Published
discovery

in KDD 12 Proceedings

of the 18th ACM SIGKDD international
and data mining, 2012, p. 913-921 which should be cited to refer

conference  on Knowledge
to this work

Model Mining for Robust Feature Selection

Adam Woznica
University of Geneva
Department of Computer
Science
7, route de Drize
Battelle - building A
1227 Carouge, Switzerland

ABSTRACT

A common problem with most of the feature selection meth-
ods is that they often produce feature sets—models—that are
not stable with respect to slight variations in the training
data. Different authors tried to improve the feature selec-
tion stability using ensemble methods which aggregate dif-
ferent feature sets into a single model. However, the ex-
isting ensemble feature selection methods suffer from two
main shortcomings: (i) the aggregation treats the features
independently and does not account for their interactions,
and (ii) a single feature set is returned, nevertheless, in var-
ious applications there might be more than one feature sets,
potentially redundant, with similar information content. In
this work we address these two limitations. We present a
general framework in which we mine over different feature
models produced from a given dataset in order to extract
patterns over the models. We use these patterns to derive
more complex feature model aggregation strategies that ac-
count for feature interactions, and identify core and distinct
feature models. We conduct an extensive experimental eval-
uation of the proposed framework where we demonstrate its
effectiveness over a number of high-dimensional problems
from the fields of biology and text-mining.
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1. INTRODUCTION

High-dimensional datasets are becoming more and more
abundant in the field of data mining. A traditional approach
of tackling the high-dimensional learning problems is based
on the application of feature selection methods to select a
set of features—feature models—as small as possible that ac-
curately describe the learning examples.

A common problem with most of the feature selection
methods is that they often produce feature models that are
not stable (or robust) with respect to slight variations in the
training set. This can be problematic when we want to iden-
tify a handful of features which are important for the given
mining problem and present them to the domain experts
together with quantifiable evidence of their robustness and
stability. A typical application domain in which the stability
and robustness of the selected features are of paramount im-
portance is biology. The analysis of biological samples using
high-throughput technologies produces learning instances of
very high dimensionality, tens of thousands or even hun-
dreds of thousands. Very often this high dimensionality is
coupled with a limited number of samples. In such cases,
the low stability of the selected features, often coupled with
their weak discriminatory power, raises questions about the
scientific significance of these discoveries [10, 9].

We can identify two sources of feature model instability.
The first is a high level of feature redundancy (a situation
that is very typical in biological problems); this can make the
feature selection methods to produce unstable feature sets
simply because they can select different features among the
redundant features. In such cases very different feature sets
can be equivalent predictors of some outcome because they
describe different aspects of the same phenomenon. The sec-
ond major cause of instability is the "underspecification” in
the sample space with respect to the feature dimensionality,
a problem often described as the High Dimensionality Small
Sample Size (HDSSS) problem. In the HDSSS setting we
do not have adequate statistics, and very often slight varia-
tions in the training data can produce radical changes in the
feature models. For example, it was shown in [6] that for
typical biological problems at least one order of magnitude
more training instances are needed to reach an acceptable
level of feature stability. However, the HDSSS problem is
here to stay since sample availability is often limited due
to unsurpassable practical constrains, while our ability to
measure different variables is ever increasing.

A common approach to derive more robust feature sets is
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to use ensemble feature selection over bootstrap samples [18,
1, 9]. More specifically, the feature selection algorithm we
want to "stabilize” is applied on a number of random sub-
samples of the training data, and the different outputs are
subsequently aggregated to produce a new, hopefully more
stable, feature set. Almost all the existing algorithms focus
on feature selection methods that produce feature rankings
(or feature scores that can be trivially converted to rank-
ings) and output an aggregated ranking, based on which
the desired number of features can be finally selected. The
existing aggregation strategies are most often based on the
averaging of the individual rankings [18, 1], or the (soft)
frequency of selection of individual attributes [15, 16, 9].
A common characteristic of all these methods is that they
treat the features independently and do not consider feature
interactions. Moreover, from the existing literature there is
no consensus of whether the aggregated feature sets, in ad-
dition to the boosted stability, also bring an improvement
in terms of predictive performance.

Although the existing approaches based on ensemble fea-
ture selection are conceptually simple and were shown to
give rise to more stable feature sets they have two main
limitations. First, as already mentioned, the aggregation
operators are usually based on simple averaging techniques
that consider attributes independently, and as such they of-
ten generate "artificial” structures that would not have been
produced by the original feature selection method. For ex-
ample average feature ranks produced over the models of
a sparsity-imposed algorithm, such as LASSO, most likely
do not correspond to any output of that algorithm [21]. In
general, for feature models whose elements are generated
independently from each other, such as the ones obtained
by univariate feature selection methods, the standard tech-
niques based on simple averaging are expected to be appro-
priate. In cases where the components of the feature selec-
tion models are not independent, a typical example of these
are models produced by multivariate feature selection meth-
ods, the simple strategies might not be sufficient, and other
techniques that account for feature interactions is needed.

The second limitation is that the existing aggregation
techniques return a unique feature model. Nevertheless, in
problems with high levels of redundancy it might very well
be the case that there are more than one feature sets, re-
dundant between them, with similar information content.
In such situations the domain experts might prefer the iden-
tification of a number of alternative feature models, all of
which describe different aspects of the same problem.

In this work we address these limitations and present a
general framework in which we mine over feature models
to extract feature patterns that we will use to derive more
stable feature models and to identify distinct but equiva-
lent, in terms of predictive behavior, feature models. We
define aggregation operators over the feature models which
we exploit to aggregate and summarize the different fea-
ture models. The model aggregation operators we formalize
range from the simplest strategies that treat attributes in-
dependently, to the more complex ones that are structure-
preserving and account for feature interactions. We perform
an in-depth empirical study where we evaluate our frame-
work on a number of biological and text mining datasets
where we demonstrate the effectiveness of our approach.

The remainder of this paper is organized as follows. In
Section 2 we present the feature model mining framework.

