
Efficient and Reliable Low-Power Backscatter Networks

Jue Wang Haitham Hassanieh Dina Katabi Piotr Indyk
Massachusetts Institute of Technology

{jue_w, haithamh, dk, indyk}@mit.edu

Abstract – There is a long-standing vision of embedding
backscatter nodes like RFIDs into everyday objects to build ultra-
low power ubiquitous networks. A major problem that has chal-
lenged this vision is that backscatter communication is neither re-
liable nor efficient. Backscatter nodes cannot sense each other, and
hence tend to suffer from colliding transmissions. Further, they are
ineffective at adapting the bit rate to channel conditions, and thus
miss opportunities to increase throughput, or transmit above capac-
ity causing errors.

This paper introduces a new approach to backscatter communica-
tion. The key idea is to treat all nodes as if they were a single virtual
sender. One can then view collisions as a code across the bits trans-
mitted by the nodes. By ensuring only a few nodes collide at any
time, we make collisions act as a sparse code and decode them us-
ing a new customized compressive sensing algorithm. Further, we
can make these collisions act as a rateless code to automatically
adapt the bit rate to channel quality –i.e., nodes can keep collid-
ing until the base station has collected enough collisions to decode.
Results from a network of backscatter nodes communicating with
a USRP backscatter base station demonstrate that the new design
produces a 3.5× throughput gain, and due to its rateless code, re-
duces message loss rate in challenging scenarios from 50% to zero.

Categories and Subject Descriptors C.2.2 [Computer

Systems Organization]: Computer-Communications Networks

General Terms Algorithms, Design, Performance

Keywords Backscatter, RFID, Wireless, Compressive Sensing

1. INTRODUCTION

Backscatter devices – like RFIDs – differ from other low-power
communication technologies (UWB, ZigBee, Bluetooth, etc.) in
that they do not expend their own energy on data transmission [16].
In backscatter systems, a device called the reader transmits a high
power RF signal. A nearby backscatter node can modulate the
reader’s signal by changing the impedance match on its own an-
tenna in order to convey a message of zeros and ones back to
the reader. This behavior allows a node to communicate at almost
zero power, by capturing the energy in the reader’s RF signal [24].
Further, new generations of backscatter nodes are equipped with
various sensing capabilities and can communicate over multiple
meters [52]. They may also come equipped with a small onboard
battery for sensing and computation but use backscatter to reduce
communication cost [42]. These capabilities make them ideal for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’12, August 13–17, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1419-0/12/08 ...$15.00.

ultra-low power ubiquitous networks. In fact, there is a growing
interest in deploying both RFID and integrated RFID-sensor net-
works [19, 45]. A typical application involves tagging all items in
a store with RFIDs, so that a customer can pay for her purchases
simply by pushing her shopping cart through the checkout line [6].
Other applications include monitoring temperature, pressure, hu-
midity, etc. [18, 45]. Recent reports show that industries such as
healthcare, retailing, oil and aviation are moving towards deploying
such backscatter networks for object tracking, asset monitoring, and
emerging Machine-to-Machine (M2M) applications [18, 19, 38].
There are two main challenges, however, in deploying reliable

and efficient backscatter networks:

• (a) Node Identification Overhead: Backscatter nodes cannot
hear each other’s transmissions [8]. Thus, they rely on the reader
to schedule their medium access. The reader, however, does not
know a priori which nodes want to transmit (e.g., which items are
in a customer’s shopping cart). Thus, existing backscatter pro-
tocols [14] go through an identification phase before transmis-
sion, which consumes a significant fraction of the total commu-
nication time (30%-60% in common modes of RFID EPC Gen-
2 standard [14]). At a high level, the reader divides time into
slots. A node that wants to transmit picks a random temporary
id and sends it in a random slot. Since the nodes cannot hear
each other, some of them may collide. To increase reliability one
needs to eliminate collisions. Eliminating collisions however re-
quires making the total number of time slots fairly large, which
reduces efficiency as many empty slots are produced.

• (b) Ineffective Bit Rate Adaptation: Ultra-low power technolo-
gies, including backscatter, use very simple modulations that
transmit only 1 bit/symbol (e.g., ON-OFF keying or BPSK) [48,
16]. Denser modulation schemes (e.g., 4QAM, 16QAM, or
64QAM) are avoided because they require power hungry linear
amplifiers [35]. This leaves backscatter nodes unable to leverage
a good channel to transmit more bits per symbol and increase
bandwidth efficiency. It is also difficult for them to reduce the bit
rate to increase robustness to bad channels [7]. Such adaptation
requires the reader to send feedback to each node so it can adjust
the redundancy in its messages. However, such feedback is not
cost effective because backscatter messages are short and often
bursty [14].

