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ABSTRACT
This paper introduces a new method for estimating the local neigh-
borhood and density of samples to improve the robustness of spec-
tral clustering algorithms. We employ empty region graphs – geo-
metric neighborhoods that connect two points as neighbors based
on the inclusion or exclusion of points from a geometric region – to
estimate the similarity or affinity between points. We show that av-
erages of the distance to the neighbors of a point, such as the mean
and the median, are good estimates of the local scale of points at
the interior of clusters, and alleviates the need to manually select
an appropriate scale parameter or an optimal number of neighbors.
We also introduce a diffusion approach that improves this estimate
for points at the boundaries of clusters. Our approach is validated
on a number of synthetic data sets in low dimensions and on a few
real classification examples, including image segmentation.

General Terms
Theory
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1. INTRODUCTION
Clustering is at the core of modern data mining tools. Com-

mon techniques, such as those based on K-means or explicit den-
sity models are being replaced by spectral methods for clustering,
where points are clustered based on a spectral analysis of a matrix
of pairwise similarities or affinities, instead of relying on a particu-
lar cluster model.

Spectral clustering has been applied successfully in a number of
fields, including image segmentation, text mining, and data analysis
in general. However, there remain a number of open questions: (1)
How to define the neighborhood around data points to estimate a
“good” affinity matrix, (2) how to accurately adapt the algorithm to
the local scale or density of the data, and (3) how to automatically
select the number of clusters. This paper concerns the former two
questions.
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The most common approaches to date rely on simple neighbor-
hood techniques, such as k-nearest neighbor (kNN) graphs or ε-
regions. However, clustering results may change dramatically for
different values of k or ε . Alternatively, one can simply connect all
points in a fully connected graph and rely on a scaling parameter
σ to define the affinity between two points, similar to choosing an
ε- graph. In either case, the technique relies on setting a specific
parameter that varies from data set to data set.

In this paper, we exploit geometric graphs, namely empty region
graphs, to construct neighborhood graphs without requiring a par-
ticular choice of the neighborhood extents. We show that these
graphs improve the accuracy of spectral clustering algorithms. In
many cases, the local density of data points changes along the do-
main, and strategies such as kNN fail to capture that change in
density. We also introduce a diffusion-based mechanism that es-
timates the density based on the average neighborhood size around
a point. We show that this local scaling algorithm, when combined
with empty region neighborhoods, results in a better classification
that is robust to noise and geometric (both linear and non-linear)
transformations of the data points.

We show results on a number of synthetic benchmark data sets,
as well as real multi-dimensional classification problems, including
image segmentation.

2. RELATED WORK
Spectral Clustering. Spectral clustering is becoming a success-

ful alternative to techniques based on k-means [21] or density mod-
els [11], and dates back to Donath and Hoffman [9] and Fiedler
[12]. Recently, spectral clustering has found a niche in image seg-
mentation [27], text mining [8] and as a data mining tool in general
[25, 17]. Since then, there has been a trend in improving spec-
tral clustering through a detailed analysis of the underlying graph
structure [22], the scale and density parameters [31, 1], and the sta-
bility [15] and consistency [30] of the algorithm. Most related to
our work are the techniques that attempt to estimate the local scale
or density to improve spectral clustering of data with varying den-
sities, shapes and levels of noise. One of the first to address this
problem for data mining were Zelnik-Manor and Perona [31], who
improve the general algorithm by Ng et al. [25] with local scal-
ing. This approach, although effective even in high dimensions,
was shown to be suboptimal for noisy data sets, or data with clus-
ters of different densities [24]. To alleviate this problem, Nadler
and Galun [24] introduce a coherence measure of set of points of
belonging to the same cluster. Although not exclusive of spectral
methods, the authors show that it alleviates some of the intrinsic
limitations of spectral clustering. To deal with noise, Li et al. [19]
propose a warping model that maps the data into a new space more
suitable for clustering and more resilient to noise. Different alter-



natives are able to cluster data consisting of regions of arbitrary
shapes, such as density based clustering [26] and, in a similar spirit
to Zelnik-Manor and Perona’s method, locally scaled density based
clustering [1].