In Section 3 we present the experimental setup that we will
use evaluate our framework and in Section 4 we present the
experimental results. In Section 5 we review the related
work, and we summarize our work in Section 6.

2. FEATURE MODEL MINING

In this section we present a general framework for feature
model mining and describe a number of mining methods
that operate over feature models. Our goal is to improve the
stability and robustness of the feature selection as well as to
provide the means to identify alternative feature selection
models of equal quality.

We will first introduce some notation. Let D = {(x1, y1),
..y (®n,yn)} be a labeled dataset, where x; € RP is the
i-th instance and y; € Y its class label. Feature selection
identifies the most important features so that instances can
be represented in a lower dimensional space without a sig-
nificant loss of discriminatory power; most often, the num-
ber of desired features m is controlled by the user. Fol-
lowing the ideas that appeared recently in ensemble feature
selection [18, 9] we generate b base feature models from b
bootstrap subsamples of D using a given feature selection
method. These base models will become the target of the
feature model mining that we will present soon. Feature
selection models come roughly in the following three flavors:

e feature weightings: w = (w1, ..., w,)", w; € R,

e feature rankings: © = (r1,...,7p)7, 7 € N (we as-
sume that the values of r; can be non-unique),

e feature subsets: s = (s1,...,8,)7, s € {0,1}, with 0
and 1 indicating absence and presence of a feature.

In this work, we focus on the r» and s representations; the
output of a feature selection method that produces feature
weightings can be always converted to a ranking.® We de-
note by R = {r1,...,rs} and S = {s1,..., Sp} the feature
rankings and subsets produced from the b bootstrap sub-
samples of the given dataset by the application of a given
feature selection method. We will present a number of un-
supervised feature model mining operators f which operate
over R or S, in fact most of the methods that we will present
will work with the S representation. The different operators
will aggregate the base feature models, while taking into ac-
count the feature model structures and systematically iden-
tify alternative feature models. By feature model structures
here we mean the specific combinations of features, reflecting
feature interactions and dependencies, that different feature
selection algorithms are able to uncover according to their
underlying learning bias. The signature of the feature model
mining operators will be:

I -7'——>{$;}f:1

where F is either R or S, and k is a user specified parameter
that defines the number of alternative feature models. We
classify the operators to two groups according to the aggre-
gation strategy they follow. In the first group, Single Model
Aggregation, we have strategies that aggregate the different
base feature models into a single model, i.e. kK = 1. In the
second group, Multiple Model Aggregation, we have strate-
gies that produce a number of distinct models.

1[2] argues against directly aggregating weights—scores w;,
especially those that correspond to p-values of univariate
statistical tests.



2.1 Single Model Aggregation Strategies

We will start with a description of the first group which
is the one that contains most of the proposed strategies.
We separate the strategies of this group to different cate-
gories with respect to how they construct their final model,
in terms of the model components of the base feature mod-
els, and how close is the final solution they produce to those
that the feature selection algorithm would have generated.

Univariate Strategies.

In this category we have just two strategies avgRank and
mostFreq, that produce the final model by looking at the
individual feature scores, obtained either from their ranks
or from their frequencies. More precisely, in avgRank [18,
1, 2, 9] the score; of the Ith feature is the average of its
rankings, i.e. score; = Zi’:l ri. In mostFreq [15, 16, 9] we
consider the frequency of the features that appear in S, i.e.
score; = Z?:l sq. In both cases, the final set of m features
is selected according to their score;. These two strategies
make no effort what so ever to capture feature model struc-
tures since they treat the features independently. If one
used a univariate feature selection to generate the base fea-
ture sets this is no problem, since no such structure exists.
However, if the base feature sets have been produced by a
multivariate feature selection algorithm, then it is probable
that the final feature set will not reflect particular feature
combinations that have been found informative by the fea-
ture selection algorithm since these aggregation strategies
do not consider longer structures.

Model Component Combination Strategies.

Here we consider strategies that search for frequent item-
sets over the different base feature sets, and then establish
the union of the most frequent itemsets, until the number
of distinct features in the union reaches m, i.e. the desired
feature cardinality. One can think this strategy as the com-
bination of frequent "model fragments” in to a final single
feature model.

To limit the number of returned frequent itemsets, which
depending on the dataset and the feature selection method
can render the method computationally infeasible, we only
focus on the frequent mazimal [3] and closed [20] itemsets,
giving respectively rise to the mazApr and closedApr strate-
gies. An itemset is closed if no superset has the same sup-
port, and maximal if no superset is frequent. We note that
for a given support threshold we have FMI C FCI C FI,
where FCI, FMI and FT are respectively the set of all the fre-
quent closed, all the frequent maximal, and all the frequent
itemsets. The elements in FCI that are not in FMI neces-
sarily have non-lower support with respect to those of FMI,
and hence have on average a shorter in length than those of
FMI. Additionally, the elements in FCI are more redundant
(as measured by the average number of items they share)
than the elements of FMI. Both maxApr and closedApr can
be seen as an extension of mostFreq; in the latter method
the cardinality of the returned itemsets is trivially restricted
to one and the threshold is specified not on the minimum
support but on the number of returned itemsets.

Exact Structure Preservation Strategies.
In this category we have a number of strategies which se-
lect in a principled manner one of the base feature models,

namely the most representative one. Clearly, the solutions
fully reflect the learning bias of the feature selection algo-
rithm that generate the base feature sets. The different ap-
proaches rely on different combinations of frequent itemset
discovery and clustering techniques.