This paper introduces Buzz, a communication system for
backscatter networks that improves both reliability and efficiency.
The key idea underlying Buzz is to treat backscatter nodes as if
they were a single virtual sender. Collisions can then be viewed as
a code across the bits transmitted by different nodes. However, sim-
ply letting nodes repeatedly collide leads to multiple copies of the
same collision (i.e., the same codeword), which is not effective for
decoding [46]. Instead, Buzz makes each node transmit only in a
small random subset of the collisions, and does so without impos-
ing overhead on the nodes themselves. The resulting code is sparse
and also rateless (i.e., nodes can keep colliding until the reader col-
lects enough collisions to decode). Buzz then leverages the sparsity

and rateless nature of the code to enable fast identification and dis-
tributed rate adaptation, as described below.

Node Identification: We would like to identify the K nodes that
want to transmit in a network of N nodes, where K ≪ N (e.g.,
20 items in a customer’s shopping cart among one million items
in a Wal-Mart store). We can model the scenario as an N-element
sparse binary vector x that is zero everywhere except inK locations.
Let all K nodes that have data transmit concurrently, where a node
i transmits a known binary pattern Ai. The signal received by the
reader, y, can be represented as:

y = [A1 . . .Ai . . .AN]x

= Ax
(1)

Eq. 1 is a standard compressive sensing problem, where one wants
to retrieve a sparse vector x using linear combinations y = Ax.
Thus, we can use a compressive sensing solution to efficiently re-
cover x with a small number of linear combinations.
However, traditional compressive sensing algorithms are com-

putationally infeasible to apply in this setting because A has as
many columns as the number of nodes in the network (e.g., one
million items in a Wal-Mart store). To develop a practical solution,
we exploit the sparsity in x to eliminate large chunks of columns
in A. In particular, we hash the elements of x into buckets. All ids
that hash to empty buckets can be eliminated while ids that hash
to non-empty buckets can be disambiguated using a much smaller
scale compressive sensing solution. In §5, we incorporate the effect
of the wireless channel and extend this idea to form a full-fledged
identification protocol for backscatter networks.

Distributed Bit Rate Adaption: In contrast to traditional rate
adaptation, which focuses on point-to-point communication, Buzz
looks at the network as a whole and adapts the aggregate bit rate of
all backscatter nodes to channel conditions. Fig. 1(a) shows the ex-
isting system where backscatter nodes transmit sequentially. In this
design, each node’s share of the medium is the same. A node with
a good channel probably does not need the amount of share it gets,
while another node with a bad channel would not be able to de-
liver its data within its share. In contrast, backscatter nodes in Buzz
randomly collide in different time slots and keep doing so until the
reader signals that it has correctly received their data, as shown in
Fig. 1(b). These collisions act as a rateless code across nodes in
the network and allow us to implicitly redistribute the mismatched
network resources.
However, decoding these collisions to recover the transmitted

bits is an expensive joint optimization problem [51]. To address
this issue, in Buzz each node contributes to only a small random
subset of the collisions so that the resulting code is sparse, i.e., has
a low density. Similar to LDPC codes, such low density codes can
be decoded using a linear time decoder based on belief propaga-
tion. However, in contrast to LDPC codes, which are centralized
block codes, Buzz’s code is both distributed (i.e., it operates across
the bits of many nodes) and rateless (i.e., the reader collects colli-
sions until it has enough to decode). Using these properties, Buzz
provides automatic bit rate adaptation to backscatter networks.

Summary of Results: We built a prototype of Buzz and evalu-
ated it in a testbed of 16 computational UHF RFIDs and a USRP
backscatter reader. We compared Buzz with TDMA and CDMA
based schemes in a wide range of channel conditions, which leads
to the following findings:

• Averaged across experiments with different numbers of con-
current tags and over 600 traces in different channel condi-
tions, Buzz improved the overall communication efficiency of

h1

h5

h4

h2

h3

b1

b2

b3

b4

b5

y1

y2

y3

y4

T
im

e
S
lo
ts

y5

Messages of

the k nodes

Received

symbols

(a) Avoiding Collisions

Messages of

the k nodes

b1

b2

b3

b4

b5

y1

y2

y3

y4

T
im

e
S
lo
ts

Received

symbols

(b) Allowing Collisions

Figure 1—(a) Current systems try to avoid collisions by having
nodes sequentially transmit. (b) In Buzz a random subset of nodes
collide in each time slot, forming a distributed rateless code.

backscatter networks by 3.5×. This gain is the combination of
two factors: First, Buzz reduced the time spent in the identifica-
tion phase by 5.5×, compared to the Framed Slotted Aloha pro-
tocol used in the EPC Gen-2 standard; Second, during the data
transmission phase, Buzz’s bit rate adaptation on average deliv-
ered a throughput gain of 2× over TDMA and CDMA.