In this paper, we address the problem of locally-scaled and noise
robust spectral clustering. We take a different approach and iden-
tify the problem as early as the selection of the neighborhood graph.
Maier et al. suggest that the construction of the graph has a mea-
surable effect on the results of spectral clustering [22]. Inspired by
this paper, we turned to alternative neighborhood graphs, namely
empty region graphs, in an effort to obtain better neighborhoods.
Combined with a new locally-scaled affinity matrix and a diffusion
approach, these graphs produce clusterings as good as or better than
those in current alternatives.

Empty Region Graphs. Neighborhood or proximity graphs
create a geometric structure that connects two points if they are
close in some sense. These graphs have been well studied and
include the relative neighborhood graph [16], the Gabriel graph
[14], β -skeletons [18], σ -local graphs [2] and Delaunay triangu-
lations [13]. A subset of these, called the empty region graphs, de-
fine a neighborhood graph where two points are connected if their
neighborhood, defined by a geometric region, does not contain any
other point [3]. These graphs have been well studied in terms of
their geometric properties [6, 3], and have been applied in geo-
graphic analysis, pattern recognition and machine learning. Prox-
imity graphs have been applied to clustering as well. Urquhart et
al. [29] use the Gabriel graph and the Relative Neighbor graph to
improve hierarchical clustering, noting that these graphs result in
natural clusters that can be separated depending on the local graph
density [29]. Carreira and Zemel apply an ensemble of minimum
spanning trees to form neighborhood graphs that are more resilient
to noise and varying densities [4]. Choo et al. propose an agglomer-
ate method for hierarchical clustering, where an algorithm merges
candidate clusters that belong to the same connected component in
the Gabriel graph [5]. In this paper, we propose the use of empty
region graphs, mainly the Gabriel graph and the Relative Neighbor
graph, to construct more accurate and locally-scaled affinity matri-
ces. We show that this approach is more effective when combined
with a diffusion step that improves the separability of clusters and
subsequently the block structure of the affinity matrix.

3. BACKGROUND
Our approach combines geometric neighborhoods, such as empty

region graphs, with density estimation techniques and spectral clus-
tering.

3.1 Spectral Clustering
Spectral clustering refers to a general algorithm where data are

clustered into groups based on spectral analysis of a matrix of pair-
wise affinities or similarities between data points.

The general algorithm to produce a spectral clustering, as de-
scribed by Ng et al. [25] , is as follows: Given a set of n points
S = {s1,s2, . . . ,sn} in Rd that we want to cluster into K clusters,

• Construct an affinity matrix A ∈ Rn×n, where

Ai j =

e
−d(si ,s j )

2

σ2 i 6= j
0 i = j

(1)

for d(si,s j) a distance function, commonly Euclidean, and σ

a scale parameter.

• Define D as a diagonal matrix Dii = ∑
n
j=1 Ai j.
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(a) k = 7,σ = 0.1
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(b) k = 50,σ = 0.1
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(c) k = 50,σ = 0.05
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(d) Local Scaling (ZP)

Figure 1: A single scale parameter and/or neighborhood pa-
rameter k are insufficient to correctly cluster data with varying
densities. In all these cases, at least one of the small clusters is
connected to the background noise. Local scaling (d) alleviates
the need for tuning these parameters.

• Define the normalized Laplacian matrix L= I−D−1/2AD−1/2.

• Find the K smallest eigenvectors of L, and form the matrix
X ∈ Rn×K with these eigenvectors as columns.

• Form the matrix Y after normalizing the rows of X , so that
Yi j = Xi j/

√
∑ j X2

i j.

• Treat each row of Y as a point in RK and cluster via k-means
[21].

• Each point si is assigned to a given cluster c if the corre-
sponding row i in Y is assigned to cluster c.