The simplest strategy of this category is mostRep. Here,
the final feature model is simply the median model of the set
of base models S. We use the median instead of the aver-
age because the former preserves the model structure since
the median is actually an element of the underlying set. The
underlying assumption of the mostRep strategy is that there
is a meaningful median element over S. This is a valid as-
sumption only if the feature models form a single unimodal
cluster. However, in general we cannot assume that S has
such unimodal structure. We thus introduce the largeMed
strategy which uses the k-medoid clustering algorithm and
the average silhouette criterion [12] to determine the best
number of clusters and returns as the final feature model the
medoid of the largest cluster. As before we rely in k-medoids
instead of k-means because the averaging process does not
necessarily preserve the feature model structures discovered
by the feature selection algorithm. In this category we have
two more strategies, medMazApr and medClosedApr, which
can be seen as the counterparts of mazApr and closedApr
that preserve exactly the feature model structure of the fea-
ture selection algorithm. Both of them define 1.S:,, as the
set that contains the frequent feature sets with the top sup-
port. Then, they determine all base feature models that are
supersets of at least one element of the 1.5, and constitute
the S’ set of base feature models. The final feature model is
the median feature set of S’. In that sense these two strate-
gies try to find the most representative base feature set using
as initial seeds the most frequent feature itemsets.

Overall, what we have in the single model aggregation
strategies is a spectrum of different approaches which are
distinguished according to the degree to which they respect
the structure of the original base feature models and the
bias of the feature selection algorithm that produced them.
At the lower end we have the Univariate Strategies (US)
which completely ignore these using an univariate approach
to select the features that will be included in the final fea-
ture model. In the middle of the spectrum we have the
Model Component Combination Strategies (MCCS) which
detect frequent model fragments—subsets of the base feature
sets—that appear frequently within the base feature sets and
produce the final model by bringing together these model
fragments. Finally, we have at the higher end the Exact
Structure Preservation Strategies (ESPS) that output as a
final model one of the base feature sets of S; the methods of
this group differ on how they select the prototypical feature
set. The simplest method returns just the median of S, fol-
lowed by the method that returns the median of the largest
cluster, to the most complicated that return the median of
the base feature sets that are supersets of the most frequent
itemsets.

2.2 Multiple Model Aggregation Strategies

The aggregation strategies of this group take as input the
base feature models and produce as output k different fea-
ture models. The simplest strategy of the group, allMed,
applies the k-medoid clustering algorithm on set of the base
feature models S and returns the medoid of each cluster.
Clearly, the cardinality of the k feature models is dictated



by that of the base feature models, so if it is m for the latter,
it will also be m for the former. In addition to the clustering-
based approach we also have two of frequent pattern-based
approaches. The first one, allClosedApr, produces as output
k feature models that correspond to the k highest support
frequent closed itemsets.? Unlike allMed here we do not have
control over the cardinality of the aggregated feature sets.
It might very well be the case that this cardinality will be
quite low since we are selecting the top frequent itemsets; de-
pending on the dataset and the value of k the most frequent
itemsets can easily consist of only single items—features. In
order to be able to better control the cardinality of the final
feature sets we derive an alternative of this strategy which
we name medClosedApr. Here instead of simply returning
as feature sets directly the top k itemsets we first get all
the base feature models from S that contain the itemset(s)
with the highest support, and return the corresponding k
medoids. Like that each aggregated feature model will now
have as many features as the base feature models.

3. EXPERIMENTS

In this section we investigate the behavior and perfor-
mance of the different model aggregation strategies presented
in Section 2. We have two suites of experiments dealing with
the single and multiple model aggregation strategies.

We start with the single model aggregation strategies and
evaluate them, over a panel of datasets and feature selec-
tion methods, both in terms of the stability of the aggre-
gate feature models that they produce as well as in terms of
the classification error they result to when these models are
passed to a number of classification algorithms. Concretely,
given a feature selection algorithm we generate b base fea-
ture models which will then be aggregated into a single one
by each one of the different aggregation strategies. On each
one of the aggregated models we train a classifier using a
given classification algorithm. One of the primary goals of
these experiments is to see whether the model aggregation
strategies that account for the base feature model structures
can bring an improvement over the univariate aggregation
strategies.

In the second suite of experiments we examine the behav-
ior of the multiple model aggregation strategies. We evalu-
ate them with respect to a number of dimensions, namely the
diversity of the multiple feature models they produce, the
average errors of classifiers trained on them using some given
classification algorithm, as well as the prediction agreement
of the produced classifiers. What we want to examine is
whether using the multiple model aggregation strategies we
can produce very diverse feature models, i.e. feature models
that deliver different descriptions of the classification prob-
lem, which give rise to accurate classifiers, i.e. the feature
models are discriminatory, and that are ”"semantically simi-
lar”, i.e. deliver the same predictions when they are asked
to classify the same instance.

We set the cardinality of the base and the aggregate fea-
ture models m to 20. We performed additional experiments
with different values of this parameter; however, these re-
sults reveal similar trends. We set the number of boot-
strap samples b to 150. We implemented feature aggregation

2We also defined and experimented with a similar strategy
obtained using the concepts of frequent maximal itemsets;
however, its behavior was similar to that of allClosedApr.

and performance computation (Section 3.1) using the R lan-
guage.

3.1 Performance Measures

Stability Estimation.

To estimate the stability of feature models produced by a
feature selection algorithm, or by a single model aggregation
strategy coupled with a given feature selection algorithm, we
compare the feature models generated over a number of vari-
ations of the input dataset. In this study we opted for N-fold
stratified cross-validation (CV) with N = 10, resulting in a
set of N feature sets 8’ = {s1,...,sn}. The different fea-
ture models are cross-compared and the average similarity
$1Mavg is computed:

2 Zl§i<]’§N sim(si, s;)
N(N —1) ()

5iMavg(S') =

where sim(-,-) is a similarity measure between two feature
models. In this work we follow [11] and define sim(s;, s;) =
[£i0F ;]
ForT
from s; and |-| denotes the set cardinality. The sim measure
takes values in [0, 1], zero when there is no overlap and one
when the two sets are identical, and allows comparisons also
between feature sets of different cardinalities. We also note
that the performance measure (1) will be also used in the
second set of experiments to measure the diversity of the
feature models generated by methods from Section 2.2; in
this case sim(-,-) will correspond to the average similarity
between all the k feature models.

where f, is a set of identifiers of selected features

Error Estimation.