• Buzz enables backscatter networks to work in far more challeng-
ing channel conditions than previously possible. In challenging
conditions, TDMA and CDMA systems experienced a message
loss rate as high as 50% and 100% respectively whereas Buzz’s
loss rate was zero due to its rateless code.

Contributions: This paper makes the following contributions:

• It introduces the concept of using randomized collisions as a dis-
tributed code across the bits of multiple transmitters.

• It presents a new low-complexity compressive sensing algorithm
that enables fast backscatter node identification.

• It presents the first automatic rate adaptation protocol that adapts
the collective bit rate of multiple transmitters, which do not indi-
vidually change their transmission bit rate.

• It demonstrates a working system that provides a severalfold im-
provement to the efficiency and reliability of backscatter net-
works.

2. BACKSCATTER COMMUNICATION

In backscatter networks, the reader transmits a high power con-
tinuous waveform. Backscatter nodes transmit their signal by re-
flecting back the continuous waveform using ON-OFF keying. The
nodes transmit a “1” bit by changing the impedance on their anten-
nas to reflect the reader’s signal and a “0” bit by remaining in their
initial silent state [16].
There are four main distinctions between backscatter networks

and the more familiar WiFi networks.

• There is no carrier frequency offset∆fc between different nodes’
transmissions since nodes do not generate their own RF signal
but rather reflect the reader’s signal [16].

• Backscatter nodes transmit and receive in a narrow bandwidth
due to their power limitation [14]. As a result, the multipath ef-
fect of wireless communication is negligible and the system can
be modeled as a single tap channel (one complex number) [46].

• Nodes are naturally synchronized by the reader’s query and small
synchronization errors do not matter since they transmit at very
low bit rates (tens to hundreds of kbps) [14]. In §8.1, we present
measurement results for commercial passive RFID tags and com-
putational RFID tags.

0.6

0.7

0.8

0.9

1.0

 0 100 200 300 400 500

M
a

g
n

it
u

d
e

Time in µs

(a) A Single Node Transmission

0.6

0.7

0.8

0.9

1.0

 0 100 200 300 400 500

M
a

g
n

it
u

d
e

Time in µs

(b) Collision of Two Nodes’ Transmissions

Figure 2—(a) When a single node transmits, the received signal
has two levels which distinguish a “0” bit and a “1” bit. (b) When
two nodes’ signals collide, the received signal has four levels cor-
responding to “00”, “01”, “10” and “11”.

-1.6

-1.4

-1.2

-1.0

-0.8

1.2 1.4 1.6 1.8

Q

I

(a) Single Node Constellation

-1.6

-1.4

-1.2

-1.0

-0.8

1.2 1.4 1.6 1.8

Q

I

(b) Two Node Constellation

Figure 3—(a) A single node’s transmission has two constellation
points. (b) Concurrent transmissions of two nodes lead to four
constellation points. Decoding a denser constellation increases the
throughput of the network.

• The reader is a single power-full device and decoding complexity
can be delegated to it while keeping the backscatter nodes simple
and power efficient [27].

3. ILLUSTRATIVE EXAMPLES

We start with two simple examples that illustrate the benefits of
collisions and provide some intuition into how one may harvest
these opportunities.

3.1 Collisions Enable Distributed Rate Adaptation

Asmentioned in §1, ultra-low power devices typically use simple
modulations that transmit only one bit per symbol (e.g., ON-OFF
keying, BPSK, or binary ASK) [48]. Such a choice of modulation is
conservative, i.e., it assumes bad channel conditions. In many cases,
the wireless channel can support denser modulations that transmit
multiple bits per symbol, e.g., 4QAM, 16QAM or higher. Today’s
low power devices cannot harvest these opportunities to transmit at
higher bit rates and increase their throughput.
Collisions can address the issue. Fig. 2 shows backscatter trans-

mission signals received at a USRP-based reader. When a single
node transmits (Fig 2(a)), the signal exhibits two levels, which can
be used to distinguish a “1” bit from a “0” bit. In contrast, when
transmissions from two backscatter nodes collide (Fig. 2(b)), the
received signal exhibits four levels that correspond to the values
of the two colliding bits: “00”, “01”, “10”, and “11”. Knowing the
channel coefficients of the nodes, a backscatter reader that receives
the signal in Fig. 2(b) can easily distinguish these four levels, and
decode both nodes from a single collision, obtaining a bit rate of
2 bits/symbol. Hence, by letting these two nodes collide, one can
double the aggregate bit rate.
In fact, letting two backscatter nodes collide is fairly similar

