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Since 2005, we  have conducted an extensive series of 
behavioral experiments at the University of Pennsylvania 
on the ability of human subjects to solve challenging 
global tasks in social networks from only local, 
distributed interactions. In these experiments, dozens 
of subjects simultaneously gather in a laboratory 
of networked workstations, and are given financial 
incentives to resolve “their” local piece of some 
collective problem, which is specified via individual 
incentives and may involve aspects of coordination, 
competition, and strategy. The underlying network 
structures mediating the interaction are unknown to 
the subjects, and are often chosen from well-studied 
stochastic models for social network formation. 
The tasks examined have been drawn from a wide 
variety of sources, including computer science and 
complexity theory, game theory and economics, and 
sociology. They include problems as diverse as graph 
coloring, networked trading, and biased voting. This 
article surveys these experiments and their findings. 

Our experiments are inherently in-
terdisciplinary, and draw their formu-
lations and motivations from a number 
of distinct fields. Here, I mention some 
of these related areas and the questions 
they have led us to focus upon.

˲˲ Computer science. Within com-
puter science there is current interest 
in the field’s intersection with eco-
nomics (in the form of algorithmic 
game theory and mechanism design22), 
including on the topic of strategic in-
teraction in networks, of which our 
experiments are a behavioral instance. 
Within the broader technology com-
munity, there is also rising interest in 
the phenomenon of crowdsourcing,26 
citizen science,18 and related areas, 
which have yielded impressive “point 
solutions,” but which remains poorly 
understood in general. What kinds of 
computational problems can popula-
tions of human subjects (perhaps aid-
ed by traditional machine resources) 
solve in a distributed manner from rel-
atively local information and interac-
tion? Does complexity theory or some 
variant of it provide any guidance? Our 
experiments have deliberately exam-
ined a wide range of problems with 
varying computational difficulty and 
strategic properties. In particular, al-
most all the tasks we have examined 
entail much more interdependence 
between user actions than most crowd-
sourcing efforts to date.

˲˲ Behavioral economics and game 
theory. Many of our experiments have 
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 key insights

 � �Groups of human subjects are able 
to solve challenging collective tasks 
that require considerably more 
interdependence than most fielded 
crowdsourcing systems exhibit.

 � �In its current form, computational 
complexity is a poor predictor of the 
outcome of our experiments. Equilibrium 
concepts from economics are more 
appropriate in some instances.

 � �The possibility of Web-scale versions  
of our experiments is intriguing,  
but they will present their own special 
challenges of subject recruitment, 
retention, and management.
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an underlying game-theoretic or eco-
nomic model, and all are conducted 
via monetary incentives at the level of 
individual subjects. They can thus be 
viewed as experiments in behavioral 
economics,1 but taking place in (artifi-
cial) social networks, an area of grow-
ing interest but with little prior experi-
mental literature. In some cases we can 
make detailed comparisons between 
behavior and equilibrium predictions, 
and find systematic (and therefore po-
tentially rectifiable) differences, such 
as networked instances of phenomena 
like inequality aversion.

˲˲ Network science. Network Science 
is itself an interdisciplinary and emerg-
ing area9,25 that seeks to document 
“universal” structural properties of 
social and other large-scale networks, 
and ask how they might form and influ-
ence network formation and dynam-
ics. Our experiments can be viewed as 
extending this line of questioning into 
a laboratory setting with human sub-
jects, and examining the ways in which 
network structure influences human 
behavior, strategies, and performance.

˲˲ Computational social science.
While our experimental designs have 
often emphasized collective problem 
solving, it is an inescapable fact that 
individual human subjects make up 
the collective, and individual decision-
making, strategies, and personalities 
influence the outcomes. What are 
these influences, and in what ways do 
they matter? In many of our experi-
ments there are natural and quantifi-
able notions of traits like stubborn-
ness, stability, and cooperation whose 
variation across subjects can be mea-
sured and correlated with collective 
behavior and performance, and in turn 
used to develop simple computational 
models of individual behavior for pre-
dictive and explanatory purposes.

This article surveys our experiments 
and results to date, emphasizing over-
all collective performance, behavioral 
phenomena arising repeatedly across 
different tasks, task- and network-spe-
cific findings that are particularly strik-
ing, and the overall methodology and 
analyses employed. It is worth noting at 
the outset that one of the greatest chal-
lenges posed by this line of work has 
been the enormous size of the design 
space: each experimental session in-
volves the selection of a collective prob-

lem, a set of network structures, their 
decomposition into local interactions 
and subject incentives, and values for 
many other design variables. Early on 
we were faced with a choice between 
breadth and depth—that is, designing 
experiments to try to populate many 
points in this space, or picking very spe-
cific types of problems and networks, 
and examining these more deeply over 
the years. Since the overarching goal 
of the project has been to explore the 
broad themes and questions here, and 
to develop early pieces of a behavioral 
science of human computation in net-
worked settings, we have opted for 
breadth, making direct comparisons 
between some of our experiments diffi-
cult. Clearly much more work is needed 
for a comprehensive picture to emerge.

In the remainder of this article, I 
describe the methodology of our ex-
periments, including the system and 
its GUIs, human subject methodology, 
and session design. I then summarize 
our experiments to date and remark 
on findings that are common to all or 
most of the different tasks and high-
light more specific experimental re-
sults on a task-by-task basis. 

