form of Daikon, in response to the limitations of existing
static methods. The goal of dynamic invariant generation is to infer
method preconditions, postconditions, and case invariants by ob-
serving program traces. Several applications of dynamic invariant
generation have been proposed; notably, the use of dynamic invari-
ant generation to support automated software testing and program
evolution has been frequently cited as a potential benefit [10, 19,
31, 32]. A number of improvements have been made to Daikon
over the years [9, 25], with the current system the fourth version
and, to the best of our knowledge, the only system freely available.

Several other dynamic invariant generation approaches have been
created. Agitator is a commercial product incorporating dynamic
invariant generation in the spirit of Daikon [3]. Tillmann et al. cre-
ated Axiom Meister for the .NET platform [30], and Wei et al. de-
veloped Autolnfer for Eiffel programs [31]. Each approach is con-
ceptually the same as that of Daikon, but employs various exten-
sions in order to improve performance. Note that each of these
methods is unsound, and thus like Daikon some generated invari-
ants are incorrect (81.3-100.0% for Axiom Meister [30], and 88.0-
98.0% for Autolnfer [31]). Thus the key issue in our study, the
need for users to understand generated invariants, remains.

Few studies on the effectiveness of dynamic invariant generation
exist. Polikarpova et al. explore the effectiveness of Daikon’s gen-
erated invariants versus programmer-written invariants [26]. They
use several programs written in Eiffel and find that, for large test
suites, 40-100% of inferred assertions are correct, with an average
of 90%; users must detect the remaining incorrect invariants.

To the best of our knowledge, Nimmer and Ernst performed the
only other user study on dynamic invariant generation [23]. In this
study, the effectiveness of 33 participants (mostly MIT or Univer-
sity of Washington graduate students) at performing static program
checking when aided by Daikon and the ESC/Java static analy-
sis tool was explored [6]. Quantitative results indicate that using
Daikon improved the likelihood of success (i.e., verifying program
correctness) in the study for two of three case examples used. Qual-
itative results indicate that removing incorrect invariants generated
by Daikon was usually easy, with only invariants poorly understood
by ESC/Java being problematic. Our study differs in the context
(software testing), the absence of external tools to detect incorrect
invariants, and the chief metric used (percentage of invariants cor-
rectly classified). Our results show that users do struggle to detect
incorrect invariants, and often misclassify correct invariants.

3. STUDY DESIGN

The goal of our study was to examine one key question: how ef-
fective are users at classifying automatically generated invariants
as correct or incorrect? Our interest in this question is motivated
from a testing perspective, as automatic invariant generation has
been proposed as a method for constructing test oracles. This per-
spective motivates much of our study design. For example, static
analysis tools (as used in [23]) were not used by participants, as
we cannot assume their availability when testing. Additionally, the
presentation of material to participants describes invariant gener-
ation in a testing context, and determining invariant correctness is
separate from test input creation, as would likely occur if automated
test input generation tools were applied.

Given this overall goal, we formulated several research questions
(RQ). First, we considered the problem of classifying correct and
incorrect invariants. When classifying and removing invariants,



Table 1: Case Study Artifact Information

KAIST Case Study
StackAr | Matrix | PolyFunction
NCSS 35 135 150
# of Class Methods 9 23 22
Avg. Method Cycl. Compl. 1.89 5.70 6.64
Total # of Invariants 85 127 124
% of Correct Invariants 64.7% 81.9% 79.0%
% of Incorrect Invariants 35.3% 18.1% 21.0%
KNU Case Study
NCSS 35 122 110
# of Class Methods 9 21 18
Avg. Method Cycl. Compl. 1.89 5.62 5.89
Total # of Invariants 85 88 84
% of Correct Invariants 64.7% 79.5% 83.3%
% of Incorrect Invariants 35.3% 20.5% 16.7%

two types of errors exist: removing correct invariants and retaining
incorrect invariants. As noted previously, both types of errors have
negative consequences, but lead to different results. We wished to
know the frequency of these two types of errors. Second, we con-
sidered which factors may contribute to mistakes by users. In the
sole prior dynamic invariant generation user study, all case exam-
ples were relatively small data structures [23]. We were interested
in whether the size and complexity of the case examples considered
could impact the ability of users to correctly classify invariants. Fi-
nally, we considered how user effectiveness might vary across indi-
vidual invariants. In particular, we were interested in whether some
invariants were particularly hard to classify, and if so, why? Such
insights would be valuable when considering how to improve the
usability of dynamically generated invariants.
We thus explored the following research questions:

RQ. How effective are users at classifying correct and incorrect
invariants?

RQ2 How is user classification effectiveness influenced by pro-
gram complexity/size?

RQ3 How does the difficulty of classifying invariants vary?

3.1 Experiment Overview

To address our research questions we conducted two separate
studies. The first study was conducted at the Korea Advanced In-
stitute of Science and Technology (KAIST), in Daejeon, South Ko-
rea, with 11 graduate students, as part of an advanced software en-
gineering course. The second study was conducted at Kyungpook
National University (KNU) in Daegu, South Korea, with 20 under-
graduate students, as an optional special seminar included within a
software engineering course. The backgrounds of the participants
varied considerably, ranging from those with several years of in-
dustrial experience to undergraduates.