TX Slot 1 Slot 2 Slot 3

Pattern 1 0 1 1

Pattern 2 1 0 0

Pattern 3 1 0 1

Pattern 4 1 1 1

Table 1—Transmit Patterns

Pattern 011 100 101 111

011 022 111 112 122
100 111 200 201 211
101 112 201 202 212
111 122 211 212 222

Table 2—Collision Patterns

to having one virtual node transmit using a denser modulation.
This can be more easily seen by comparing Fig. 3(a), which plots
the constellation of one backscatter node transmitting alone, and
Fig. 3(b), which plots the denser constellation with two nodes
transmitting together. Allowing two nodes to collide produces a 4-
point constellation. The difference between the two constellations
in Fig. 3 resembles the difference between BPSK, a 1 bit/symbol
modulation, and 4QAM, a 2 bits/symbol modulation. Allowing
more nodes to collide leads to even denser constellations (e.g., three
colliding nodes produce an 8-point constellation).
The above example reveals an opportunity for increasing net-

work throughput via collisions. Harvesting the opportunity how-
ever requires more than simply letting nodes collide. Decoding is
possible in Fig. 3(b) because the four constellation points are dis-
tinguishable. If the channels however were noisier or the spacing
of the constellation were less ideal, the different levels in Fig. 2(b)
could be confused, leading to decoding errors. Without an addi-
tional mechanism, the backscatter nodes would need to know the
channel’s signal-to-noise ratio (SNR) a priori to decide whether it
can support 2 bits/symbol. To address this issue, we design a rate-
less code to enable automatic rate adaptation. In contrast to conven-
tional rateless codes [25, 39], the new code operates across multiple
nodes to adapt their aggregate bit rate. The encoding at each node
involves only transmitting its original message, or remaining silent.
In §6, we describe the code and its corresponding decoder.

3.2 Collisions Facilitate Assigning Unique IDs

It might seem that collisions make it harder to distinguish differ-
ent nodes. However, in this section we will show that designing for
collisions can improve the system’s ability to assign unique tem-
porary ids to the nodes. Consider the following toy example, where
two backscatter nodes need to obtain unique ids. The reader divides
time into slots and the two nodes transmit in these slots. Suppose
that the total time is three slots. We will compare the probabilities
that the two nodes will obtain unique ids in two designs:

• Option 1: Each node picks a time slot at random and transmits
in it. If the two nodes pick different time slots, they can use their
time slots as their unique ids.

• Option 2: Each node transmits in all three time slots, but the
transmission pattern is randomly chosen from the following set
of patterns: 011, 100, 101 and 111. It then transmits that pattern
over the period of the three time slots, as shown in Table 1. In
this case, the pattern serves as the node’s id.

In option 1, the two nodes will fail to obtain unique ids if they
transmit in the same time slot , which occurs with probability 1/3.
In option 2, the nodes will collide in the three slots. For simplic-
ity, let us assume that the channels of the two nodes are the same.
The reader will receive one of the collision patterns in Table 2. The
reader can then map the received pattern to identify which two pat-
terns were picked by the two nodes. Since there are four possible
patterns, the two nodes will be indistinguishable with probability
1/4. Note that while the two options have the same overhead (i.e.,
three time slots), option 2 reduces the probability that the two nodes
end up with indistinguishable ids from 1/3 to 1/4. This toy example
shows that designing for collisions can improve the distinguishabil-
ity of the nodes and reduce the probability of failing to assign them

different ids. In §5 we propose a new compressive sensing algo-
rithm which generalizes this basic intuition to any number of nodes
and practical settings.

4. PROBLEM DOMAIN

Buzz is designed to increase communication efficiency and re-
liability in backscatter networks. We consider a deployment of
backscatter nodes that capture some measurements of interest (e.g.,
temperature readings, object tracking). The setup is fairly similar to
that of a wireless LAN where a backscatter reader plays the role of
the access point. Both uplink and downlink communications have
to go through the reader.
Before we delve into the details of our design, it is important to

distinguish two modes of operation for backscatter networks:

(a) Event-Driven Communication: This is the more common
mode of operation where a backscatter network is used to detect
certain events of interest. The classic example is the shopping cart
application, in which backscatter nodes are attached to items in a
store [6]. A customer pays for her purchases simply by pushing her
cart past the scanning area, where a backscatter reader queries the
items in the cart for their ids and reports the ids to an application
that looks up their prices and presents the charge to the customer.
Other event-driven applications include inventory management, ob-
ject tracking, and event detection [18, 38].
Communication in event-driven networks can be divided into

three phases. We describe them at a high level and refer the reader
to the EPC Gen-2 standard for more details:

• Identification: First the reader has to identify the nodes that have
data to transmit. The identification phase uses temporary ids.
This is because the globally unique id is often long, while the
temporary id can be short since the uniqueness needs to hold
only for the nodes that want to transmit around the same time.
For example, the EPC Gen-2 standard uses 16-bit temporary ids
during the identification phase [14].