Experimental Methodology
All of the experiments discussed here 
were held over a roughly six-year pe-
riod, in a series of approximately two-
hour sessions in the same laboratory of 
workstations at the University of Penn-
sylvania. The experiments used an 
extensive software, network and visu-
alization platform we have developed 
for this line of research, and which has 
been used by colleagues at other insti-
tutions as well. In all experiments the 
number of simultaneous subjects was 
approximately 36, and almost all of the 
subjects were drawn from Penn under-
graduates taking a survey course on 
the science of social networks.12 Each 
experimental session was preceded by 
a training and demonstration period 
in which the task, financial incentives, 
and GUI were explained, and a practice 
game was held. Sessions were closely 
proctored to make sure subjects were 
attending to their workstation and 
understood the rules and GUI; under 
no circumstances was advice on strat-
egy provided. Physical partitions were 
erected around workstations to ensure 
subjects could only see their own GUI. 

While our 
experimental 
designs have 
often emphasized 
collective problem 
solving, it is an 
inescapable fact 
that individual 
human subjects 
make up the 
collective, and 
individual decision-
making, strategies, 
and personalities 
influence the 
outcomes.
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No communication or interaction of 
any kind outside that provided by the 
system was permitted. The system 
tabulated the total financial compen-
sation earned by each subject through-
out a session, and subjects were paid 
by check at a later date following the 
session. Compensation was strictly 
limited to the actual earnings of each 
individual subject according to their 
own play and the rules of the particular 
task or game; there was no compensa-
tion for mere participation. Following 
a session, subjects were given an exit 
survey in which they were asked to de-
scribe any strategies they employed 
and behaviors they observed during 
the experiments. 

Within an individual experimen-
tal session, the overall collective task 
or problem was fixed or varied only 
slightly (for example, an entire session 
on graph coloring), while the underly-
ing network structures mediating the 
interaction would vary considerably. 
Thus, the sessions were structured as 
a series of short (1 to 5 minutes) ex-
periments, each with its own network 
structure but on the same task. This is 
the natural session format, since once 
the task and incentives are explained 
to the subjects, it is relatively easy for 
them to engage in a series of experi-
ments on differing networks, whereas 
explaining a new task is time-consum-
ing. Each experiment had a time limit 
imposed by the system, in order to 
ensure the subjects would not remain 
stuck indefinitely on any single experi-
ment. In some sessions, there were 
also conditions for early termination 
of an experiment, typically when the 
instance was “solved” (for example, a 
proper coloring was found). A typical 

session thus produced between 50 and 
100 short experiments.

Within an individual experiment, 
the system randomly assigned subjects 
to one of the vertices in the network 
(thus there was neither persistence nor 
identifiability of network neighbors 
across experiments). Each subject’s 
GUI (see Figure 1) showed them a lo-
cal view of the current state of the net-
work—usually a local fragment of the 
overall network in which the subject’s 
vertex was in the middle and clearly 
labeled, as well as edges shown to the 
subject’s network neighbors. Edges 
between a subject’s neighbors were 
shown as well, but no more distant 
structure. The GUI also always clearly 
showed the incentives and current 
payoffs for each subject (which might 
vary from subject to subject within an 
experiment), as well the time remain-
ing in the experiment. Typical incen-
tives might pay subjects for being a 
different color than all their neighbors 

(graph coloring), the same color (con-
sensus), or perhaps the same color but 
with different payoffs for different col-
ors (biased voting). Other experiments 
involved financial scenarios, and the 
interface provided a mechanism for 
subjects to bargain or trade with their 
network neighbors. In general, GUIs 
always provided enough information 
for subjects to see the state of their 
neighbors’ current play, and for them 
to determine their current (financial) 
best response.

Summary of Experiments
The accompanying table briefly sum-
marizes the nature of the experiments 
conducted to date, describing the 
collective task, the network struc-
tures used, the individual incentives 
or mechanism employed, and some 
of the main findings that we detail 
below. Our first remark is on the di-
versity of these experiments along 
multiple dimensions. In terms of the 

Figure 1. Sample screenshot of subject GUI for a biased-voting experiment; many other  
sessions involved similar GUIs. 

The central panel shows the subject’s 
vertex (currently in the “blue” state)  
with black edges to network neighbors  
and their current states; red lines denote 
edges between the subject’s neighbors.  
The bottom action panel allows the subject 
to change their current state any time,  
while the top panel specifies their incentives 
and elapsed time in the experiment. 

Summary of experiments to date. ER stands for Erdös-Renyi, PA for preferential attachment. 