Both studies involved the same basic steps. We prepared by ap-
plying Daikon to generate invariants for three case examples, and
then determined the correctness of each generated invariant via ran-
dom testing and manual examination. In each study, (1) we pre-
sented information related to invariants and the tasks to the partici-
pants, (2) we assigned each participant a single case example, after
which (3) each participant manually generated program invariants
(to instill an understanding of the program), and finally (4) each
participant classified the automatically generated invariants.

The experiment setup and artifacts used for both studies are sim-
ilar, but not identical due to differing time constraints (discussed in
Section 3.5). In the remainder of this section, we note differences
in the experiment procedure where they exist.

3.2 Java Case Examples

We used three Java case examples. StackAr is a stack class
originally used in user studies of Daikon [23]. Matrix is a class
representing a matrix, found in the JAMA linear algebra package
developed by The MathWorks and the National Institute of Stan-
dard and Technology (NIST) [17]. PolyFunction is a class rep-
resenting a polynomial function, and is part of the Math4J pack-
age [22]. Table 1 provides further details on these artifacts. Mea-
surements given in the table were collected using JavaNCSS [21].
Non-Commented Source Statements (NCSS) measures roughly the
number of statements ending in *;”.2

We selected these particular case examples for several reasons.
First, they are small enough (given some adjustments described in
the following paragraph) that participants in pilot studies were able
to first understand the case example, and then classify all invariants
given to them in a reasonable period of time. Second, the Matrix
and PolyFunction case examples are, in terms of number of lines
and cyclomatic complexity, more complex than case examples used
in prior studies. Finally, they differ in size and nature; StackAr is
a relatively small, well-known data structure while the other two
examples are larger and primarily algebraic computations.

In pilot studies, we found that the Matrix and PolyFunction case
examples were too large to be used in a reasonable time frame. We
therefore slightly reduced both case examples for use in our stud-
ies.> For the Matrix case example, where several similar functions
exist (e.g., multiple versions of “minus” and “plus” operations),
only one version was retained. Furthermore, mathematical oper-
ations that required a strong understanding of linear algebra (e.g.
matrix factorization) were removed. For the PolyFunction case ex-
ample, multiple constructors with different parameters (i.e., long,
int, and double) were reduced to one constructor, and functions
requiring a strong understanding of calculus were removed.

3.3 Applying Dynamic Invariant Generation

We used the Daikon invariant generation system in this study for
several reasons. First, Daikon is the most mature and well doc-
umented freely available toolset, with a large body of related re-
search [9, 10, 23, 26]. Second, Daikon supports Java, which is
familiar to our study participants. Third, Daikon’s approach has
been adopted by commercial tools, specifically Agitator [3], and
thus represents a tool likely to be used in practice. Finally, pre-
vious empirical work by several authors, including the only user
study conducted using dynamic invariant generation, suggests that
Daikon is an effective invariant generation tool [9, 23, 26].

Daikon requires test suites to generate invariants, and the selec-
tion of these suites represents an additional study factor. Previous
work indicates that the test suites selected impact the quantity and
quality of generated invariants [9, 23, 26]. Unfortunately, each ad-
ditional test suite results in a different set of invariants to be con-
sidered. In these studies, to avoid potential learning effects (noted
in [23]), we prefer that participants not perform the task multiple
times, and our pool of participants is limited. We therefore used
one test suite for each system.

There are several possible methods for selecting test inputs, in-
cluding manual generation and several forms of automatic gener-
ation. In previous studies, existing test suites developed by the
class authors were sometimes used [26], but unfortunately not all
case examples selected have such test suites available. Rather than

’Raw data, including case examples, is available at http://
pswlab.kaist.ac.kr/data/.

3The Matrix and PolyFunction case examples were reduced twice:
once to fit within the time available in the KAIST study, and again
to fit within the smaller time available in the KNU study.



manually generate such test suites and risk introducing our own bi-
ases into the study, we used automatic test input generation via the
Randoop test input generation tool [24]. Randoop uses feedback-
directed random test generation, and was selected because it is a
mature test input generation tool for Java.

For each case example, we generated 1,000 random test inputs.
We chose this number because the resulting test suites, when used
with Daikon, yield a set of invariants such that the percentage of
correct invariants is reasonable, but incomplete enough that incor-
rect invariants are still relatively common. In our studies, 64.7-
83.3% of generated invariants are correct, which is within the range
reported in previous empirical studies [26] when using actual sys-
tems. The number of invariants generated is listed in Table 1.

Daikon produces three types of invariants: method precondi-
tions, method postconditions, and class invariants. In this study
we removed method preconditions. Determining the correctness of
method preconditions is problematic — a precondition conceptually
represents “intended” method behavior, which a tester cannot pos-
sibly know. (Daikon is agnostic concerning “intended” behavior;
users are not.) That said, simply instructing participants to assume
preconditions were correct was also unsatisfactory, as several pre-
conditions were clearly false and in pilot studies made understand-
ing the postconditions (and the task itself) quite confusing.

Daikon can produce invariants in several formats. For this study,

all generated invariants used the Java Modeling Language (JML) [5].

JML was selected for two reasons. First, the format is easy to un-
derstand, and uses mostly Java syntax. Second, there exist tools for
JML - notably, it is possible to compile Java with JML extensions
to detect violations of invariants during testing.