• Resource Allocation: In the next step the reader schedules node
transmissions. In the EPC Gen-2 standard, the reader assigns the
nodes different time slots [14]. In a CDMA or FDMA system,
the reader assigns the nodes different CDMA codes or different
frequency bands. In these schemes, the reader has to transmit to
each node its corresponding assignment.

• Uplink Data Transmission: Finally, the nodes transmit their data
to the reader using the allocation in the previous phase. The data
could be the node’s global id or other context information.

Event-driven networks can use Buzz as follows: To assign unique
temporary ids, they can use Buzz’s compressive sensing identifica-
tion protocol. As for the second phase, Buzz eliminates the need
for the reader to allocate resources to the nodes because it enables
the nodes to use a randomized approach to access the medium and
transmit their data. Hence, in Buzz the nodes can immediately pro-
ceed to the third phase and transmit their data using Buzz’s rate
adaptation protocol.

(b) Periodic Backscatter Networks: Here, backscatter nodes
sense some process and periodically report their measurements to
the reader. An example application of such networks is creating
real-time heat maps of a data center, where low-power backscatter
nodes periodically sense and report the temperature [45].
In periodic backscatter networks, the set of nodes that have data

is known a priori. Hence, the network can adopt a static schedule
for accessing the medium which eliminates the need for an identifi-
cation phase. Therefore, periodic backscatter networks can directly
use Buzz’s rateless bit rate adaptation protocol to maximize the ef-
ficiency and reliability of their communication.

5. NODE IDENTIFICATION USING COMPRES-

SIVE SENSING

We have a backscatter network with N nodes, but only K ≪ N

have data. We would like to identify these K nodes. We can model
this problem as follows: consider a binary vector xN×1 where each
element xi corresponds to the backscatter node with id i and xi = 1
if node i has data to transmit. Our aim is to estimate x. One option
for solving the problem is to allocate N time slots that correspond
to the N elements of x, and have each of the K nodes transmit in
its own time slot (i.e., send a “1” bit). This option addresses the
collision problem since each node sends in a unique time slot, but
it is very wasteful because K ≪ N.

Protocol: In our scheme, the reader triggers the nodes to start trans-
mitting. Each node that has data (i.e., xi = 1) then uses its id i as
a seed to a pseudorandom binary number generator.1 For each time
slot, the node generates a random bit (“0” or “1”) and transmits if
the random bit is “1”. Therefore in each time slot, the reader re-
ceives one wireless symbol, which is the collision of the transmis-
sions from a subset of the K nodes. The nodes continue generating
a random bit and transmitting it until the reader recovers the vector
x. At this point the reader triggers the nodes to stop transmitting
which it can do by terminating its RF signal [16].

Corresponding Code: LetM be the length of the binary string that
each node has transmitted before the reader terminates the process.
Let A be theM×N random binary matrix where each column of A
corresponds to the string transmitted by a particular node and each
row of A corresponds to a time slot. Thus, Aj,i = 1 if backscatter
node i transmits in time slot j. The reader receives a vector y of M
symbols where each symbol is obtained in a time slot. The vector y
can be written as:

y = AM×NxN×1 (2)

Since x is sparse, i.e., it has only K ≪ N non-zero entries, com-
pressive sensing theory tells us that we can efficiently estimate x

with high accuracy given only a few symbols, specifically M ≈
K log(N/K) [13, 9].
The above argument ignores the channels of the backscatter

nodes. However, recall that backscatter nodes transmit in a narrow
band (≤ 640 KHz) [14] and hence their channels can be modeled
as a single complex number (i.e., a single tap channel) [46]. Incor-
porating the channels, Eq. 2 can be rewritten as:

y = A




h1x1
...

hNxN



 = A




h1

. . .

hN



 x = AHx = Az (3)

where HN×N is a diagonal channel matrix and Hi,i = hi is the com-
plex channel coefficient of the ith node. Since the vector z = Hx is
sparse and has only K non-zero entries, this is again a compressive
sensing problem. In this case, the compressive sensing algorithm
will estimate the sparse vector z = Hx, where zi = hi if node i has
data and 0 otherwise. This allows us to identify the nodes with data
to transmit and estimate their channel coefficients.