Task Description Networks Incentives/Mechanism Sample Findings

graph coloring17 cycle+chords; PA differ with neighbors chords help; importance  
of information view

coloring and consensus10 clique chain w/rewiring differ/agree with neighbors opposite structure/task effects
networked trade13 ER; PA; structured;  

all bipartite
limit orders for trades  
for opposing good

comparison to equilibrium theory; 
networked inequality aversion

networked bargaining3 assorted Nash bargain on each edge behavioral price of obstinacy
independent set15 assorted kings and pawns with  

side payments
side payments help;  
conflict and fairness

biased voting14 ER and PA between types;  
minority power

consensus with competing  
individual preferences

well-connected  
minority rules 

network formation16 endogenous to the game biased voting minus edge 
expenditures

poor collective  
performance
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tasks, the computational complexity 
of the problems studieda varies from 
the trivial (biased voting and consen-
sus, though this latter problem is dif-
ficult in standard models of distrib-
uted computation); to the tractable 
but challenging (networked trade, 
for which the closest corresponding 
algorithmic problem is the computa-
tion of market equilibria); to the likely 
intractable (graph coloring and inde-
pendent set, both NP-hard). In terms 
of the networks, we have investigated 
standard generative models from the 
literature such as Erdös-Renyi, prefer-
ential attachment, and small worlds; 
highly structured networks whose de-
sign was chosen to highlight strategic 
tensions in the task and incentives; 
regular networks without obvious 
mechanisms to break symmetry; and 

a	 Clearly computational complexity provides 
limited insight at best here, since it examines 
worst-case, centralized, asymptotic compu-
tation, all of which are violated in the experi-
ments. But it remains the only comprehensive 
taxonomy of computational difficulty we have; 
perhaps these experiments call for a behavior-
al variant, much as behavioral game theory has 
provided for its parent field.

various other topologies. Figure 2 de-
picts visualizations of a sampling of 
network structures investigated. And 
finally, regarding the financial incen-
tives, these have varied from coopera-
tive (tasks where all players could si-
multaneously achieve their maximum 
payoff in the solution); to competitive 
(where higher payoffs for some play-
ers necessarily entail lower payoffs for 
others); to market-based trading and 
bargaining, where there are nontrivial 
networked equilibrium theories and 
predictions; and to settings where 
side payments were permitted.

Despite this diversity, and the diffi-
culties in making direct comparisons 
across sessions and experiments it 
engenders, there is one unmistak-
able commonality that has emerged 
across our six-year investigation: hu-
man subjects perform remarkably well 
at the collective level. While we have 
observed significant variability in per-
formance across tasks, networks, and 
incentives, overall the populations 
have consistently exceeded our expec-
tations. There is a natural and easy 
way of quantifying this performance: 
for any given short experiment, we of 

course know the exact network used, 
and the incentives and their arrange-
ment within the network, and thus can 
compute the maximum welfare solu-
tion for that particular experiment—
that is, the state or arrangement of 
subject play that would generate the 
greatest collective payments to the 
subjects. For each experiment, our sys-
tem has also recorded the actual pay-
ments made, which are by definition 
less than the maximum social welfare. 
We can thus sum up all of the actual 
payments made across all sessions 
and experiments, and divide it by the 
sum of all the maximum social welfare 
payments to arrive at a measure of the 
overall efficiency of the subject pools 
over the years.

The resulting figure across the 
lifetime of our projectb is 0.88—thus, 
overall subjects have extracted close to 
90% of the payments available to them 
in principle. In interpreting this figure 
it should be emphasized that it is an 
average taken over the particular en-
semble of tasks and networks we have 
studied, which as mentioned before 
was chosen for its breadth and not in 
a globally systematic fashion. Clearly it 
is possible to craft behaviorally “hard” 
problems and networks.

Nevertheless, their efficiency shows 
that subjects are capable of high per-
formance on a wide variety of tasks and 
graph topologies.

Another phenomenon consistent 
across tasks has been the importance 
of network structure. For most tasks, 
we found there was a systematic and 
meaningful dependence of collective 
behavior on structure, and often an 
approximate ordering of difficulty of 
the network topologies could be in-
ferred. Thus, simple cycles prove more 
difficult for coloring than preferential 
attachment networks,17 denser net-
works result in higher social welfare in 
networked trading,13 and so on. How-
ever, such dependences on structure 
are highly task-specific—which is per-
haps not surprising for fixed heuristics 
or algorithms, but has not been docu-
mented behaviorally before. Indeed, 
in one set of experiments we isolated 

b	 This excludes the most recent experiments in 
network formation, which are of a qualitatively 
different nature than the rest, and result in a 
rather surprising outcome discussed later.

(a) from consensus and independent-
set experiments, a chain of six cliques 
of size 6, with a fraction of the internal 
clique edges “rewired” to random 
vertices, thus allowing interpolation 
between a highly “tribal” network and 
effectively random networks.

(c) from biased-voting experiments, 
a preferential attachment network 
with a minority of high-degree players 
preferring red.

(b) from coloring experiments, 
an engineered structure with a 
cycle and two “leaders” in a two-
colorable graph.

(d) from many tasks, a sample 
Erdös-Renyi network.

Figure 2. A small sampling of network structures in experiments.
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this phenomenon by showing that for 
two cognitively similar (but computa-
tionally different) problems, and for 
a particular generative model for net-
works, the effects of structure on col-
lective behavioral performance is the 
opposite in the two tasks,10 a finding 
discussed later in greater detail.