3.4 Determining Invariant Correctness

Once the invariants were generated, we needed to determine whether

each invariant was correct or incorrect, in order to evaluate classi-
fications made by each participant. Initially, we had hoped to use
one of the many static analysis tools developed for determining the
correctness of JML invariants in Java classes [4] (including more
recent tools). Unfortunately, this was not possible: for every tool
tested (roughly 10), the tool was almost completely undocumented,
or did not support constructs used in the source or invariants, or did
not compile/run at all.

Consequently, we could not prove invariants correct. Thus, we
employed two automated approaches to try to falsify invariants.
These approaches were conducted using the help of JML'’s invariant-
aware compiler, allowing us to create test inputs (manually or au-
tomatically) that signal faults in the generated invariants. First,
we applied Randoop using 100,000 test inputs (far more than the
1,000 used to generate the invariants). Second, a different, man-
ually written random test generation harness was written for each
case example, and then applied for a long period of time (24 hours).
This manual harness was written to overcome some deficiencies we
noted in Randoop’s generation. For any remaining invariants, three
of the authors manually examined each one, attempting to develop
a test input capable of violating the invariant, or failing that try-
ing to understand why the invariant was correct. Invariants that
we could not falsify were accepted as correct. The percentages of
correct and incorrect invariants are given in Table 1.

3.5 Experiment Procedure

Both studies began with the administration of a background ques-
tionnaire gathering information about participants’ experience with
invariants, GPA, and so forth. We then gave a classroom presenta-
tion (1) explaining the concept of dynamic invariant generation; (2)
overviewing JML; (3) giving examples of automatic invariant gen-

eration, with explanations of what a correct and incorrect invariant
is; (4) describing the tasks to be done; and (5) providing example
tasks for the participants.

In the presentation, the motivation for invariant generation was
explained to be regression testing. While invariant generation has
been suggested as suitable for testing in general, it is possible to
generate a correct invariant that, due to errors in the program, can
be violated. This complicates a user study, as the user must be able
to judge whether invariants match the intended program behavior.
However, in regression testing users can assume the program is cor-
rect as given, and the user need only determine whether the invari-
ants match the program’s current behavior. We thus avoid questions
of what the program does versus what the program “should” do; the
program should do what it already does.

Following the presentation, each participant was assigned one
of the three case examples at random, and given the tasks. Once
the tasks were complete or the allotted time expired, exit surveys
were administered, gathering information concerning participants’
confidence in the task, their opinion of usefulness of generated in-
variants, and so forth.

In both studies the participants were asked to perform two tasks.
First, they were given the case example without instrumentation,
and asked to write five invariants in the source code. This was
done to provide time in which they could study the entire Java class
without examining generated invariants. Second, they were given
the case example annotated with JML invariants, and asked to clas-
sify each invariant as correct or incorrect with respect to the source
code. They were also given a list of special Java functions used
by the generated JML invariants (extracted from Daikon’s source
code). They were encouraged to classify each invariant, but were
allowed to leave invariants unclassified, for reasons of time or un-
certainty. These unclassified invariants were categorized as “un-
known”.

Both tasks were conducted using paper printouts of the source
code, rather than in front of computers. This was due to a lack of
sufficient number of computers for the KNU study and a desire to
maintain comparability between studies. Source code was format-
ted to print neatly for each case example.

Case study differences: When conducting the KAIST study,
two 90 minute classroom sessions were available, while for the
KNU study only one 90 minute classroom session was available.
The KAIST study was conducted first, and using lessons learned
we were able to pare down the experiment to require only one class-
room session. The chief difference between the KAIST study is the
length of the presentation given to students. The KAIST study was
conducted as part of class material, and so a broader introduction
to invariant generation and regression testing was given.

Other differences between the two studies are: (1) the presenta-
tion at KAIST was given in English for 90 minutes, while at KNU
it was given in Korean for 30 minutes; (2) the first task was al-
lotted 25 minutes at KAIST, but only 20 minutes at KNU; (3) the
second task was allotted 60 minutes at KAIST, but only 35 min-
utes at KNU, (4) the KAIST study used larger case examples with
more methods (and thus more invariants) than the KNU study; (5)
the KAIST study placed a greater emphasis on applying invariant
generation to regression testing than the KNU study.

3.6 Threats to Validity

External: In this study, our participants are students, most of
whom are not professional software developers. In practice, how-
ever, developers vary in skill sets, and we find no reason that au-
tomatic invariant generation should be useful only to experienced
developers. Furthermore, in our study, indicators of programmer



skill such as professional experience, education level, and GPA did
not correlate with user effectiveness.

Our case examples are unfamiliar to the participants and time
was limited. In practice, however, developers are often expected to
maintain code that is not theirs and are typically time limited. Fur-
thermore, our case examples were chosen to be simple enough to
be quickly understood, and in pilot studies participants understood
them in roughly half the time allotted. Additionally, participants
were given time specifically to understand the code (20-25 min-
utes writing manual assertions). Additionally, the invariants were
generated using test inputs from Randoop. In practice, user-written
tests could be used, though the percentage of incorrect invariants
we observed is similar to that reported in previous studies [26].

Each of the three case examples involves relatively simple Java
classes chosen due to limited class time, though we expect the sim-
ple nature of the classes should ease the participants’ tasks. Our
current understanding of user classification effectiveness in this
context is limited; thus we believe that establishing user effec-
tiveness with small, easily understood programs, and basing later,
larger studies on these results, is a prudent approach.