Clearly, the accuracy of the clustering depends, among other fac-
tors, on the selection of the scale parameter σ . Fig. 1 shows an ex-
ample where global neighborhood parameters (k nearest neighbors
and scaling σ ) are used to cluster five groups of 2D points, four
of which define small dense clusters, while another forms a sparse
and noisy background. We see that exploring the different values
of k and σ helps refining the shape of some of the small clusters,
but it fails to separate one of them from the background, or creates
spurious clusters. In general, it may occur that no combination of k
and σ yields the correct clustering.

To deal with disparate densities, Zelnik-Manor and Perona define
a more general affinity that incorporates local scaling [31]. Instead
of a single scale parameter, they define the affinity between two
points as:

Ai j = e
−d(si ,s j )

2

σiσ j (2)

where σi and σ j are the local scale parameters estimated for points
si and s j, respectively. In the original paper, this parameter is de-

fined as σi = d(si,s
(i)
J ), where s(i)J is the J’th neighbor of si. In

practice, it was found that a single parameter J = 7 gave acceptable
results. An example is shown in Fig. 1(d), where the algorithm is
able to cluster the data correctly.



However, we found that the quality of the results using this ap-
proach still depends on a single parameter. In fact, as we will dis-
cuss in Section 5, a single value of J may not cluster data in the
presence of noise or under nonlinear geometric transformations.

3.2 Empty Region Graphs
As an alternative to kNN graphs, a number of simpler, less costly

neighborhood graphs have been proposed, such as the relative neigh-
bor graph (RNG) and the Gabriel graph (GG), as surveyed by Jarom-
czyk et al. [16]. A family of these, known collectively as the empty
region graphs, are more representative of the neighborhood of a
point and less redundant than kNN, and more efficient to compute
than simplicial tessellations such as the Delaunay triangulation.

Definition 1. A graph G(V,R) = (V,E) is an empty region graph
if for every edge (p,q) ∈ E, a canonical region R(p,q) does not
contain any other point in V :

pq ∈ E ⇐⇒ R(p,q)∩V =∅ (3)

where the region R defines the neighborhood and is called the empty
region.

Some common ERGs are:
Nearest Neighbor Graph (NNG). This is the directed graph that

results from the empty region R(p,q) formed by the open d-ball
centered on p with radius d(p,q).

pq ∈ E ⇐⇒ ∀r ∈V, d(p,r)≥ d(p,q) (4)

Relative Neighborhood Graph (RNG). This graph is defined
by a lune-shaped region consisting of the intersection of two d-
balls of radius d(p,q), one centered on p and the other centered on
q, i.e.,

pq ∈ E ⇐⇒ ∀r ∈V, max{d(p,r),d(q,r)} ≥ d(p,q) (5)

Gabriel Graph (GG). This is the graph defined by a d-ball cen-
tered at 1

2 (p+q) with diameter d(p,q), i.e.,

pq ∈ E ⇐⇒ ∀r ∈V, 2d( 1
2 (p+q),r)≥ d(p,q) (6)

β -Skeleton. The so-called lune-based β -skeleton is a one-parameter
generalization of the RNG and GG, defined as follows:

• For 0 < β < 1, the empty region is the intersection of all d-
balls with diameter d(p,q)/β that have p and q on the bound-
ary.

• For β ≥ 1, the empty region is the intersection of two d-
balls with diameter βd(p,q) centered at (1− β

2 )p+ β

2 q and
β

2 p+(1− β

2 )q.

It follows that β = 2 gives the RNG, while β = 1 is the GG. Fi-
nally, we note that geometric inclusion of one region within another
also implies a partial order of the resulting neighborhood graphs (in
terms of their edges), so that:

RNG⊆ GG⊆ (β ≤ 1√
2
)-skeleton (7)

Fig. 2 shows the empty regions R associated with the RNG, GG and
β -skeleton. The smaller the region, the denser the resulting graph
becomes.

3.3 Locally Empty Region Graphs
Empty region graphs are, by definition, constructed in a global

sense. For the purposes of clustering, a local definition of neigh-
borhood may also be useful. Locally Gabriel and Locally Delaunay

p q

(a) RNG

p q

(b) GG

p q

(c) β -skeleton

Figure 2: Examples of template regions for defining empty re-
gion graphs.