The third consistency we found 
across both tasks and networks was 
the emergence of individual subject 
“personalities” or behavioral traits. 
Our experimental platform is delib-
erately stylized, and effectively shoe-
horns the complexity of real human 
subjects into a highly constrained sys-
tem, where language, emotion, and 
other natural forms of communica-
tion are eradicated, and all interac-
tions must take place only via simple 
actions like selecting a color or offer-
ing a trade. While there are obvious 
drawbacks to this stylization in terms 
of realism, one benefit is that when 
we make a clear finding—such as the 
ability of a small but well-connected 
minority to systematically impose its 
preferences on the majority14—we 
have done so in a way that might iden-
tify the minimal network and task 
conditions for it to emerge.

Nevertheless, in our experiments 
we consistently find subjects differ-
entiating and expressing themselves 
within the constraints of our system 
in ways that can be measured and 
compared. For instance, in many of 
our experiments there are natural no-
tions of traits like stubbornness, sta-
bility, selfishness, patience, among 
others, that can be directly measured 
in the data, and the frequency of such 
behavior tallied for each subject. We 
often find the variation in such be-
haviors across a population indeed 
exceeds what can be expected by 
chance, and thus can be viewed as 
the personalities of human subjects 
peeking through our constraints. 
Harder to measure but still clearly 
present in almost every experiment 
we have conducted is the emergence 
of (sometimes complex) “signaling” 
mechanisms—it seems that when our 
system takes language away, the first 
thing subjects do is try to reintroduce 
it. From such behavioral traits arise 
many interesting questions, such as 
whether specific traits such as stub-
bornness are correlated with higher 

payoffs (sometimes they are, other 
times not), and whether certain mix-
tures of subject personalities are nec-
essary for effective collective perfor-
mance (such as a mixture of stubborn 
and acquiescent individuals in coor-
dination problems).

Highlights of Results
We now turn our attention to results 
at the level of specific tasks. For each 
task, I briefly outline any noteworthy 
details of the GUI or experimental set-
up, and then highlight some of the 
main findings.

Coloring and consensus. Our first 
set of experiments17 explored the be-
havioral graph coloring task already 
alluded to—subjects were given finan-
cial incentives to be a different color 
than their network neighbors, saw 
only the colors of their local neighbor-
hood, and were free to change their 
color at any time, choosing from a 
fixed set of colors whose size was the 
chromatic number of the underlying 
graph (thus demanding the subjects 
find an optimal coloring). It was in 
these initial experiments that we first 
found strong effects of network struc-
ture. For instance, while a simple two-
colorable cycle proved surprisingly 
hard for the subjects—comparable 
to their difficulty with more complex 
and dense preferential attachment 
graphs—this difficulty was greatly 
eased by the addition of random 
chords to the cycle, which reduces 
diameter and increases edge density. 
But the preferential attachment net-
works had the smallest diameter and 
highest edge density, so these struc-
tural properties do not alone explain 
collective performance.

A theme that runs throughout our 
experiments is that intuitions about 
what networks might be easy or dif-
ficult can be strongly violated when 
considering a distributed human 
population using only local informa-
tion. The challenge of finding simple 
explanations of such structural results 
is highlighted by the fact that a natural 
distributed, randomized heuristic for 
coloring—namely, not changing col-
ors if there is no current conflict with 
neighbors, changing to a color resolv-
ing a local conflict if one exists, and 
picking a random color if conflict is 
unavoidable—produced an ordering of 

A theme running 
throughout our 
experiments is that 
intuitions about 
what networks 
might be easy or 
difficult can be 
strongly violated 
when considering 
a distributed 
human population 
using only local 
information. 
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the difficulty of the networks that was 
approximately the reverse of that for 
the subjects.

These first experiments were also 
the only ones in which we investigat-
ed the effects of global information 
views on performance. In a subset of 
the experiments, subjects actually saw 
the current state of the entire network 
(again with their own vertex in the net-
work clearly indicated), not just the col-
ors of their neighbors. Not surprising-
ly, this global view led to dramatically 
improved performance in a simple 

cycle, where the symmetric structure 
of the network and the optimal solu-
tion become immediately apparent. 
But strikingly, in preferential attach-
ment networks, global views led to 
considerable degradation in collective 
performance—perhaps an instance 
of “information overload,” or simply 
causing subjects to be distracted from 
attending to their local piece of the 
global problem.

In a later session,10 we ran experi-
ments on both coloring and consensus  
(where subjects were given financial 

incentives to be the same color as their 
neighbors, chosen from a fixed menu 
of nine colors), on the same set of un-
derlying networks. Despite the vastly 
different (centralized) computational 
complexity of these problems—coloring 
being NP-hard, consensus trivial—the 
two tasks are cognitively very similar 
and easy for subjects to switch be-
tween: coloring is a problem of social 
differentiation, consensus one of so-
cial coordination.

In these experiments, the networks 
were drawn from a parametric family 
that begins with six cliques of size six 
loosely connected in a chain. A rewiring 
parameter q determines the fraction of 
internal clique edges that are replaced 
with random “long distance” edges, 
thus allowing interpolation between a 
highly clustered, “tribal” network, and 
the Erdös-Renyi random graph model; 
see Figure 2(a) for an example. The pri-
mary finding here was that the effect 
on collective performance of varying 
the rewiring parameter is systematic 
and opposite for the two problems—
consensus performance benefits from 
more rewiring, coloring performance 
suffers. This effect can be qualitatively 
captured by simple distributed heu-
ristics, but this does not diminish the 
striking behavioral phenomenon (see 
Figure 3). The result suggests that ef-
forts to examine purely structural prop-
erties of social and organizational net-
works, without careful consideration 
of how structure interacts with the 
task(s) carried out in those networks, 
may provide only limited insights on 
collective behavior.