Internal: Our measurement of user effectiveness is obtained by
comparing participants’ classifications against our own classifica-
tions. As noted, while we can be sure incorrect invariants are in-
correct, our own classifications for invariants believed to be correct
are unprovable; thus, our measurements of user effectiveness may
not be 100% accurate. Nevertheless several authors with unlimited
time studied each invariant, and large amounts of random testing
were performed for each system. Furthermore, the variance seen in
the results (discussed in Section 4.3) indicates that even if our re-
sults are slightly incorrect, our conclusions are unlikely to change.

Construct: We have chosen to measure the usefulness of invari-
ants in relation to the effectiveness of users in classifying them as
correct or incorrect. Another option for measuring usefulness is
to consider it in the context of specific software engineering tasks.
Further studies could explore this avenue.

Conclusion: We have conducted two studies with 11 and 19 stu-
dents. Each case example was thus given to 3-7 students, depending
on the study. This is a relatively small number of users. However,
for the KNU study statistical power was sufficient to show an effect
between case examples,* and the number of classifications made by
each user (85-127 invariants each) makes it easy for patterns in in-
variant difficulty to be visible. All statistical methods we employ
are non-parametric. Thus conclusions we make concerning the ex-
istence of relationships between variables are sound, relying on few
assumptions.

4. RESULTS

For each user’s assessment of an invariant, the invariant is either
correct or incorrect, and the user may judge the invariant to be ei-
ther correct, incorrect, or unknown. Thus for each assessment of an
invariant, six basic results can occur. For brevity, we denote each
classification as I x Y, where I is an invariant of correctness X (true
or false) classified as Y (true, false or unknown). For each user,
we present the percentage of invariants that fall into each category,
for each case example / study pairing, in Figure 1. Percentages
are normalized for correct and incorrect invariants.’ The results

#20 subjects were used for the KNU study, with at least 6 per case
example. Using a permutation test and case examples X and Y
with 6 subjects each, we have 12 choose 6 = 924 possible resam-
plings. If the test statistic for the original population <= the test
statistic for 5% or less of the resampled populations (46), there is a
statistically significant difference at o« = 0.05.

5In the figure, each box represents the values falling between the

Table 2: Percentages of Invariants Correctly Classified by Par-
ticipants

KAIST Study
Correct Invariants

Min Mean | Median Max Std. Dev.

StackAr 89.0% | 90.9% 90.9% 92.7% 1.48

Matrix 48.0% | 75.9% 89.4% 96.1% 18.7
PolyFunction || 63.2% | 71.4% 74.4% 79.5% 6.16
Incorrect Invariants
StackAr 30.0% | 55.5% 40.0% 96.6% 29.3

Matrix 60.8% | 73.9% | 73.9% | 91.3% 11.0
PolyFunction || 23.0% | 46.1% | 53.8% | 57.6% 13.5
KNU Study

Correct Invariants
Min | Mean | Median [ Max [ Std. Dev.

StackAr 454% | 74.5% | 74.5% | 96.3% 17.0
Matrix 40.0% | 69.0% | 71.4% | 95.7% 17.3
PolyFunction || 31.4% | 68.3% | 75.7% | 94.2% 20.5
Incorrect Invariants
StackAr 20.0% | 41.4% 36.6% 83.3% 18.2
Matrix 50.0% | 60.1% | 66.6% 66.6% 6.74
PolyFunction || 7.14% | 54.7% | 78.5% 85.7% 344

are partitioned between correct and incorrect generated invariants.
These figures capture the effectiveness of users at classifying gen-
erated invariants. Note that only two categories represent correct
judgements by the users: 71" and Iy F’ classifications.

In Table 2, we present user classification effectiveness as mea-
sured by the percentage of invariants correctly classified, listing
mean, median, minimum and maximum user effectiveness, along
with the standard deviation for user effectiveness (in percentage
points). Values are divided by study, case example, and invariant
correctness. We discuss our results in the context of our research
questions in the remainder of this section.®

4.1 RQ1: User Effectiveness for Correct and
Incorrect Invariants

As Figure 1 shows, both correct and incorrect invariants are fre-
quently misclassifed by users. For the KAIST study, average user
effectiveness for invariants ranged from 71.4%-90.9% and 41.6%-
73.9% for correct and incorrect invariants, respectively. For the
KNU study, average user effectiveness ranged from 68.3%-74.5%
and 41.4%-60.1% for correct and incorrect invariants, respectively.

In both studies and for each case example, users seem to do bet-
ter at classifying correct invariants. This matches our expectations;
we believed that users, presented with automatically generated in-
variants, would either mentally generate a correct counterexample,
or accept the invariant. To test this, we proposed the following hy-
pothesis and null hypothesis:

H,: Users are more effective at classifying correct invariants than
incorrect invariants.

H,,: The percentage of correct classifications by users for incor-
rect and correct invariants are drawn from the same distribu-
tion.

first and third quartiles. All data points greater or less than the
median by 1.5 * IQR (interquartile range) are marked as outliers
(plus signs). The star represents the mean and the line in the box
represents the median.