As already mentioned, to asses the predictive performance
of a feature model aggregation method we estimate the error
of a classification algorithm trained over the feature model
produced by the given aggregation method. We estimate
this performance measure using exactly the same fold sep-
aration as the one in the 10-fold CV used in the stability
estimation.

Predictive Agreement Estimation.

To quantify the predictive agreement of two classifica-
tion models c¢; and c2 trained over the same input dataset
but using different feature sets we measure the percent-
age of identical predictions over some test dataset D' =
{z!,...,z;}. Concretely, we compute agree(ci,c2, D) =
21<7<z5(61(m')762(w')>

where C{HQ}( x;) is the classification la-
bel ass1gned to the instance x; by the c(1j23 model; and
0(a,b) =1 if a = b, and 0 otherwise. The overall agreement
of the k models produced by a multiple model aggregation
strategy is then given by:

221<1‘<j<k agree(cs, CJVD,)

agree(D') = = 7Ic(lc Y (2)

The final agreement estimation is the average of (2) over the
10-CV folds (again, we have exactly the same folds as in the
error and stability estimation).

Statistical Significance and Methods Ranking.
We control the statistical differences of the errors of two
methods using the McNemar’s test, and the paired T-test for



the stability and prediction agreement; for all of them we set
the significance level to 0.05. To acquire a better picture of
the relative performances of the different methods we estab-
lish a ranking schema for each one of the performance mea-
sures based on the results of the pairwise comparisons. More
precisely, if one method is significantly better than another
one, it is credited with one point; if there is no significant
difference then both are credited with 0.5 points; finally, if it
is significantly worse it is credited with zero points. Clearly,
the more points one method scores the higher its ranking
will be. If we compare n different methods then the maxi-
mum number of points that one can obtain is n — 1 if it is
significantly better than all the other methods; if there is no
significant difference then each will get (n — 1)/2 points.

3.2 Datasets

We experiment with high-dimensional data from three
application domains: proteomics, genomics and text min-
ing. The proteomics datasets, ovarian, prostate, and stroke,
are mass spectrometry datasets. The genomics datasets,
leukemia, nervous, colon, are DNA-microarray datasets. The
text mining datasets, disease, alternative, describe classifi-
cations of sentences to relevant or non-relevant to given top-
ics; features are word frequencies. The references to these
datasets are in [11]. In Table 1 we give a short description
of them.

3.3 Feature Selection and Classification Algo-
rithms

To create the base feature models we will use the fol-
lowing feature selection methods: Information Gain (IG),
Chi-Square (CHI) [5], Symmetrical Uncertainty (SYM) [5],
ReliefF (RELIEF) [17], SVMRFE [7], SVMONE and Cor-
relation Based Feature Selection (CFS) [8]. The first three
methods are univariate feature selection methods; the re-
maining are multivariate methods that are in principle able
to detect and exploit feature interactions. RELIEF delivers
a weighting of the features by computing distances among
each of the training instances and their 10-nearest neigh-
bors, and estimating the contribution of each feature in these
distances. SVMRFE is based on repetitive applications of
linear SVM where the P% lowest ranked features are elimi-
nated at each iteration. The ranks of the features are based
on the order in which they are eliminated and the weights
assigned to them by the linear SVM. In our experiments we
set P to 10% and the complexity parameter C of the linear
SVM to 0.5. We also included a simple linear support vector
machine (SVMONE) which is equivalent to SVMRFE with
a single iteration. CFS evaluates the worth of a subset of
attributes by considering the individual predictive ability of
each feature along with the degree of redundancy between
them. Subsets of features that are highly correlated with
the class while having low inter-correlation are preferred.
We note that CFS is the only method in this study which
automatically determines the appropriate feature cardinal-
ity and hence we do not control for the m parameter. We
used the WEKA implementation of these algorithms.

Since, as we mentioned, feature selection and feature model
aggregation methods do not deliver classification models we
had to use classification algorithms in order to train from
their results classification models that we can use to estimate
the discriminatory power of the feature models that they
produce. We have chosen the classification algorithms in

Table 1: Statistics on the datasets. n, p and ¢ denote
respectively the number of training instances, data

dimensionality and the number of classes.
Datasets n p c

prostate 322 390 | 2
ovarian 253 385 2
stroke 208 172 2
leukemia 72 7129 | 2
colon 62 2000 | 2
nervous 60 7129 | 2
alt 4157 | 2112 | 2
disease 3237 | 2376 | 2

such a manner that they represent distinct learning paradigms.
We experiment with Decision Tree (J48), SVM and INN
learning algorithms. We used the WEKA implementation
of the algorithms; we set the parameters to default values,
except for the C parameter of SVM which was set to 0.5.

4. RESULTS

We will first experiment with and study the performance
of the different single model aggregation strategies, and then
that of the multiple model aggregation strategies.

4.1 Single Model Aggregation Strategies

Each one of the single model aggregation operators was
applied on the b base feature models produced by each one of
the seven different feature selection algorithms over a given
dataset. The resulting aggregated feature models were sub-
sequently passed to the three classification algorithms in or-
der to have an estimate of their discriminatory power. The
results over the different classification algorithms do not dif-
fer considerably so we will present only those of the SVM.
We fix a feature selection algorithm and we rank the dif-
ferent aggregation operators with respect to the predictive
error of the SVM models produced over their respective ag-
gregated feature models, and with respect to the stability
of their aggregated feature models. Ranking is done as de-
scribed previously according to the points accumulated in
terms of the significant wins and losses. Since for a given
feature selection method we are comparing eight aggregation
operators, plus one baseline which is the plain application
of the given feature selection method (nobagg), the maxi-
mum number of points that one operator can score for a
given dataset, if it is significantly better than all the rest,
is eight; if there is no difference then everybody will all get
four points.

In Table 2 we give these error and stability ranks for each
aggregation operator averaged over all the different datasets
with which we experimented. In this table the upper value in
each cell is the error-based rank of the aggregation operator
(indicated by the row) for the given feature selection algo-
rithm (indicated in the column header); the bottom value
is the respective stability rank. Clearly, error takes prece-
dence over stability; a very high stability rank is useless if it
is accompanied with a very low error rank.