In addition to such systematic, sta-
tistically quantifiable results, our ex-
periments often provide interesting 
opportunities to visualize collective 
and individual behavior in more anec-
dotal fashion. Figure 4 shows the ac-
tual play during one of the consensus 
experiments on a network with only a 
small amount of rewiring, thus largely 
preserving the tribal clique structure. 
Each row corresponds to one of the 36 
players, and the horizontal axis repre-
sents elapsed time in the experiment. 
The horizontal bars then show the ac-
tual color choice by the player at that 
moment. The first six rows correspond 
to the players in the first (partially re-
wired) clique, the next six to the sec-
ond clique, and so on. The underlying 

Figure 3. Average time to global solution for coloring and consensus experiments  
(solid lines) as a function of edge rewiring in a clique-chain network, and simulation times 
(dashed lines) on the same networks for distributed heuristics. The parametric structure 
has the opposite effect on the two problems. 
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Figure 4. Visualization of a consensus experiment with low rewiring parameter, showing  
collective and individual behaviors, and effects of underlying clique structure. 
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network structure manifests itself vi-
sually in the tendency for these groups 
of six to change colors approximately 
simultaneously. As was typical, after 
an initial diversity of colors, the popu-
lation quickly settles down to just two 
or three, and nearly converges to blue 
before a trickle of orange propagates 
through the network and takes firm 
hold; at some point the majority is or-
ange, but this wanes again until the 
experiment ends in deadlock. Acts of 
individual signaling (such as toggling 
between colors) and (apparent) irra-
tionality or experimentation (playing a 
color not present anywhere else in the 
network) can also be observed.

Networked trading and bargain-
ing. Our experiments on trading and 
bargaining differ from the others in 
that they are accompanied by nontriv-
ial equilibrium theories that general-
ize certain classical microeconomic 
models to the networked setting.4,11 In 
the networked trading experiments,4 
there were two virtual goods available 
for trade—call them milk and wheat—
and two types of players: those that 
start with an endowment of milk, but 
whose payoff is proportional only to 
how much wheat they obtain via trade; 
and those that start with wheat but 
only value milk. All networks were bi-
partite between the two types of play-
ers, and trade was permitted only with 
network neighbors; players endowed 
with milk could only trade for wheat 
and vice-versa, so there were no “re-
sale” or arbitrage opportunities. All 
endowments were fully divisible and 
equal, so the only asymmetries are 
due to network position. The system 
GUI allowed players to broadcast to 
their neighbors a proposed rate of ex-
changec of their endowment good for 
the other good in the form of a tradi-
tional limit order in financial markets, 
and to see the counter offers made by 
their neighbors; any time the rates of 
two neighboring limit orders crossed, 
an irrevocable trade was booked for 
both parties. 

For the one-shot, simultaneous 
trade version of this model, there is 
a detailed equilibrium theory that 

c	 As per the theoretical model, players were not 
able to offer different rates to different neigh-
bors; thus conceptually prices label vertices, 
not edges.

precisely predicts the wealth of every 
player based on their position in the 
network;11 in brief, the richest and 
poorest players at equilibrium are 
determined by finding the subset of 
vertices whose neighbor set yields the 
greatest contraction,d and this can 
be applied recursively to compute all 
equilibrium wealths. An implication 
is that the only bipartite networks 
in which there will not be variation 
in player wealths at equilibrium are 
those that contain perfect match-
ings. One of the primary goals of the 
experiment was to test this equilib-
rium theory behaviorally, particularly 
because equilibrium wealths are not 
determined by local structure alone, 
and thus might be challenging for hu-
man subjects to discover from only lo-
cal interactions; even the best known 
centralized algorithm for computing 
equilibrium uses linear programming 
as a subroutine.5 We again examined 
a wide variety of network structures, 
including several where equilibrium 
predictions have considerable varia-
tion in player wealth.

There were a number of notable 
findings regarding the comparison of 
subject behavior to the equilibrium 
theory. In particular, across all experi-
ments and networks, there was strong 
negative correlation between the equi-
librium predicted variation of wealth 
across players, and the collective earn-
ings of the human subjects—even 
though there was strong positive cor-
relation between equilibrium wealth 
variation and behavioral wealth varia-
tion. In other words, the greater the 
variation of wealth predicted by equi-
librium, the greater the actual varia-
tion in behavioral wealth, but the more 
money that was left on the table by the 
subjects. This apparent distaste for 
unequal allocation of payoffs was con-
firmed by our best-fit model for player 
payoffs, which turned out to be a mix-
ture of the equilibrium wealth distri-
bution and the uniform distribution 
in approximately a (3/4; 1/4) weight-
ing. Thus the equilibrium theory is 
definitely relevant, but is improved by 
tilting it toward greater equality. This 

d	 For instance, a set of 10 milk players who col-
lectively have only three neighboring wheat 
players on the other side of the bipartite net-
work has a contraction of 10/3.