5.1 Optimizing Performance

While the formulation of the core problem in Eq. 3 is efficient
in terms of the number of time slots, the overhead on the reader is

1Generating random numbers is a routine operation carried out in
today’s RFID systems for node identification as required by the
EPC Gen-2 standard [14], and does not introduce extra overhead
on the nodes [3].

likely to be prohibitive. Specifically, to estimate z = Hx, compres-
sive sensing requires the matrix A to be known at the decoder. In
theory, the reader can generate this matrix by using the same pseu-
dorandom number generator used by the nodes and feeding it with
all ids in the network. However, in practice, this is computationally
infeasible since the number of columns in A is equal to the number
of nodes in the network, which can be huge. Also, even if the reader
generates the matrix offline and stores it, it still cannot operate on
it because of the computational complexity and the associated in-
crease in the running time. Note that this is not an issue for the
backscatter nodes because each node only needs to know the col-
umn of A corresponding to its own id, which it can generate using
its id as a seed. Nodes that do not have data do not need to gener-
ate their columns in the matrix because the model multiplies those
columns by zero. The reader however does not know a priori which
nodes have data. It will obtain this information only after solving
the matrix equation.
Thus, we transform the above compressive sensing problem into

an equivalent compressive sensing problem, but with significantly
reduced computational complexity. In doing so, we aim to make
both the number of transmitted symbols and the computational
complexity functions of K, the number of nodes with data, and in-
dependent of N, the total number of nodes in the network.
We start by focusing on a temporary id space. Each of the K

nodes that want to transmit randomly picks a temporary id and uses
it as its identifier for subsequent communication in the data trans-
mission phase. The temporary id space can be much smaller than N
since it is only used to distinguish between the K nodes that want to
transmit. However, without knowing K we might define a space too
small in which case some of the K nodes will pick the same tem-
porary id and become indistinguishable, or an unnecessarily large
space where the computational complexity is still high. Therefore,
we first estimateK to properly set the size of the temporary id space.
Then, we further reduce the scale of the problem by quickly elimi-
nating large chunks of this temporary id space. Finally, we use stan-
dard compressive sensing to solve a small sparse recovery problem.
In the rare event where the estimate of K causes an error, the reader
starts over as is the case in today’s RFID systems.

A. First Stage: Estimating K.
Inspired by prior work that uses streaming algorithms to effi-

ciently count the number of active flows on high speed links [15],
here we use a simple streaming technique to quickly estimate the
number of backscatter nodes with data to transmit. Again we divide
time into short slots that correspond to the transmission of one bit,
i.e., one wireless symbol. Every s time slots constitute a single step.
In the first step, and for each of the s time slots, each node with data
transmits a “1” bit with probability 0.5 and stays silent with prob-
ability 0.5; in the second step and for each of the s time slots, each
node will transmit “1” with probability 0.25; and so on. In step j

and for each of the s time slots in that step, each node transmits a
“1” bit with probability pj = 2−j.
The reader only distinguishes between two states of the time

slots, “occupied” and “empty”. This can be done based on the
power level. The expected number of empty slots in each step is
s × (1− pj)

K
. The percentage of empty slots is Ej = (1− pj)

K
.

Thus one can calculate an estimate of K as:2

K̂ =
logEj∗

log(1− pj∗)
(4)

where j∗ is the step that Ej exceeds a predefined threshold and the

2The numerator of Eq. 4 can be written as logmin (Ej∗ , 1− 1/s) to
handle the case where all slots are empty i.e. Ej∗ = 1.

Temporary�ID�Space

a IDs�per�bucket
ID�of�node�with�data

Bucket�1 Bucket�2 Bucket�3 Bucket�4 Bucket�ck

Figure 4—The temporary id space of size a× c×K is hashed into
cK buckets, each containing a ids. At most K buckets will have ids
of the nodes of interest. Temporary ids hashed to empty buckets can
be ruled out (e.g., ids hashed to buckets 2 and 4).

algorithm terminates. Once we reach a step in which the probabil-
ity pj is very low, the slots will become mostly empty. By setting
the threshold for the percentage of empty slots close to 1, we can
get a fairly tight estimate of K in logK steps. One can prove the
following:

LEMMA 5.1. There exists an absolute constant C > 1 such that
for any ǫ, δ ∈ (0, 1), if the number of slots per step s is equal to

C log(1/δ)/ǫ2, then with probability at least 1 − O(log k · δ), we
have K̂ = (1± ǫ)K and j∗ = logK + O(1).

We note the proof is similar in nature to the standard analysis of
streaming and estimation algorithms as seen in [15, 32, 29]. Finally,
we note that Buzz does not need an exact estimate of K. An approx-
imate estimate with the guarantees in the above lemma is sufficient
for achieving the performance of our identification protocol.3

B. Second Stage: Reducing the Scale of Compressive
Sensing.
Once we have an estimate of K, we can reduce the scale of the

problem from the size of the entire node population N to the size of
a temporary id space, which is a function of K. Specifically, we set
the size of this temporary id space to a× c× K. The parameters a
and c will be used in the following sections to balance the tradeoff
between transmission time and decoding complexity.
Only K of the a× c× K temporary ids correspond to nodes that

want to transmit. To further reduce the scale of this sparse recovery
problem, we hash the a× c× K possible ids into cK buckets. Each
bucket will contain a ids as shown in Fig. 4. We represent these
cK buckets by allocating cK time slots; each slot’s duration is of
the length of one bit. A backscatter node with data to transmit will
transmit “1” in time slot j if its temporary id hashes to bucket j.
The reader then checks the power in each time slot. We denote a
bucket as empty if no power is detected in its corresponding time
slot. Temporary ids that hash to empty buckets can be eliminated.
Given that there are only K transmitting nodes, at most K buckets
will be non-empty. Since each bucket contains a ids, at the end of
this stage, at most aK ids remain as candidate node ids.