®In our statistical analyses, we do not consider unknown classifica-
tions. Statistics such as user effectiveness and invariant difficulty
are based on firm answers by the user. Note that while some users
failed to classify several invariants, most classified the vast major-
ity of invariants. This can be seen in the low median for unknown
classifications (0.0% - 13.7%).
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Figure 1: Classification of invariants by users

H,, states that user effectiveness for correct and incorrect invari-
ants are drawn from the same distribution; i.e., users are equally
likely to make I771" and I F classifications. To test this hypoth-
esis, we can use a non-parametric test for evaluating whether two
sets of numbers are drawn from the same population. In this case,
each user provides the percentage of correct and incorrect invari-
ants correctly classified, and therefore the data for evaluating this
hypothesis is paired, with 11 pairs of data for the KAIST study
and 19 pairs of data for the KNU study.” We applied the two-tailed
paired permutation test for each study [20], resulting in a p-value of
0.038 for the KAIST study and 0.004 for the KNU study. In both
cases, we reject the null hypothesis at &« = 0.05. Further, given
the higher than average user effectiveness for correct invariants ob-
served for all case examples, we conclude that H; is supported.

We were surprised at the number of I7 F’ classifications in both
studies. We expected that users would rarely, if ever, generate in-
correct counterexamples, and would therefore rarely reject correct
invariants. Thus with respect to RQ1, we find that while our hy-
pothesis is supported, users appeared to struggle with both recog-
nizing invariants as correct, and identifying incorrect invariants (as
we expected). We discuss implications of this in Section 6.

"One participant in the KNU study given the Matrix case example
declined to complete the study. His answers were not included in
the data analysis.

4.2 RQ2: Impact of Program Complexity on
User Effectiveness

In Table 2, we can see from the mean and median user effec-
tiveness that differences exist in user effectiveness between case
examples, particularly for the KAIST study. However, as indicated
in Figure 1 and Table 2, the differences between the minimum and
maximum user effectiveness within a case example (and even the
interquartile ranges) are often quite large — larger than the differ-
ences between case example means and medians. This is particu-
larly true for incorrect invariants, which have standard deviations
of 6.74 to 34.4 percentage points.

To further study the impact of program complexity, we again
employed statistical hypothesis testing. The number of users was
insufficient in the KAIST study to conduct statistical analysis be-
tween case examples (3-4 students per case example). However,
the number of users was sufficient in the KNU study to conduct hy-
pothesis testing (5-6 students per case example). Accordingly, we
formulated the following hypothesis and null hypothesis:

Hy: Users are more effective at classifying invariants for smaller,
less complex programs than for larger, more complex ones.

H,,: The percentage of correct classifications for two case exam-
ples X and Y (possibly of different size) are drawn from the
same distribution.
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Figure 2: Invariant difficulty

We evaluate this hypothesis for each pair of case examples for
the KNU study. We again use a permutation test (non-paired, in
this case), resulting in the p-values shown in Table 3. As the values
show, we cannot reject the null hypothesis at the o« = 0.05 level
for any pair of case examples. We therefore conclude that, for the
KNU study, we do not have sufficient evidence to conclude that Ha
is supported. Furthermore, while we did not have enough users to
conduct statistical hypothesis testing in the KAIST study (insuffi-
cient power), the large spread in user effectiveness within each case
example also indicates that H> is not well supported.

Table 3: H,, p-values

Stack / Poly | Stack /Matrix | Matrix / Poly
True Invariants 0.59 0.59 0.98
False Invariants 0.42 0.06 0.65

We thus conclude that H> is not supported. With respect to RQ)2,
the explanatory value of program structure is — contrary to our
initial belief — not very strong; thus, there must exist other factors
that more strongly impact the effectiveness of users in classifying
invariants. We discuss our search for such factors in Section 5.

4.3 RQ3: Invariant Difficulty Variance

Figure 2 presents the percentage of user judgements that we be-
lieve are correct, divided between correct and incorrect invariants,
for all case examples and studies. The right-hand side of each
subfigure represents the invariants that all users correctly classify
(100%), and the left-hand side represents invariants that all users
incorrectly classify (0%). Based on our own experiences, we ex-
pected that invariants would tend to be either obviously correct or
incorrect and thus very easy to classify, or very difficult to classify
and thus misclassified by most users. In other words, we expected
a bi-modal distribution in each subfigure, with most invariants clas-
sified correctly by almost all users (near 100%, “easy”) or very few
(near 0%, ‘hard”), and few in between.

The figures show, however, that our expectation was not met for
any combination of study, case example, or invariant correctness.
While a large number of invariants were classified correctly by all

users — sometimes more than 50% of invariants — particularly in
the KAIST study, there is a long, uneven drop to 0%. Furthermore,
invariants that no users correctly classified are relatively rare: no
more than six invariants in any case example / study.

With respect to R(Q)3, we see that there exists a large middle
ground in invariant difficulty between very easy and very hard. Ac-
cordingly, it does not appear that there is some specific subset of
generated invariants that all users struggle with; we cannot solve
the problem simply by ceasing to generate invariants of trouble-
some type X. We must instead identify potential factors related to
failure, and attempt to model their effect on user effectiveness.

S. DISCUSSION

In our two studies, we find the results differ in degree — the
KAIST participants tend to outperform the KNU participants and
have less variation between users, for example — but contain sim-
ilar patterns. We therefore draw the same two core conclusions for
both studies. First, contrary to the implications of previous studies,
users struggle to correctly classify invariants (RQ1). Depending
on the case example, users on average misclassified up to 58.6% of
incorrect invariants, and misclassified up to 31.7% of correct invari-
ants. Second, it is unclear why users struggle — we noted that the
difficulty of classifying invariants varies (R@3), and our original
hypothesis related to program complexity is unsupported (RQ)2).