can be viewed as a networked instance 
of inequality aversion, a bias that has 
been noted repeatedly in the behavior-
al game theory literature.1

Our experiments on networked 
bargaining3 have a similarly financial 
flavor, and are also accompanied by 
an equilibrium theory.4 In these experi-
ments, each edge in the network rep-
resents a separate instance of Nash’s 
bargaining game:21 if by the end of 
the experiment, the two subjects on 
each end of an edge can agree on how 
to split $2, they each receive their ne-
gotiated share (otherwise they receive 
nothing for this edge). Subjects were 
thus simultaneously bargaining in-
dependently with multiple neighbors 
for multiple payoffs. Network effects 
can arise due to the fact that different 
players have different degrees and thus 
varying numbers of deals, thus affect-
ing their “outside options” regarding 
any particular deal. In many experi-
ments, the system also enforced limits 
on the number of deals a player could 
close; these limits were less than the 
player’s degree, incentivizing subjects 
to shop around for the best deals in 
their neighborhood. The system pro-
vided a GUI that let players make and 
see separate counter offers with each 
of their neighbors.

Perhaps the most interesting find-
ing regarded the comparison between 
subject performance and a simple 

Figure 5. Human performance vs. greedy 
algorithm in networked bargaining,  
demonstrating the effects of subject  
obstinacy. Where occlusions occur,  
blue dots are slightly enlarged for visual 
clarity. The length of the vertical lines 
measure the significant effects of subject 
obstinacy on payoffs.
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greedy algorithm for approximating 
the maximum social welfare solution, 
summarized in Figure 5. This cen-
tralized greedy algorithm simply se-
lects random edges in the network on 
which to close bargains, subject to any 
deal limits in the experiment, until no 
further deals could be closed without 
violating some deal limit. The social 
welfare obtained (which does not re-
quire specifying how the edge deals 
are split between the two players) is 
then simply $2 times the number of 
closed deals, as it is for the behavioral 
experiments as well.

The blue dots in Figure 5 each rep-
resent averages over several trials of 
one of the network topologies exam-
ined (thus each dot corresponds to a 
different topological family). The x 
value shows the social welfare of the 

greedy algorithm as a percentage of 
the maximum social welfare (optimal) 
solution, while the y value shows the 
same measure for the human sub-
jects. Averaged over all topologies, 
both humans and greedy perform 
rather well—roughly 92% of optimal 
(blue open circle). However, while the 
greedy solutions are maximal and thus 
cannot be locally improved, much of 
the inefficiency of the subjects can be 
attributed to what we might call the 
Price of Obstinacy: at the end of many 
experiments, there were a number of 
deals that still could have been closed 
given the deal limits on the two end-
points, but on which the two human 
subjects had not been able to agree to 
a split. If we simply apply the greedy 
algorithm to the final state of each 
behavioral experiment, and greed-

ily close as many remaining deals as 
possible, the potential performance of 
the subjects on each topology, absent 
obstinacy, rises to the orange dot con-
nected to the corresponding blue dot 
in the figure. This hypothetical sub-
ject performance is now well above 
the performance of pure greedy (all or-
ange points above the diagonal now), 
and the average across topologies is 
close to 97% of optimal (orange open 
circle). In other words, the human 
subjects are consistently finding bet-
ter underlying solutions than those 
obtained by simply running greedy on 
the initial graph, but are failing to re-
alize those better solutions due to un-
closed deals. While humans may show 
aversion to inequality of payoffs, they 
can also be stubborn to the point of 
significant lost payoffs.

Independent set. Another set of 
experiments required subjects to 
declare their vertex to be either a 
“king” or a “pawn” at each moment, 
with the following resulting payoffs: 
any player who is the only one that 
has declared kingship in his neigh-
borhood enjoys the highest possible 
rate of pay; but if one or more of 
their neighbors are also kings, the 
player receives nothing. On the other 
hand, pawns receive an intermediate 
rate of pay regardless of the states of 
their neighbors. It is easily seen that 
the Nash equilibria of the one-shot, 
simultaneous move version of this 
game are the maximal independent 
sets (corresponding to the kings) of 
the graph, while the maximum social 
welfare state is the largest indepen-
dent set, whose centralized computa-
tion is NP-hard. Because we were con-
cerned that computing payoffs based 
on only the final state of the gain 

Figure 7. Series of snapshots of global state in a minority power biased voting experiment, showing an instance in which a minority player 
(upper left vertex R) acquiesces at various times though eventually wins out. 

Figure 6. From independent-set experiments: Average income disparity between neighbors 
(x-axis) vs. average time neighbors are conflicting kings (y-axis), both with (blue) and with-
out (orange) side payments. Grouped by network structure. The side payments uniformly 
reduced conflict and disparity. 
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would lead to an uninteresting global 
“chicken” strategy (all players declar-
ing king until the final seconds of the 
experiment, with some players then 
“blinking” and switching to pawn), 
in these experiments payoffs accrued 
continuously according to the pro-
rated time players spent in each of 
the three possible states (pawn, king 
with no conflicting neighbors, con-
flicting kings).