Examining the averaged ranks (the last column of Table 2)
we see that the best method in terms of its average error
rank is closedApr that scores 5.6 points, followed by mazApr
with 5.0 points, and mostFreq with 4.9; the latter has exactly
the same number of points—rank—as the baseline method,



Table 2: Average prediction error & stability scores of the single model aggregation operators over all datasets
when SVM is used as the classification algorithm. In each cell the upper value is the average error score of the
model mining operator given in the row, over the different model mining operators, for the feature selection
algorithm specified in the column header; the lower value is the respective stability score. The final column
gives the respective averages for each model mining operator over the different feature selection algorithms.
The larger the values the higher the rank of the method; the top rank per column is indicated in bold.

Univariate Feature Selection Multivariate Feature Selection
1G | CHI SYM RELIEF | SVMONE | SVMRFE | CFS || Avg
oba 59 | 6.0 14 18 1.6 5.0 10 || 4.9
99 6.1 | 6.4 5.8 5.9 4.3 3.7 47 || 5.3
wouRank 6.1] 5.0 5.4 3.4 5.5 4.0 15 || 4.4
s g 72| 6.2 6.7 5.6 6.1 6.8 48 || 6.2
S siFre 19 | 54 5.1 13 15 1.6 55 || 4.9
q 59 | 6.3 6.4 6.3 6.8 6.7 6.9 | 6.5
. 19 | 4.8 1.6 1.6 5.2 5.2 58 || 5.0
MOCS p 48 | 4.9 4.6 5.1 6.2 5.6 6.1 || 5.3
closedApr 51 ] 6.4 6.1 1.9 51 5.8 6.1 | 5.6
p 58 | 6.0 6.3 6.0 6.6 6.7 6.5 | 6.3
0.9 [ 09 0.9 15 1.0 T1 23 | 1.2
medMazApr 2.1 | 24 2.0 2.3 1.9 2.3 2.2 2.2
T8 | 1.8 17 71 15 18 32 [ 2.0
ESPS medClosedApr || o' | 5 2.0 2.2 1.9 2.1 2.2 2.1
laroeMed 35 | 3.1 14 5.0 2.6 35 15 | 3.8
g 0.2 | 0.0 0.0 0.0 0.0 0.0 0.2 | o1
mostRe 30 | 28 34 5.4 5.9 5.0 31 || 41
p 1.9 | 1.8 2.2 2.6 2.1 2.1 24 | 22

nobagg. Essentially, the two strategies that manage to im-
prove the predictive performance over the baseline are the
two strategies that combine model components. When it
comes to the average stability rank, the top ranked aggrega-
tion operator is the mostFreq with 6.5 points, closely followed
by closedApr with 6.3 points, and avgRank with 6.2 points;
all three methods are better than the baseline in terms of
the stability which scores 5.3 points. The four remaining ag-
gregation operators, medMazApr, medClosedApr, largeMed
and mostRep, do not seem to bring any improvement nei-
ther with respect to error nor to stability compared to the
baseline method. Note that all of them are exact structure
preservation operators, i.e. they return as the final feature
model one of the b base feature models.

The difference in the performance, both in terms of error
and stability, of closedApr and maxApr is puzzling since the
two methods follow the same principle to produce the final
feature set, i.e. the combination of frequent feature model
components. Their only difference is that the first makes
use of frequent closed itemsets, while the latter relies on fre-
quent maximal itemsets. In order to try to understand this
difference, we took a look at the number of top itemsets that
each of the two methods needs to combine, in order to reach
the desired number of m selected features, as well as the av-
erage size and support of these itemsets. In Table 3 we give
the results for the alt dataset; however, the patterns that
we will right away describe are the same over the different
datasets. First, observe that the average itemset cardinal-
ity of the two methods is very similar: around 12 and 13 for
the univariate feature selection methods, six to seven for the
multivariate feature selection methods, and four to five for
the CFS feature selection method. This difference between
the univariate and multivariate methods is logical given the
fact that univariate feature selection methods do not model
for feature interactions and select a number individual (likely
redundant) features with a similar (and potentially high)

support from the b samples of the data; consequently, the
combinations of these individual features will also have a
high support. On the other hand, the multivariate methods
exploit feature interactions and hence the selected subsets
of features will have a lower support and will be shorter in
length. The difference in support of frequent itemsets be-
tween these two classes of feature selection methods can be
observed in Table 3. The lowest average itemset cardinality
for CFS could be explained by the fact in this algorithm we
do not control for resulting feature cardinalities.

When we now look at the average number of itemsets that
need to be merged in order to arrive at the desired number
of features we see that mazApr gets there with much less
itemsets, on average 20% of that closedApr needs. Thus,
the itemsets produced by maxApr are much more diverse
in terms of the features they contain compared to those of
closedApr, which, as already mentioned in Section 2.1, is
expected given that the itemsets produced by closedApr in-
clude those produced by mazApr. In the former method
the itemsets are variants around a core set of features which
explains why it needs so many more itemsets to get to the
desired number of features. This also gives us a hint on why
there is a difference in performance between closedApr and
mazApr: the former method aggregates shorter and more
general core sets of features with a higher support, while
mazApr aggregates longer sets of features that are placed
“lower” in the apriori lattice, but which are nevertheless
overly specific and do not “generalize” well. The last col-
umn in Table 3 demonstrates the lower average support of
itemsets produced by mazAprin comparison with closedApr.

Overall, the two univariate aggregation operators achieve
an important improvement over the baseline in terms of
the stability of the final feature model they produce; how-
ever, their predictive performance is the same, mostFreq,
or even worse, avgRank, than the baseline. The operator
that achieves the best predictive performance is closedApr;



Table 3: Averages of: number of frequent itemsets
required to attain m distinct features, itemsets size,
and support, for the alt dataset.