(a) RNG (b) GG

(c) RNG-r (d) GG-r

Figure 3: Examples of neighborhood graphs for a data set con-
sisting of three clusters of varying density.

graphs have been studied before [], where the criterion for selecting
an edge is applied with respect to a local subset of the points. This
definition can be generalized to an empty region graph of arbitrary
region template R, as follows:

Definition 2. A graph G=(V,E) parameterized by a region tem-
plate R is a Locally Empty Region Graph (LERG) if for every edge
(p,q) ∈ E, the empty region Rpq does not contain any neighbor of
p or q in G.

Note that, according to this definition, there may be many locally
ERGs for a given set of points. In fact XXX et al. [] have shown
that finding an optimal LERG is an NP-complete problem.

Fig. 3(a-d) shows the RNG, the GG, a local RNG and a local
GG, respectively, for a set of 2D points forming three clusters of
varying density. Note that the local graphs have more edges than
the global graph, and that the local RNG is sparser than the GG. In
general, a local ERG is more sparse than an ERG with a smaller
region template. We exploit this property to obtain a much richer
variety of neighborhood graphs.

4. APPROACH
We now motivate the benefits of using empty region graphs for

representing the neighborhood around a point, and consequently,
for shaping the affinity matrix, and describe a general method for
its application in spectral clustering.
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(c) Affinity Matrices

Point Mean 6NN Median 6NN Mean GG Median GG
A 3.37 3.91 3 3
B 1.67 1.62 1.67 1
P 1.99 1.31 1 1

(d) Some average distances

Figure 4: Two proximity graphs (a) 6NN, (b) Gabriel graph
(GG) and corresponding affinity matrices (c). The presence of
a bridge node between clusters destroys the block structure of
the matrix for 6NN, while it only adds a small block for GG.
(d) The average distance to the neighbors in the 6NN graph is
an unreliable measure of the local scale (particularly for a non-
boundary point such as B), while it is reliable for the GG

4.1 Constructing the Affinity Matrix
Instead of the prevalent approach of defining the neighborhood

of a point based on a fixed number of neighbors k or a fixed radius,
we employ empty region graphs. The affinity is defined as:

Ai j =

e
−d(si ,s j )

2

σiσ j (i, j) ∈ ERG(V,R)
0 otherwise

(8)

where R is an empty region template. In the examples throughout
this paper, we use the Gabriel and Relative Neighbor graphs.

4.1.1 Benefits of ERGs
Common practices, such as the k nearest neighbor graph, are

susceptible to short circuiting nearby clusters due to a point in the
middle, as shown in Fig. 4(a). In this particular case, the separabil-
ity of the two clusters is a bit more difficult due to the connecting
node. We see in Fig. 4(c) that the corresponding affinity matrix,
while we would expect a perfect block diagonal matrix, is not en-
tirely separable into distinct blocks.

Using an empty region graph, however, alleviates this problem,
as illustrated in Fig. 4(b). We see that, in this case, the connect-
ing node (which may be due to noise or the presence of a smaller
cluster), is only connected via a single edge to each cluster and the
block structure of the affinity matrix does not change dramatically.
The corresponding affinity matrix 4(c) on the right now can be sep-
arated into three blocks. The extra block, formed by the bridge
node (A) and the two boundary nodes B and C is increasingly small

as the size of the clusters increases.
In fact, it is easy to see that for the Relative Neighbor Graph,

there is at most one edge connecting a bridge node and a cluster,
regardless of the density of the cluster, when the distance from the
bridge node to the boundary of the cluster is larger than the radius
of the cluster. Therefore, in those cases we are guaranteed that
the affinity matrix will only have two extra entries for each pair of
connected block structures.

4.1.2 Computation of Locally ERGs
In practice, the edge complexity of the neighborhood graph helps

determine the selection of clusters at multiple scales. The sparser
the graph, the easier it is to pick clusters at small scales. As we il-
lustrate in Fig. 2, locally ERGs are slightly denser than their global
counterparts, but do not increase the edge complexity in a quadratic
or exponential manner. Thus, they provide a good balance between
connectivity and sparseness that is useful to effective spectral clus-
tering.