Every experiment was run under 
two conditions—one just as described 
above, and another in which the GUI 
included an additional element: in 
the case that the player was the lone 
king in their neighborhood, and thus 
enjoying the highest rate of pay, a 
slider bar permitted them to specify a 
fraction of their earnings in that state 
to be shared equally among all their 
neighbors (whose pawn status allows 
the king’s high payoff). These “tips” or 
side payments could range from 0% to 
100% in increments of 10%, and could 
be adjusted at any time. Note that in 
some cases, depending on network 
structure, some vertices might be able 
to obtain a higher rate of pay by being 
a pawn receiving side payments from 
many neighboring kings than by being 
the lone king in their neighborhood.

The most striking finding was that, 
across a wide variety of network struc-
tures, the introduction of the side pay-
ments uniformly raised the collective 
payoffs or social welfare. Side pay-
ment rates were often generous, and 
averaged close to 20%. Furthermore, 
when side payments are introduced, 
both the average income disparity be-
tween neighboring players, and the 
amount of time they spend as conflict-
ing kings, are considerably reduced, 
across all network structures exam-
ined (see Figure 6). This suggests that 
without side payments, subjects used 
conflict, which reduces the wealth of 
all players involved, to express per-
ceived unfairness or inequality. The 
side payments reduce unfairness and 
consequently reduce conflict, thus fa-
cilitating coordination and raising the 
social welfare.

Biased voting. The biased voting 
experiments14 shared with the earlier 
consensus experiments an incentive 
toward collective agreement and co-
ordination, but with an important 
strategic twist. As in consensus, each 

player had to simply select a color for 
their vertex, but now only between the 
two colors red and blue. If within the 
allotted time, the entire population 
converged unanimously to either red 
or blue, the experiment was halted 
and every player received some payoff. 
If this did not occur within the allot-
ted time, every player received nothing 
for that experiment. Thus the incen-
tives were now not at the individual 
level, but at the collective—players 
had to not only agree with their neigh-
bors, but with the entire network, even 
though they were still given only local 
views and interactions.

The strategic twist was that dif-
ferent players were paid different 
amounts for convergence to the two 
colors within the same experiment. 
In particular, some players received a 
higher payoff for convergence to blue, 
while others received a higher payoff 
for convergence to red. Typical incen-
tives might pay blue-preferring play-
ers $1.50 for blue convergence and 
only $0.50 for red, with red-preferring 
players receiving the reverse. Some ex-
periments permitted asymmetries be-
tween higher and lower payoffs, thus 
incentivizing some players to “care” 
more about the color chosen by the 
population. These experiments thus 
set up a deliberate tension between 
competing individual preferences and 
the need for collective unity.

In the most dramatic set of ex-
periments, networks were chosen ac-
cording to preferential attachment—
known to generate a small number 
of vertices with high degree—and the 
vast majority of players given incen-
tives that paid more for convergence 
to blue. However, the minority of ver-
tices preferring red was chosen to be 
the high-degree vertices. These ex-
periments tested whether a small but 
well-connected minority could system-
atically impose its preferences on the 
majority, thus resulting in suboptimal 
social welfare.

The answer was resoundingly affir-
mative: in 27 such “minority power” 
experiments, 24 of them resulted in 
the subjects reaching a unanimous 
choice—in every case, the preferred 
choice of the well-connected minor-
ity. The finding is especially surprising 
when we remember that since everyone 
has only local views and information, 

The side payments 
reduce unfairness 
and consequently 
reduce conflict, 
thus facilitating 
coordination  
and raising the 
social welfare.
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the powerful minority has no particular 
reason to believe they are powerful—in 
fact, their high degree ensured that at 
the start of each such experiment, they 
would see themselves surrounded by 
players choosing the opposing color. 
Indeed, the minority players would of-
ten acquiesce to the majority early in 
the experiment (see Figure 7, which 
shows a series of snapshots of actual 
play during an experiment). But the dy-
namics always eventually came to favor 
the minority choice.

A behavioral network formation 
game. Our most recent experiments16 
attempted to address what is perhaps 
the greatest of many artificialities in 
this line of research: the exogenous 
imposition of the social network struc-
ture mediating interactions. While cor-
porations and other social entities of 
course often do impose organizational 
structure, it is natural to believe that 
in many circumstances, humans will 
organically construct the communica-
tion and interaction patterns required 
to solve a task efficiently—perhaps 
even circumventing any imposed hi-
erarchy or structure. Given the afore-
mentioned overall strong performance 
of our subjects across a wide variety of 
challenging tasks, even when network 
structures were complex and not di-
rectly optimized for the task, we were 
naturally interested in whether perfor-
mance might improve even further if 
the subjects could collectively choose 
the networks themselves.

We thus ran among the first experi-
ments in network formation games, 
on which there is an active theoreti-
cal literature.8,24 We wanted to design 
such a game in which the formation 
of the network was not an end in it-
self, as it is in many of the theoreti-
cal works, but was in service of a col-
lective task—which we again chose 
to be biased voting. The framework 
was thus as followed: the payoff func-
tions for the players was exactly as 
described for biased voting, with all 
players wanting to reach unanimity, 
but having a preferred (higher pay-
off) color. Now, however, there were 
no edges in the network at the start 
of each experiment—every vertex 
was isolated, and players could thus 
see only their own color. Through-
out the experiment, players could 
optionally and unilaterally purchase 

edges to other players, resulting in 
subsequent bilateral viewing of each 
other’s colors for the two players; the 
GUI would adapt and grow each play-
er’s neighborhood view as edges were 
purchased. A player’s edge purchases 
were deducted from any eventual pay-
offs from the biased voting task (sub-
ject to the constraints that net payoffs 
could never be negative).