Thus we need to improve our ability to apply invariant genera-
tion, but it is unclear how. In this section, we examine other factors
potentially related to user effectiveness and invariant difficulty. In
the next section, we discuss the implications of our results.

5.1 Establishing a Pattern of Difficulty

One of the primary goals in this study is to identify factors related
to user effectiveness. However, we would first like to establish that
such factors exist. To do this, we begin by determining whether a
relationship exists between user effectiveness and the difficulty of
classifying invariants (as measured by the percentage of users mis-
classifying them). In other words, we would like to know whether
“hard” and “easy” invariants actually exist, and whether “good”
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Figure 4: User Effectiveness Matrix. 0 = Easiest invariant / Least effective user. UCE = User Classification Effectiveness.

users are those who can classify “hard” invariants. In the absence
of such a relationship, we must conclude that differences in user ef-
fectiveness are not invariant-specific, and we will probably not be
able to identify factors related to user effectiveness.®

In other words, we would like to establish whether the percent-
age of users misclassifying an invariant is positively correlated with
the average overall effectiveness of users who correctly classify the
invariant. We thus formed the following hypothesis:

H3 The correlation between the percentage of users misclassifying
an invariant I, and the average overall effectiveness of all
users detecting /, is positive.

To test this hypothesis, we measured this correlation (using the
Spearman rank correlation adjusted for ties [20], a non-parametric
measure of correlation) for all combinations of studies / examples /
invariant correctness, resulting in Figure 3. As the figure shows, the
correlation between invariant difficulty and average user effective-
ness is positive for most combinations, with statistical significance
at a = 0.05 (correlations not statistically significant are labelled
with a *). Indeed, the correlation tends be quite high, with sta-
tistically significant correlations ranging from 0.32, indicating low
correlation, to 1.0, indicating perfect correlation, with most corre-
lations near or above 0.5, indicating moderate correlation [16].

8Consider a game in which players memorize lists of numbers. We
expect that while no number is easier to remember, some individu-
als have better memories. Similarly, users may vary in their ability
to understand invariants, without invariants varying in difficulty.

To illustrate the implications of this, in Figure 4 we have plot-
ted a matrix representing the invariants classified by each user for
two case examples in the KNU study (both using true invariants).
Black squares represent correct classifications, white squares repre-
sent misclassifications, and grey squares represent “unknown” (i.e.,
non-classifications). We have ranked the invariants by difficulty
and ranked the users by average effectiveness.

In this figure, higher numbers represent more effective users and
more difficult invariants. For example, for the StackAr case ex-
ample, for the 50th most difficult invariant, participants 4-6 (the
best participants) correctly classify the invariant, while participant
1 misclassifies it and participants O and 2-3 do not classify it; only
the most effective participants can correctly classify the invariant.
Conversely, for the 20th most difficult invariant, only the least ef-
fective participant cannot correctly classify the invariant.

As the figure shows, for the StackAr case example (correlation of
0.88) relatively effective participants consistently are those that cor-
rectly classify difficult invariants. This indicates that there is some
factor related to these invariants that makes them consistently chal-
lenging to users. However, for the Matrix case example (correlation
0.32) the pattern is less clear. Participants who are relatively inef-
fective sometimes correctly classify apparently challenging invari-
ants, while participants who are relatively effective sometimes fail
to classify apparently easy invariants. In this instance, it appears
that the differences between user effectiveness are less related to
the actual invariants than in other instances. Other case examples /
study pairings have behavior between these two extremes.



(\result == null);
(\result != null);

@ ensures (this.topOfStack == -1) <==>
@ ensures (this.topOfStack >= 0) <==>

public Object top (
{
if( isEmpty( ) )
return null;
return theArray[ topOfStack ];
}

Figure 5: StackAr Pattern 1 Incorrect Invariants Example

5.2 Statistical Analysis

With our pattern established, we began our search for relevant
factors by applying several statistical analyses. First, we measured
the Spearman correlation between user effectiveness, invariant dif-
ficulty, and several metrics related to invariant complexity [20].
The metrics include: the existence of each operator (e.g., impli-
cation, and, plus, etc.); the number of operators used (i.e., the size
of the invariant); the number of unique operators used; the number
of Daikon-specific methods used; the number of unique methods
used; the number of variables referenced; the number of class vari-
ables referenced. Additionally, several metrics related to the par-
ticipants as drawn from the user entry and exit surveys were also
applied, including user GPA, years of programming experience,
and confidence concerning invariant understanding (estimated by
the participant). Correlations were measured at all possible levels,
ranging from the aggregate results across all participants, down to
the level of individual case examples from separate studies subdi-
vided between correct and incorrect invariants.

In all cases, no correlation was observed to be higher than 0.3,
and no correlations were consistent across studies or examples.
This indicates that no strong relationship between a single factor
and user effectiveness exists. We then attempted to find a relation-
ship between combinations of factors and user effectiveness, apply-
ing both linear regression (for all exploratory variables) and logistic
regression (for binary exploratory variables), again at all possible
levels. Again, these techniques yielded no strong predictive rela-
tionship.