However, obtaining an optimal Locally ERG is NP-complete, as
demonstrated by XXX et al. []. Here, we derive a greedy approx-
imation of a locally ERG that minimizes the distance of a point to
its neighbors.

Let N(p) = {q : pq ∈ E} denote the neighbors of a vertex p, and
let qi denote the ith nearest sample to p, with q0 = p. An rERG
with empty region R is defined in terms the following recurrence:

N1(p) = {q1} (9)

Ni(p) =

{
Ni−1(p)∪{qi} if R(p,qi)∩Ni−1(p) =∅
Ni−1(p) otherwise

(10)

N(p) = Nn−1(p) (11)

where n is the number of data points. In other words, we construct
N(p) by adding points in order of increasing distance, as long as the
respective edges do not contain any point already in N(p). Since
we consider only a subset of the points in V in the containment
test, it is easy to see that ERG(R)⊆ lERG(R) for all empty regions
R. This approximation has been shown to improve the topological
segmentation of sparsely sample points [7].

4.2 Local Scaling
Another issue with clustering is the selection of a local scale, as

opposed to a global scale parameter. A natural measure of the local
scale around a point include functions of the distance to its neigh-
bors, such as the mean or the median. However, these measures can
be brittle in kNN graphs. To illustrate this problem, consider the
neighborhood in Fig. 5(a). The average distance of the center point
to its neighbors, denoted as a dashed circle, is an accurate estimate
of the local scale. In this particular case, the neighborhoods of kNN
and the Gabriel graph are the same. Now let us consider a slightly
different neighborhood in Fig. 5(b), consisting of a smaller cluster
formed by the five points at the center. The average of the 8NN
distances overshoots the scale and misrepresents the extents of the
cluster. In fact, small perturbations of the points may change this
average in both directions. In contrast, the average of the Gabriel
graph is an accurate estimate of the small scale of this cluster and
is not sensitive to the density of the cluster, as seen in Fig. 5(c).

Based on the above observation, we follow an approach similar
to Zelnik and Perona’s [31] and estimate the local scale σi based
on the neighborhood of each point. Unlike kNN graphs, averages
of ERGs are good estimates of the local scale. These include mea-
sures such as the mean and median distance to the neighbors. For



(a) 8NN and GG (b) 8NN (c) GG

Figure 5: Average distance to neighbors as a measure of lo-
cal scale (a) Correctly estimates the scale for the GG and 8NN.
(b) After moving some of the points, now the average is an un-
reliable measure of the local scale. (c) The average correctly
measures the local scale for the GG.

example, for the mean distance, the local scale at a point si is:

σi =
1

|N(si)| ∑
j∈N(si)

d(si,s j) (12)

where N(si) is the set of neighbors of si.
For kNN neighborhoods, this average changes quickly for small

values of k, while it varies slowly for large k, making it an unre-
liable predictor for the local density of points. On the other hand,
neighborhoods in graphs such as the Gabriel graph, where neigh-
bors are picked in sufficiently different directions, the average is a
better predictor of density, as depicted in Fig. 5(c).

As an example, consider Fig 4 and the summarized averages for
three points A, B and P, where the radius of each cluster is approx-
imately 1 and |AB| = |AC| = 3. The averages for the 6NN graph
overestimate the local scale, especially for a point P which is not
at the boundary with respect to A. On the other hand, the Gabriel
graph correctly estimates the local scale of the cluster as 1 for point
P. For a boundary point B, both graphs overestimate the local scale
when using the average.

The inaccuracies at boundary points is an issue with supersets of
the Relative Neighbor graph, including the Gabriel graph, which
are connected. This suggests that while most of the edges occur
within clusters, a number of cluster pairs are still connected via
long edges. Therefore, the local scale of boundary points will be
larger than those at interior points, as shown for the example in
Fig. 4.