C. Third Stage: Compressive Sensing Decoding.
Now that we have reduced the scale of the compressive sensing

problem to recovering K temporary ids out of only aK possible ids,
we can apply the protocol described at the beginning of §5. Let A′

be a reduced version of the matrix A that keeps only the columns
corresponding to the remaining aK possible temporary ids; and x′

and H′ are the similarly reduced forms of x and H. The reader only
needs to regenerate A′, as opposed to A, and solve the system:

y = A
′
H

′
x

= A
′
z
′

(5)

3Having an estimate of the number of nodes is also beneficial to
existing protocols. In §10, we feed our estimate of K to the proto-
col specified in the EPC Gen-2 standard, and show that Buzz still
significantly outperforms it.

To decode, the reader uses compressive sensing to estimate the
elements of vector z′. In compressive sensing, estimating z′ is for-
mulated as an optimization problem [13, 9]:

minimize
z′

‖z′‖1

subject to A
′
z
′ = y,

(6)

where ‖.‖1 is the L1 norm.
Since the space of the problem is now aK as opposed to N, com-

pressive sensing tells us that for a sparsity level a = ω(1) we only
need to receive about K log(aK/K) = K log(a) symbols to decode
z′ if elements in A′ are randomly generated binary numbers [13].

D. Communication Cost and Decoding Complexity.
In terms of the communication cost, the first and second stages

of Buzz’s identification algorithm require s × j∗ = s log(K) and
cK time slots (i.e., wireless symbols) respectively. The compressive
sensing stage requiresM ≈ K log a time slots. Thus, the communi-
cation complexity of Buzz is O(s log(K) + cK + K log a) bits.
In terms of decoding complexity, the running time of the first

two stages is s log(K) + cK. The third stage involves solving a
compressive sensing problem for an M × aK matrix A′, where
M ≈ K log a. There is a large body of algorithms in compressive
sensing that use linear programming to efficiently solve the problem
in Eq. 6 [11, 10]. In our implementation, we use an algorithm based
on the interior-point method [22]4, which has the running time of
T = O(I · TA′), where I ≈

√
aK is the number of iterations in the

algorithm, and TA′ is the cost of a matrix-vector multiplication in-
volving A′ [4]. For efficiency, we use sparse binary matrices A′ for
which TA′ = O(aK log(aK/K)) = O(aK log a) [4]. This yields

T = O(I · TA′) = O(
√
aK · aK log a) = O((aK)3/2 log a).

Therefore, the total decoding complexity of the three stages is equal
to O(s log(K) + cK + (aK)3/2 log a).
In our implementation of the K estimation stage, we set s = 4

and the termination threshold to 0.75, and use the estimated K̂ to
set parameters for the latter stages. The latter two stages of the cus-
tomized compressive sensing approach provide a trade-off between
the decoding complexity and the communication cost. One should
choose the parameters a and c properly based on system capabili-
ties, constraints and requirements. In our experiments, we set c to
10 and a = K.

6. DISTRIBUTED RATE ADAPTATION

We describe a protocol that enables backscatter networks to adapt
the uplink bit rate to the channel quality. In contrast to traditional
work on rate adaptation [47, 25], which adapts the rate of individual
senders, this protocol adapts the aggregate rate of the backscatter
nodes that want to transmit. Said differently, we model the system
as a single virtual sender that is realized by the collective trans-
missions of the backscatter nodes. We then design a protocol that
optimizes the bit rate of the virtual sender given the channel condi-
tions. The protocol operates in a distributed fashion and the reader
does not schedule the transmissions/collisions of nodes.

(a) Protocol: In Buzz’s rate adaptation protocol, the reader initi-
ates the data transmission phase by sending a single command to all
backscatter nodes. Upon decoding this command, each node starts
a random binary number generator which is seeded by its own tem-
porary id and the current time slot5 and returns a random bit. In each

4Faster algorithms exist in the literature to solve the standard com-
pressive sensing problem such as [5].
5Unlike previous stages, in the uplink data transmission case, the

time slot, if the random bit generated is “1” the node will transmit
its message, otherwise the node remains silent. Hence, depending
on the results of the random binary number generator, random sub-
sets of the nodes will collide together. The nodes repeat this process
(generating a random bit and transmitting the message if the bit is
“1”) until the reader signals them all to stop.
The reader receives the colliding messages and tries to decode

them (as described below). Once it has decoded all K messages and
the decoded messages pass the CRC check, the reader triggers the
backscatter nodes to stop transmitting the current messages (and if
applicable move on to the new message). The reader can do this by
terminating its RF signal, which naturally terminates all backscatter
transmissions [16]. Note that the reader does not send signals to in-
dicate the beginning or end of a time slot. The nodes automatically
move on to the next time slot until there is no RF power to reflect.