FS || # ItemSets | Size | Support
maxApr
G 12.5043.10 13.914+0.35 | 0.3840.08
CHI 12.304+3.02 14.184+0.35 | 0.414+0.04
SYM 16.80+4.47 13.784+0.38 | 0.3540.05
RELIEF 32.20+8.61 7.4940.57 | 0.37£0.03
SVMONE 68.90+32.06 7.26+0.39 | 0.21£0.06
SVMRFE 44.40+9.62 6.22+0.24 0.18£0.01
CFS 31.10+£6.62 4.73+0.40 | 0.1740.01
closedApr
1G 60.90+£19.62 12.924+0.35 | 0.5240.07
CHI 64.00+26.60 13.184+0.32 | 0.5640.04
SYM 159.30+£58.51 12.2240.42 | 0.514+0.05
RELIEF 118.40+31.16 6.66+0.57 | 0.46+0.03
SVMONE || 220.70+107.08 6.63+0.34 | 0.30£0.06
SVMRFE 106.20+41.25 5.82140.23 0.26+£0.01
CFS 164.20+31.34 3.91£0.27 | 0.284+0.01

its score is better than the baseline, and in addition it has
the second best stability score very close to the best. So,
overall it comes as the best strategy for feature model ag-
gregation. Remember here that closedApr works by com-
bining frequent model fragments into a single model, while
the two univariate approaches examine each feature on its
own. While the univariate approach can improve the stabil-
ity, it fails to improve the predictive performance. For the
latter capturing larger model structures seems to be more
important. The performance of the operators that preserve
exactly the feature model structure by picking one of the
original base models is quite disappointing. All of them are
worse than the baseline method. Among them the ones that
combine frequent itemsets and then find the medoids, med-
MazApr and medClosedApr, have the worse performance.
The two clustering medoid variants, largeMed and mostRep,
fair a bit better, namely in terms of error, however their sta-
bility is equally low. The low stability of the exact structure
preserving variants can be explained by the fact that actu-
ally they do not perform any kind of aggregation, but try to
select among the base models the most representative one,
however, by doing so the chances that there will be a larger
overlap over the different final models are reduced.

We will now drill further down to the results given in Ta-
ble 2 in order to get an idea of how the different model
aggregation strategies fair with respect to the two distinct
feature selection paradigms that we have here, namely uni-
variate and multivariate. While the univariate aggregation
strategy avgRank seems to have the strongest advantage in
the case of univariate feature selection algorithm IG, this
advantage is not persistent over the other two univariate
feature selection algorithms, CHI and SYM. On the same
time the mostFreq operator, while similar in spirit to av-
gRank, does not perform particularly well with the univari-
ate feature selection algorithms; for IG and CHI it has a
performance that is worse than the baseline with respect to
both error and stability. The closedApr performance with
CHI and SYM is quite good both in terms of error as well as
stability. When we examine the four multivariate feature se-
lection algorithms we see that mostFreq has an excellent sta-
bility performance with all of them, it is ranked top in three

of the four. However, in terms of predictive performance it
is quite poor, for three out of the four feature selection algo-
rithms it is actually worse than the baseline. The closedApr
has also a stability performance that is similar to that of
mostFreq, however, in addition it also has a very good error
performance, being better than the baseline method in all
four multivariate feature selection algorithms, and the best
in two of them.

Overall, while univariate feature aggregation strategies
can improve the feature selection stability they fail to de-
liver similar gains in terms of the predictive performance,
compared to the baseline method with no aggregation. Ex-
ploiting the feature model structure information, as it is
done by the model component combination strategies, can
improve not only the stability but also the predictive perfor-
mance. However, what is important in the latter category is
how these model components are discovered, as it is evident
by the strong advantage of closedApr compared to mazApr.

4.2 Multiple Model Aggregation Strategies

We now turn to the experimentation with the multiple
model aggregation strategies. We will examine the k£ multi-
ple models that each strategy computes with respect to the
accuracy they achieve, the agreement of their predictions,
and their model similarity, i.e. the average number of fea-
tures they have in common. We want to describe the degree
to which we can have different feature models of good pre-
dictive performance, that produce similar predictions, and
have a relatively small feature overlap. The eventual goal is
to provide the domain experts with a more global picture of
the mechanism that underlines the training data, than what
they would have obtained with a single feature set.

As in the first suite of experiments we evaluate each model
aggregation strategy with each one of the seven feature se-
lection algorithms. Subsequently, on each one of the feature
models that a given aggregation strategy will output for a
given feature selection algorithm, we train a classifier using
a given classification algorithm. We report the prediction
agreement of the resulting classifiers, computed by (2), their
average accuracy, and the average feature model similarity,
computed by (1). We estimate these quantities using 10-fold
CV. We present the results for all three classification algo-
rithms that we used. For all the model aggregation strategies
we set the number of different models to & = 10. We per-
formed additional experiments with different values of this
parameter; however, these results reveal similar trends. For
each model aggregation strategy and classification algorithm
we highlight the feature selection algorithm that achieves the
top rank according to the statistical significance tests over
the different performance measures.

The results for the leukemia dataset are given in Table 4
(for other datasets similar trends hold). First, we notice
that the multiple models generated by allClosedApr are of
lower predictive performance, as measured by the average
classification error, in comparison with the models obtained
by the clustering-based allMed strategy; the classification
error for allClosedApr is on average three times higher than
for allMed. As already noted in Section 2, this is a result
of the fact that unlike allMed, in allClosedApr we do not
control for the cardinality of the aggregated feature sets. In
the examined dataset this cardinality is low which naturally
leads to low discriminatory power of the feature models; in
fact, most of the top frequent itemsets are of cardinality just



Table 4: Average and standard deviation of error and prediction agreement of classifiers trained on the k£ = 10
multiple models produced on the leukemia dataset by each one of the multiple model aggregation strategies over
the different feature selection algorithms. Additionally, average feature model similarity over the £ models
of each model aggregation strategy and feature selection algorithm. We highlight the top ranked results for

each strategy and classifier, for each performance measure.