To counteract this problem, we observe that, in particular for
ERGs, most of the neighbors of a boundary point are points within
the same cluster. Therefore, if we average the local scale with that
of its neighbors, it will converge to a local scale more represen-
tative of the enclosing cluster. This strategy, based on non-linear
diffusion, is described below.

4.3 Diffusion-based Scale Refinement
To deal with the local scale of boundary points, we propose a dif-

fusion approach, whereby the local density of a point is smoothly
blended with the local densities of its neighboring points. Because
shorter edges are likely to correspond to points in the same cluster,
diffusion using an inverse distance weighted kernel, such as Gaus-
sian or inverse polynomials is preferred. This diffusion takes place
over a number of iterations T , which converges to an estimate of
the local estimate of the data points.

We propose to diffuse the local density instead of the local scales,
in an attempt to converge to the result of equivalent kernel density
estimators [10], using the reciprocal of the local scale as an ap-
proximation of density. Therefore, we define the diffusion process
as the weighted harmonic mean of the local scales of the neighbors.

We propose an iterative process that progressively smoothes the

local scale among the data points. At a given iteration t + 1, t ∈
{0, . . . ,T},

σ
(t+1)
i =

 ∑
j∈ N(si)∪{si}

ŵi j
1

σ
(t)
j

−1

(13)

where σ
(0)
i is the local scale computed using Eq. (12) and the

weights are normalized kernels

ŵi j = wi j/∑
j

wi j

wi j = G(d(si,s j),ρG)

with G a kernel function. A number of kernel functions can be
applied, Gaussians being the most common:

G(d,ρ) = e−d2/ρ

with ρ a number controlling how fast the diffusion process works.
A smaller ρ diffuses the values slowly, while a larger ρ makes the
diffusion converge to the arithmetic mean of the densities. The
number of diffusion steps T depends on how noisy the data is. In
our experiments, T = 1 suffices for data sets with little or no noise.
Although this introduces an extra parameter, we observed that this
algorithm produces better results even for a single iteration, and
exhibits convergence. Therefore, this technique can be self-tuned
by picking the first T that produces stable results above a given
tolerance level.

This process ensures that intracluster scales are made more uni-
form than intercluster scales. However, since this is an isotropic
diffusion, eventually the scales are blended together and the solu-
tion converges to the arithmetic mean. Ideally, we want to constrain
the diffusion process within clusters and prevent it along edges be-
tween clusters. To this end, we turn to non-linear diffusion kernels,
such as the bilateral filter [28].

The simplest approach is to introduce an additional kernel that
penalizes the weight when the difference in scale is high. As we
observed in our experiments, nodes between clusters are repre-
sented with different scales than those within clusters. Therefore,
we weight less those edges where the difference in scale is high.
The new weights are defined as:

wi j = G(d(si,s j),ρD)G(|σ (t)
i −σ

(t)
j |,ρS) (14)

where ρD and ρS are parameters controlling the speed at which dif-
fusion propagates the local scales in terms of the distance between
points and their difference in scale.

4.3.1 Parameter Selection
Our approach, although designed to reduce the selection of a

global parameter k for the number of neighbors or σ for the global
scale, requires the selection of a number of parameters, namely the
choice of ERG (e.g., Gabriel, RNG) and the diffusion parameters,
T , ρD and ρS. Since there is only a few choices (RNG, GG, β -
skeleton, and their corresponding relaxed versions), selecting the
ERG is not as tedious as searching for good neighborhood param-
eters k and σ . Finding the optimal diffusion parameters may re-
quire more exploration, but we argue that setting these parameters
involve less user intervention than the selection of a global param-
eter σ . First, the diffusion parameters are similar to those used in
kernel density estimation and diffusion in general, and have been
well studied [20]. In our experiments, setting these parameters high
result in isotropic smoothing of the local densities, which in most
cases produce more accurate results than using a global scale. Sec-
ond, diffusion exhibits convergence. Therefore, one can devise a



mechanism to progressively smooth the local scales in the search
of stability regions. Our results seem to confirm that the gain in ac-
curacy is well worth the exploration of these diffusion parameters.