5.3 Manual Analysis

Following our initial analysis, we conducted a manual examina-
tion of each invariant to try to identify qualitative reasons users mis-
classified invariants. In particular, we were interested in incorrect
generated invariants that a high percentage of users (>80%) tended
to misclassify. Each author independently conducted this task, and
several patterns were identified as occurring for such invariants.

Pattern 1: Non-exclusive use of a specific return value for sig-
nalling exceptional states. For some methods, exceptional states
are signalled by returning specific values (e.g., 0, -1, nul1l) instead
of using Java exceptions. However, it is sometimes possible to re-
turn this value in non-exceptional (but often rare) circumstances.
This can result in invariants being generated that initially appear
correct, but can be violated.

For example, consider the code fragment from the StackAr
case example shown in Figure 5. In this method, null is used
to indicate that a usage error has occurred: reading the top of an
empty stack. This behavior is captured by Daikon, resulting in the
invariants listed (when topOfStack is -1, the stack should be
empty). However, it is also possible to directly push a null value
onto the stack, and later read it, thus violating these invariants.

Pattern 2: Direct, unchecked manipulation of class variable val-
ues. Some classes allow class member variables to be directly ma-
nipulated by set methods. Such methods remove class enforce-
ment of data constraints in exchange for improvements in perfor-
mance, with the intent that the user externally enforce such con-

/*@ ensures pairwiseEqual (this.A, A); */

public Matrix (double[][] A, int m, int n) {
this.A = A;
this.m = m;
this.n = n;

}
Figure 6: StackAr Pattern 3 Incorrect Invariants Example

straints. As with Pattern 1, this can result in the generation of in-
variants that capture the intended class invariants, but that can be
violated through use of direct manipulation of class member vari-
ables via set methods.

For example, in the Matrix example, many of the invariants
generated by Daikon capture the intended relationship between the
array size, and the number of columns and rows in the matrix.
However, several methods allow the user to directly set internal
state variables without enforcing consistency checks for array size
and row and column sizes. Such methods, when used in the right
sequence — i.e., directly before another method that has invari-
ants capturing array/column/row invariants — and with the right
inputs, can inviolate many of these invariants. In both studies, for
most (> 80%) of the Matrix invariants fitting this pattern, users cor-
rectly noted that the invariants were incorrect, but for a handful of
instances users did overlook such possibilities.

Pattern 3: Potentially unexpected behavior of invariant utility
functions. As noted in Section 3, participants were given copies
of the functions defined by Daikon to define invariants. Most of
these functions are straightforward, capturing, for example, the or-
dering of elements or equality of all the elements. However, many
of the methods define comparisons against a null object — even
equality — as always false. Without a careful examination of the
functions, this behavior can be overlooked; this can be particularly
troublesome for invariants that seem trivially true.

For example, consider the example invariant drawn from the
Matrix example in Figure 6. This invariant captures an obvious
property of this constructor: the elements of A are the same el-
ements of this.A, as both point to the same object. However,
pairwiseEqual (null, null) is defined as false, and thus
when callingMatrix (null, 0, 0) —anonsensical, butvalid
input — we violate this invariant.

Based on this analysis, we can see that for these studies, the in-
variants users consistently misclassify are those related to unex-
pected behaviors. These include unusual function semantics, in the
case of the Daikon-specific methods, unusual (or poorly designed)
exception signalling, and unexpected changes to member variables.
Generalizing, we believe that in such scenarios, the user’s precon-
ceptions are violated. In the case of unusual invariant semantics, the
user believes the invariant correct because their understanding of it
is flawed. In other cases, the user’s own preconceptions concern-
ing how the program should work align with the invariant inference
tool’s conclusions, but corner cases violate both.

We can therefore infer that when using dynamic invariant gen-
eration, special care should be taken to (1) use easily understood
invariant semantics, and (2) be aware of corner-cases in the appli-
cations where the generation process may infer reasonable, possi-
bly intended or desirable properties that can be violated in certain
circumstances. Unfortunately, while such guidelines may capture
the worst offenders, as noted in Section 4.3, most invariants are not
so universally difficult. In the next section, we discuss the implica-
tions of this for future work.

6. IMPLICATIONS

These studies were conducted to evaluate one crucial aspect of
dynamic invariant generation: the ability of users to classify gen-



erated invariants. The results indicate that dynamic invariant gen-
eration in its current form requires refinement. In this section, we
outline the implications of our results for future work.

While our study has been conducted from the perspective of
software testing, the aspect studied is applicable to any context in
which users must understand the the results of dynamic invariant
generation: namely, any context in which dynamic invariant gener-
ation aids software verification. Thus while our results are framed
in the context of testing, we believe they apply to other contexts.

6.1 Crack the Code

In both studies, we found a surprisingly high level of variance
in terms of invariant difficulty. We originally believed that invari-
ants would be either easy or difficult to classify, but in practice, for
most case examples, the majority of invariants fall into the middle
ground, with a moderate percentage of users (20-80%) misclassi-
fying the invariants. This is unfortunate, because while we have
identified a small class of invariants that consistently cause prob-
lems, there is no easy “off switch” fix for all invariants.

Given this, ideally, this study should result in a model of invari-
ant difficulty: an explanation for why and when users find the task
challenging. Such a model could be used to help users to focus
efforts on tricky to classify invariants, or operate as a blueprint for
future improvements to the technique. Unfortunately, our statisti-
cal analyses did not yield such a model, and our manual analysis
indicated only a couple of scenarios that led to consistently mis-
classified invariants. While our studies have demonstrated the need
for improvements, we have not “cracked the code” concerning why
using existing techniques is challenging.