FS I J48 SVM INN

|| agreement | error || agreement ] error agreement | error similarity

allMed
1G 0.97+0.04 | 0.14+0.08 0.98+0.03 0.06+£0.07 0.93+0.06 0.08+0.06 0.3140.03
CHI 0.97+0.05 | 0.14+0.08 0.98+0.02 0.07£0.08 0.94+0.05 0.08+0.06 0.3340.05
SYM 0.98+0.04 | 0.15+0.09 0.98+0.02 0.06+0.07 0.94+0.05 0.07£0.06 0.45+0.03
RELIEF 0.95+0.04 0.13+0.09 0.97+0.05 0.06+£0.07 0.94+0.06 0.08+0.07 0.3440.04
SVMONE 0.88+0.09 0.12+0.09 0.97+0.03 0.06+£0.07 0.95+0.05 0.08+0.06 0.2840.04
SVMRFE 0.9240.07 0.12+0.06 0.98+0.02 0.03+0.05 0.95+0.04 | 0.05+0.05 0.2140.03
CFS 0.914+0.03 0.13+0.08 0.93£0.04 0.07£0.05 0.91+0.08 0.07+£0.06 0.14+0.01
allClosed Apr
1G 0.87£0.06 0.12+0.07 0.87£0.05 0.17+0.07 0.89+0.05 0.11+0.05 0.2040.05
CHI 0.87£0.06 0.11+0.07 0.87£0.05 0.18+0.07 0.89+0.05 0.10+0.05 0.19+£0.06
SYM 0.92+0.06 | 0.12+0.06 0.89+0.06 0.16+0.09 0.924+0.07 | 0.10+0.06 0.29+0.16
RELIEF 0.84+0.10 0.13+0.08 0.84£0.08 0.16+0.06 0.84£0.09 0.13+0.08 0.2340.07
SVMONE 0.79£0.10 0.16+0.09 0.81£0.06 0.20+0.06 0.78+0.11 0.16+0.08 0.201+0.05
SVMRFE 0.81£0.11 0.13+0.08 0.82£0.05 0.2240.05 0.81+0.10 0.12+0.07 0.16+0.05
CFS 0.84+0.06 0.12+0.06 0.86+0.05 0.21+0.06 0.84+0.08 0.11+0.06 0.15+0.03
medClosedApr

1G 0.97+0.04 0.15£0.08 0.98+0.03 0.06+0.07 0.94+0.06 0.08+0.06 0.3240.04
CHI 0.97+0.05 0.14+0.08 0.98+0.03 0.06+£0.07 0.95+0.05 0.0740.06 0.3340.03
SYM 0.98+0.04 0.15£0.09 0.98+0.02 0.06+£0.07 0.94+£0.05 0.0740.06 0.4540.03
RELIEF 0.95+0.04 0.14+0.09 0.97+0.05 0.06+£0.07 0.95+0.06 0.08+0.07 0.3440.04
SVMONE 0.8940.08 0.13£0.10 0.97+0.03 0.06+£0.07 0.96+£0.04 0.0740.07 0.2840.04
SVMRFE 0.92+0.06 0.11+0.07 0.98+0.02 | 0.03+0.05 0.96+0.04 0.05+0.05 0.21£0.03
CFS 0.91£0.04 0.13£0.08 0.93£0.04 0.07£0.05 0.91£0.08 0.0740.07 0.14+0.01

one. The low cardinalities of the resulting multiple models
in allClosedApr have also a direct effect of the prediction
agreement and the average model similarity, which are con-
sistently lower than it is the case for allMed. The second
observation is that the performance of medClosedApr, as
measured by the three evaluation metrics, is very similar
to that of allMed. This a consequence of the fact that a
number (k = 10) of (frequent closed) itemsets with high-
est support is contained in a large fraction of base feature
models, and hence the input the k-medoids algorithm in
both allMed and medClosedApr is similar, resulting in simi-
lar medoids generated by these strategies. Finally, we note
the good performance of SVM coupled with allMed with re-
spect to both agreement and error, and an acceptable level
of model similarity. In particular coupling allMed, SVM and
SVMRFE, it is possible to generate quite diverse feature
signatures (average model similarity of 0.21) which never-
theless give rise to powerful (classification error of 0.03) and
”semantically similar” (prediction agreement of 0.98) mod-
els. The classification error of SVM coupled with allMed
is not statistically different compared to the corresponding
baselines in which we only do standard feature selection and
classification (these results are not reported in Table 4).

S. RELATED WORK

The traditional approach to stabilize feature selection al-
gorithms in learning problems with redundant features fo-
cuses on selecting relevant and non-redundant feature sub-
sets in a pre-processing step; examples include CFS and
Markov blankets. [19] addressed the redundancy problem
by grouping correlated features together and treating these
groups as the entities over which feature selection will take
place; this work was refined in [14]. A related idea was

proposed in [21] where the authors identified the problem
of instability of LASSO for problems with high feature cor-
relations, and proposed a regularization technique based on
mixing different norms (Zelastic nets”). All these approaches
return a unique set of features. However in many applica-
tions as argued in this paper it is more beneficial to be able
to identify alternative but equivalent solution sets.

The main difference between the methods from [19, 14,
21] and our framework is that the former consider, explic-
itly or implicitly, groups of redundant features, which are in-
cluded or excluded from the model simultaneously, whereas
we aim at explicitly providing domain experts with groups
of features that account for different aspects of a problem
at hand. Moreover, the approaches from [19, 14, 21] con-
sider specific notions of feature redundancy (e.g. the linear
correlation in [19]), whereas our framework is more flexi-
ble as the notion of redundancy varies and depends on the
feature selection algorithms (it is the linear correlation only
for CFS). Finally, the previous works select the individual
subsets within a specialized feature selection algorithm (e.g.
regression regularized with the mixed norms [21]), while we
identify the different solutions a-posteriori, based on sets of
features which can be generated by using virtually any fea-
ture selection method.