4.4 Algorithm
To summarize, our proposed algorithm for robust spectral clus-

tering is as follows:

input : Data points S = {s1, . . . ,sN}, number of clusters K,
number of iterations T, diffusion parameters ρD,ρS

output: Classification C

G← ERG(S) Construct ERG
for i← 1 to |S| do

Ni← NEIGHBORS(G,si)

σ
(0)
i ← LOCAL SCALE(si,Ni) Estimate initial local scale

for t← 1 to T do
for i← 1 to |S| do

Ni← NEIGHBORS(G,si)

Σi←{σ
(t−1)
i }

for j ∈ Ni do
Σi← Σi∪{σ

(t−1)
j }

σ
(t)
i ← DIFFUSE(Σi,ρD,ρS) Update local scale

A← AFFINITY({si},{σi}) Compute affinity matrix
C← SPECTRALCLUSTER(A) Cluster using the spectrum...

...of the Laplacian of A [25]

Algorithm 1: New algorithm for spectral clustering using empty
region graphs

4.5 Complexity Analysis
We now describe the computational cost of the key steps in our

algorithm.
Construction of ERG Constructing an ERG can be expensive.

A brute-force implementation requires

O(n3) time,

which is prohibitively expensive for most practical applications.
Certain ERGs can be computed at a lower cost. For example, Touis-
sant et al. [] provide an algorithm that constructs the Gabriel graph
in

O(n2) time.

We approximate ERGs by restricting the neighbor search to the
kmax nearest neighbors of a point, where kmax is usually larger than
the k value selected for k nearest neighbor graphs, but kmax << N.
The overall complexity of computing such a kNN graph is

O(n2 logkmax),

and the additional cost of computing an ERG becomes

O(n2kmax).

Computing a locally ERG is also faster, and only requires

O(nk2
max) time.

Diffusion The diffusion process involves a sequential walk on
the neighborhood graph and requires

O(|E|T ) time.

where T is the number of iterations and |E| is the number of edges
in the graph, |E|< nkmax.

Solution Eigenvector Problem In general, computing the eigen-
vectors of the Laplacian matrix takes O(n3) time, but, as described
by Song et al. [], sparse eigensolvers, such as the variants of Lanc-
zos/Arnoldi factorization, have a cost of

O(m3)+(O(nm)+O(nkmax)+O(m− k))× (# restarted Arnoldi).

Clustering the spectrum Finally, using k-means to cluster the
eigenvectors has a cost of

O(nK)×# k-means iterations

Overall, as suggested by Song et al. [] and Ding et al. [], the cost
of the clustering depends on the construction of the affinity matrix.
Nonetheless, the additional cost of using an ERG instead of a KNN
is only linear on the maximum number of neighbors kmax.

5. RESULTS
We have validated our algorithm with a number of low dimen-

sional synthetic data sets and a few (higher-dimensional) real clas-
sification problems. We compare our results with traditional spec-
tral clustering using a global scale [25], as well as with Zelnik-
Manor and Perona’s approach (ZP) [31]. To compare the quality
of these datasets, we measure the normalized mutual information
(NMI):

NMI(X ;Y ) =
2I(X ;Y )

H(X)+H(Y )
(15)

where I(X ;Y ) is the mutual information between sets X and Y and
H(X) and H(Y ) are the entropies of the clustering and classifi-
cation sets, respectively. Other metrics, such as Variation of In-
formation [23], can be defined in terms of NMI, e.g. V I(X ;Y ) =
1−NMI(X ;Y )/(2−NMI(X ;Y )).

We have explored our approach using a number of synthetic data
sets, also used in [31]. These data sets are characterized for having
clusters of varying density, scale and shape, where spectral algo-
rithms using a global scale are known to perform poorly.