In Section 4.3, however, we did note that invariants can often be
ordered by difficulty, with difficulty related to user effectiveness.
We believe this relationship is encouraging. While we have not
been able to identify why some invariants are more difficult than
others, the fact that the relationship exists suggests that future work,
possibly with larger sample sizes, may uncover why.

6.2 Generation with Explanation and Better
Invariant Filtering

Our results indicate that users frequently misclassify both correct
and incorrect invariants. Irrespective of why users make mistakes,
improvements to help them understand correct invariants, and do
a better job removing incorrect invariants (ideas suggested, but not
empirically supported, in [3] and [31]) are warranted.

Currently, dynamic invariant generation does not provide a user-
readable argument for why each invariant has been generated. In-
variant generation is entirely a black-box process, taking program
traces as input and producing program invariants as output. How-
ever, if invariant generation were to provide a method for better
understanding why each invariant was generated, the user could
potentially (1) more quickly understand why an invariant is cor-
rect, thus preventing them from trying to falsify it, and (2) identify
shortcomings in the argument, thus improving the process of iden-
tifying incorrect invariants. Daikon already (necessarily) internally
forms such an argument (as must other inference engines); it may
be possible to translate this argument into something human read-
able. Other options include developing methods of summarizing
and presenting paths taken during invariant generation and high-
lighting shortcomings in the submitted traces. (Such work could
borrow from existing work on summarizing test traces and coun-
terexamples [15].)

Additionally, the current approach to invalidating invariants in
Daikon (and other tools) can be extended to use more powerful
techniques. Recall that dynamic invariant generation relies on data

traces generated from the program of interest, and thus a variety of
potentially useful sources of information and analysis techniques
are left unused. These include: program coverage information
(e.g., methods covered, paths explored); static analysis techniques,
particularly those capable of falsifying program assertions [13];
and dynamic analysis techniques, such as symbolic/concolic execu-
tion [27]. By applying such techniques, we may reduce the number
of incorrect invariants generated.

6.3 Quantify the Impact of User Error

As noted in Section 4.1, there are two potential types of invariant
classification errors, I7 F' and IrT'. The first type of error is poten-
tially self-correcting for cautious users: when the user attempts to
demonstrate the invariant can be violated, they will find the invari-
ant is actually correct. Nevertheless, such errors are still a problem,
as they cost the user time when applying the tool. The second type
of error is more serious in the context of testing; incorrect invariants
will be used, potentially leading to false positives later in the test-
ing process, possibly much later. These false positives may lead to
several negative outcomes, including: mistaking false positives for
true positives, causing false “errors” to be corrected; loss of time
in determining that an error is in fact a false positive, a potentially
difficult task for any testers not intimately involved in the develop-
ment or invariant generation process; and loss of trust in invariants
generated for testing, leading to discontinuation of tool use.

In these studies, we have found that both of these types of errors
occur frequently: on average, 9.1%-31.7% of correct and 26.1%-
58.6% of incorrect generated invariants are misclassified. Unfortu-
nately, while we can broadly categorize the impact of user error —
slowdowns in the process of generating invariants, false positives in
testing, lost of trust, etc. — this impact has not yet been quantified
in this study or, to the best of our knowledge, any other.’

We believe that understanding this is key to understanding the
practicality of dynamic invariant generation. While prior studies
have mechanically quantified the benefits of invariant generation,
this work casts doubt on the ability of users to make practical use
of the invariants. In future work, understanding how user error
negatively impacts the testing process (the time required to deter-
mine whether invariants are correct, the time required to fix false
positives in testing) is necessary to understand whether dynamic
invariant generation is a cost effective method of oracle generation.

7. CONCLUSIONS

In this work, we have conducted two studies to evaluate one cru-
cial aspect of dynamic invariant generation: the ability of users to
understand and correctly classify generated invariants. Our results
indicate that users frequently make mistakes. These results run con-
trary to previous work, and call into question the ability of users to
effectively use generated invariants.

Further analysis indicates that while some patterns in user ef-
fectiveness and the difficulty of classifying invariants do exist, the
relationship between invariant difficulty and other factors is subtle.
Factors such as program complexity, invariant size, the number of
class variables referenced, etc., are not strongly correlated. How-
ever, manual analysis did indicate that certain corner cases related
to unusual method semantics and poor exception handling can re-
sult in tricky invariants misclassified by nearly all users.

Based on these results, we have made several suggestions for
future work that we believe may help bridge the gap between dy-
namic invariant generation techniques and user ability, including:
refining our understanding of invariant complexity, likely through

°Nor has it been quantified in related areas, such as the application
of static analysis tools, where similar issues can arise.



additional studies; extending existing techniques to support users
in understanding why invariants are correct and reducing the num-
ber of incorrect invariants generated; and quantifying the impact of
user error on the effectiveness of invariant generation in practice.

Testing research has long focused on test input generation, with
most evaluations largely automated. As we move towards support-
ing users in the entire testing process, including test oracles, we
must be aware of the limitations of users. Evaluations must quan-
tify not only the potential effectiveness of the test oracles gener-
ated, but also the ability of users to apply them. We believe this
study represents an initial step towards this for dynamic invariant
generation.
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