As already mentioned, in the context of ensemble feature
selection, the most popular methods are univariate aggre-
gation strategies. Two more complex exceptions were pre-
sented in [4] and [13], both aggregating elements of R. The
former method is inspired by the well known PageRank al-
gorithm and can be seen as a direct extension of mostFreq
where all the pairs of top ranked features are considered,
and the appearances of the different pairwise feature rela-
tionships (feature a ranked before feature b, or vice versa)
are counted. These counts give rise to the corresponding



frequencies, based on which the final aggregate ranking of
attributes is generated. Our aggregation strategies based
on frequent itemsets are considerably more general as they
can account for higher-order feature interactions (see Ta-
ble 3). The method from [13] is similar to mostRep as it
looks for a feature model whose weighted distance to all the
input models is minimal; the returned ranking does not nec-
essarily appear in the set of input transactions. The authors
consider two different distance measures over rankings and
weight the elements by various performance measures. In
this study we have shown that the single model aggregation
strategies based on clustering do not fare well in comparison
with the other proposed strategies. We also note that the
methods from [4, 13] give rise to an aggregate ranking only
for the most discriminating features.

6. CONCLUSION

In this paper we presented a general framework in which
we mine over different feature models produced from a given
dataset in order to extract patterns over the models. We
use these patterns to derive more complex feature model
aggregation strategies that account for feature interactions,
and identify core and distinct feature models.

We empirically examined our framework on a number of
high-dimensional datasets. The empirical evidence suggests
that our framework is effective in comparison with the exist-
ing aggregation techniques. We demonstrated that the exist-
ing univariate aggregation techniques, although appropriate
in many cases, are not the best solutions overall. While
univariate feature aggregation strategies can improve the
feature selection stability they fail to deliver similar gains
in terms of the predictive performance, compared to the
baseline method with no aggregation. Exploiting the fea-
ture model structure information, as it is done by the model
component combination strategies, can improve not only the
stability but also the predictive performance. What is how-
ever important is how these model components are discov-
ered, as it is evident by the strong advantage of closedApr
compared to mazApr. We also observed the poor perfor-
mance of the operators that preserve exactly the feature
model structure by picking one of the original base models.
Overall, we recommend the closedApr aggregation strategy
that provides a good compromise between the stability and
predictive performances. When it now comes to the multi-
ple models aggregation strategies we demonstrated that it
is possible to construct distinct feature models of good pre-
dictive performance, that produce similar predictions, and
have a relatively small feature overlap. Such diverse and
yet equivalent feature models describe different aspects of
the same problem, and hence provide domain experts with
a more global picture of the mechanism under study. We
recommend the allMed technique that is based on the k-
medoids clustering algorithm and hence easy to implement.

7. ACKNOWLEDGMENTS

This work was partially funded by the European Com-
mission through EU projects DebuglT (FP7-217139) and
e-LICO (FP7-231519). The support from the COST Action
BMO072 ("Urine and Kidney Proteomics”) is also gratefully
acknowledged.

8. REFERENCES

[1] T. Abeel et al. Robust biomarker identification for
cancer diagnosis with ensemble feature selection
methods. Bioinformatics, 26:392-398, 2010.

[2] A.-L. Boulesteix and M. Slawski. Stability and
aggregation of ranked gene lists. Briefings in
Bioinformatics, 10:556-568, 2009.

[3] D. Burdick, M. Calimlim, and J. Gehrke. Mafia: A
maximal frequent itemset algorithm for transactional
databases. In ICDE, 2001.

[4] R. P. DeConde et al. Combining results of microarray
experiments: A rank aggregation approach. Stat.
Appl. Genet. Molec. Biol., 5(1), 2006.

[5] R. Duda, P. Hart, and D. Stork. Pattern Classification
and Scene Analysis. John Willey and Sons, 2001.

[6] L. Ein-Dor et al. Thousands of samples are needed to
generate a robust gene list for predicting outcome in
cancer. PNAS, 103(15):5923-8, 2006.

[7] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene
selection for cancer classification using support vector
machines. Mach. Learn., 46:389-422, March 2002.

[8] M. A. Hall. Correlation-based Feature Subset Selection
for Machine Learning. PhD thesis, University of
Waikato, 1998.

[9] A.-C. Haury, P. Gestraud, and J.-P. Vert. The
influence of feature selection methods on accuracy,
stability and interpretability of molecular signatures.
2011.

[10] J. P. Ioannidis. Microarrays and molecular research:
noise discovery? Lancet, 365(9458):454-5, 2005.

[11] A. Kalousis, J. Prados, and M. Hilario. Stability of
feature selection algorithms: a study on
high-dimensional spaces. Knowl. Inf. Syst., 12:95-116,
May 2007.

[12] L. Kaufman and P. J. Rousseeuw. Finding Groups in
Data: An Introduction to Cluster Analysis.
Wiley-Interscience, 1990.

[13] S. Lin and J. Ding. Integration of ranked lists via
cross entropy monte carlo with applications to mrna
and microrna studies. Biometrics, 65(1):9-18, 2009.

[14] S. Loscalzo, L. Yu, and C. Ding. Consensus group
stable feature selection. In KDD, 2009.

[15] M. S. Pepe et al. Selecting differentially expressed
genes from microarray experiments. Biometrics,
59(1):133-142, 2003.

[16] X. Qiu, Y. Xiao, A. Gordon, and A. Yakovlev.
Assessing stability of gene selection in microarray data
analysis. BMC Bioinformatics, 7(1), 2006.

[17] M. Robnik-Sikonja and I. Kononenko. Theoretical and
empirical analysis of relieff and rrelieff. Mach. Learn.,
53:23-69, October 2003.

[18] Y. Saeys, T. Abeel, and Y. Van de Peer. Robust
feature selection using ensemble feature selection
techniques. In PKDD, 2008.

[19] L. Yu, C. Ding, and S. Loscalzo. Stable feature
selection via dense feature groups. In KDD, 2008.

[20] M. J. Zaki. Generating non-redundant association
rules. In KDD, 2000.

[21] H. Zou and T. Hastie. Regularization and variable
selection via the elastic net. J R Stat Soc Series B,
67(2):301-320, 2005.