5.1 Stability of Parameters
To further discuss the effect of our proposed algorithms, we com-

pare the stability of the diffusion mechanism vs. more traditional
approaches, which require the search of a scaling parameter σ .
SHOW SURFACE
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6. SUMMARY AND CONCLUSION
This paper introduced a method to improve the accuracy of spec-

tral clustering algorithms using empty region graphs and a diffusion-
based local scaling approach. We learned that empty region graphs
such as the Gabriel graph and the Relative Neighbor graph are es-
pecially useful when clusters can be grouped into non overlapping
regions in space. Special attention must be given to the cases where
clusters enclose each other in extreme shapes, such as concentric
rings or spirals. We have also shown that those cases are naturally
handled by our diffusion approach, since intercluster edges tend to
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Figure 6: Test of geometric transformations. TBD

Table 1: Summary of experiments on multi-dimensional data
Data set Dimensions Num. Clusters Ours (Graph, Num.Its) Global (KNN) Local (KNN) DBSCAN
Gaussians 3 3 0.982283 (GG-r, 1) 0.822146 0.982283 (K=7) 0.982283

0.982283 (RNG-r,1)
Noisy Rings 3 2 0.983877 (GG, 5) 0.983877 0.948838 (K=10) 0.95720

1.000000 (RNG,9) 0.910986 (K=7)
Ellipsoids 3 3 0.979854 (GG, 11) 0.958760 0.964494 (K=5) 0.67055

0.975918 (RNG-r,11) 0.960750 (K=7)
Iris 4 3 0.847160 (GG-r, 24) 0.833720 0.810730 (K=3) 0.73140

0.810730 (RNG-r,3) 0.790646 (K=7)
Ellipsoids5D 5 5 0.792720 (GG-r, 15) 0.728345 0.771108 (K=5) 0.53799

0.795458 (RNG-r,21) 0.746859 (K=7)
Auto-mpg 5 5 0.658052 (GG-r, 9) 0.648400 0.734673 (K=1) 0.47103

0.701952 (RNG-r,5) 0.635056 (K=7)
E.coli 7 8 0.675533 (GG-r) 0.671797 0.658698 (K=2) 0.43751

0.674021 (RNG-r) 0.620015 (K=7)
Breast 9 2 0.750583 (GG-r) 0.741520 0.752766 (K=1) 0.69536

0.756719 (RNG-r) 0.735777 (K=7)
Glass 9 6 0.447526 (GG-r,5) 0.355411 0.427606 (K=2) 0.45900

0.416217 (RNG,9) 0.366673 (K=7)
Wine 13 3 0.835249 (GG) 0.938507 0.882215 (K=1) 0.52798

0.875893 (RNG) 0.866091 (K=7)
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(b) Quality of clustering as we apply a transformation to the data
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(d) Quality of clustering as we decimate the data points

Figure 7: Tests
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Figure 8: Image Segmentation.

be much longer than intracluster edges. The efficacy of the diffu-
sion approach depends on the interconnectedness of the subgraph
formed by the individual clusters. Although sparse graphs (such as
the Relative Neighbor Graph) are useful for reducing the number of
intercluster edges, clusters with low density may not be connected
densely enough through edges that are different enough from the
ones between clusters. As a rule of thumb, we apply the Gabriel
graph as an initial candidate for generating the affinity matrix. The
creation of spurious disconnected clusters may be an indication of a
sparse graph, which suggest the exploration of a denser graph, such
as the relaxed Gabriel of the β -skeleton with β < 1. The blending
of graphs into larger groups may be an indication of a dense graph,
which suggests the exploration of a sparser graph, such as the Rela-
tive Neighbor graph. Although we expose a number of diffusion pa-
rameters for the user to control, we found that the diffusion mecha-
nism is stable under different degrees of noise and perturbation. In
our 2D cases, we noticed that even under sub-optimal diffusion pa-
rameters ρD and ρS, our algorithm produces results comparable or
better than previous approaches. Our approach can be extended in
a number of ways to retrieve the number of clusters automatically,
as suggested by approaches like [31, 1]. We believe our approach,
proving to be resilient to noise and other types of data perturba-
tions, is a step forward in the search for robust spectral clustering.
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