Players were thus doing two things 
at once—building the network by pur-
chasing edges, and choosing colors in 
the biased voting task. The GUI had 
an edge purchasing panel that showed 
players icons indicating the degrees 
and shortest-path distances of play-
ers they were not currently connected 
to, thus allowing them to choose to 
buy edges (for instance) to players that 
were far away in the current network 
and with high degree, perhaps in the 
hopes that such players would aggre-
gate information from distant areas of 
the network; or (for instance) to low-
degree vertices, perhaps in the hope 
of strongly influencing them. The for-
mation game adds to the biased vot-
ing problem the tension that while the 
players must collectively build enough 
edges to facilitate global communica-
tion and coordination, individual play-
ers would of course prefer that others 
purchase the edges.

While there were many detailed 
findings, the overall results were sur-
prising: the collective performance 
on this task was by far the worse we 
have seen in all of the experiments 
to date, and much worse than on the 
original, exogenous network, biased 
voting experiments. Across all experi-
ments (that included some in which 
the subjects started not with the empty 
network, but with some “seed” edges 
that were provided for free), the frac-
tion in which unanimity was reached 
(and thus players received nonzero 
payoffs) was only 41%—far below the 
aforementioned nearly 90% efficiency 
across all previous experiments. We 
were sufficiently surprised that we ran 
control experiments in which a subse-
quent set of subjects were once again 
given fixed, exogenously imposed net-
works—but this time, the “hard” net-
works created by the network forma-
tion subjects in cases where they failed 
to solve the biased voting task. This was 

These experiments 
thus tested 
whether a small 
but well-connected 
minority could 
systematically 
impose its 
preferences on  
the majority, 
resulting in 
suboptimal  
social welfare.
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done to investigate the possibility that 
the formation subjects built good net-
works for the task, but either ran out of 
time to reach unanimity, or included 
subjects who behaved very stubbornly 
because they had significant edge ex-
penditures and thus strongly held out 
for their preferred color.

Performance on the control experi-
ments was even worse. The surprising 
conclusion seems to be that despite 
the fact that subjects clearly under-
stood the task, and were now given 
the opportunity to solve it not on an 
arbitrary network, but one collectively 
designed by the population in ser-
vice of the task, they were unable to 
do so. One candidate for a structural 
property of the subject-built networks 
that might account for their difficulty 
in the biased voting task is (between-
ness) centrality, a standard measure of 
a vertex’s importancee in a network. 
Compared to the networks used in the 
original, exogenous-network biased 
voting experiments, the distribution 
(across vertices) of centrality in the 
subject-built networks is considerably 
more skewed.16 This means that in 
the network formation experiments, 
there was effectively more reliance on 
a small number of high-centrality ver-
tices or players, making performance 
less robust to stubbornness or other 
non-coordinating behaviors by these 
players. Indeed, there was moderately 
positive and highly significant correla-
tion between centrality and earnings, 
indicating that players with high cen-
trality tended to use their position for 
financial gain rather than global coor-
dination and information aggregation.

Despite their demonstrated abil-
ity to solve a diverse range of compu-
tational problems on a diverse set of 
networks, human subjects seem poor 
at building networks, at least within the 
limited confines of our experiments so 
far. Further investigation of this phe-
nomenon is clearly warranted.

Concluding Remarks
Despite their diversity, our experi-
ments have established a number of 
rather consistent facts. At least in mod-

e	 The betweenness centrality of vertex v is aver-
age, over all pairs of other vertices u and w, of 
the fraction of shortest paths between u and w 
in which v appears.

erate population sizes, human subjects 
can perform a computationally wide 
range of tasks from only local interac-
tion. Network structure has strong but 
task-dependent effects. Notions of so-
cial fairness and inequality play impor-
tant roles, despite the anonymity of our 
networked setting. Behavioral traits 
of individual subjects are revealed de-
spite the highly simplified and stylized 
interactions; with language removed, 
subjects persistently try to invent sig-
naling mechanisms.

There are a number of recent ef-
forts related to the research described 
here. Some compelling new coloring 
experiments7,20 have investigated the 
conditions under which increased con-
nectivity improves performance. Our 
experimental approach has thus far 
aimed for breadth, but studies such as 
these are necessary to gain depth of un-
derstanding. We have also usually done 
only the most basic statistical analyses 
of our data, but others have begun to 
attempt more sophisticated models.6

Perhaps the greatest next frontier is 
to conduct similar experiments on the 
Web, where a necessary loss of control 
over subjects and the experimental en-
vironment may be compensated by or-
ders of magnitude greater scale, both 
in population size and the number of 
experimental conditions investigated. 
Recent efforts using both the open web 
and Amazon’s Mechanical Turk online 
labor market have started down this 
important path.2,19,23
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