(b) Encoder: The result of the above protocol is a rateless code.
For clarity, we first express the code assuming that each of the K

messages is one bit. We use the vector b to denote the K bits that
the K nodes transmit, where bi ∈ (0, 1) is the bit of node i. When
transmitted according to the above protocol, these bits will collide
randomly on the channel and the reader will receive the vector y:

yL×1 = DL×KHK×KbK×1 (7)

where H is a diagonal matrix whose diagonal element hi,i repre-
sents the channel of backscatter node i; D is a binary matrix, where
element dj,i is the jth random number used by node i in the above
protocol; L is the number of time slots until the reader decodes all
K bits and triggers the nodes to stop. Note that while b is a binary
vector that corresponds to the K bits transmitted by the backscatter
nodes, y is a vector of complex numbers that refer to the L wireless
symbols received at the reader.
We generalize the above to P-bit messages as follows:

YL×P = DL×KHK×KBK×P. (8)

The only difference from Eq. 7 is that now both the received and
the transmitted signals are expressed as matrices.

(c) Belief Propagation Decoder: The reader knows H from the
node identification step. It can generate D because it also knows
the ids of the nodes, i.e., seeds, and has the same random number
generator they use. It knows Y because this is the collision signal
that it receives. The task is to retrieve the original messages B.
One approach to decode is inverting the encoding matrix

ML×K = D×H (if L 6= K one can use the pseudo inverse) [46].
This solution is undesirable because it does not take into account
the reader’s knowledge that the matrix B is binary. It is also highly
expensive from a computational standpoint. To provide the rate-
less property, the reader has to invert the matrix for each value
L′ = 1, . . . , L until it finds the right L′ at which all messages pass
the CRC check. Thus, instead of inverting the matrix, Buzz uses
a belief propagation algorithm that decodes incrementally and also
embeds the knowledge that the messages are binary strings.
We will explain how Buzz decodes the jth bit transmitted by all

nodes. The same procedure follows for decoding all the remaining
bits in the message. The jth bit of each node collides only with the
jth bits of other nodes and can be decoded separately from the other
bits in the message. Hence, we will decode using Eq. 7.
Eq. 7 can be modeled as a bipartite graph shown in Fig. 5 where

the K vertices on the left represent the original bits b, and the ver-
tices on the right represent the received symbols y. There is an edge
from bi to yj if dj,i = 1, the weight of which is hi,i. Hence, the set

duration of each time slot is the length of the nodes’ messages. For
simplicity we assume it is fixed.

h1b1
y1

Symbols

h1

h2

h3Bits�of�the�

k d

b2

b3

y2

h3 Symbols

h5

h4

h3k nodes
b3

b4

y3

y4

h3

h5b5
y4

Time�Slots

Figure 5—Belief Propagation Bipartite Graph: On the left are
the bits transmitted by the backscatter nodes. On the right are the
received symbols. An edge represents a node’s contribution to a
received symbol, i.e., the node participates in the collision on that
symbol. If bi is flipped in the belief propagation decoding process,
only the gains of bits that have collided with i will be updated.

1 Pseudocode for jointly decoding one bit of all nodes

INPUT:
y,H,D
OUTPUT:
Decoded bits b̂
PROCEDURE:
Initialization:
b̂← K independent random bits
Belief propagation decoding:
Calculate gains G1,G2, . . . ,GK using Eq. 9
repeat

Find i s.t. Gi = maxG1,G2, . . . ,GK

b̂i ← b̂i
⊕

1
Update Gi and the gains of node i’s neighbors’ neighbors
if G1,G2, . . . ,Gk ≤ 0 then

Done
until Done

of incoming edges to yj identifies all bits whose collision creates yj
weighted by their channels. The set of outgoing edges from a bit bi
identifies all collision symbols to which it has contributed.
The objective of the belief propagation algorithm is to find a vec-

tor b̂ that could have produced the received signal y, or more con-
cretely to find b̂ that minimizes the error:

min
b̂

‖DHb̂− y‖2.

The algorithm works as follows. Initialize b̂ to a random binary
vector. In each iteration, flip one bit in b̂ that best minimizes the re-
maining error ‖DHb̂− y‖2 and keep flipping until the error cannot
be reduced any further by flipping any single bit, i.e., reaching an
optimum.
To quickly find the bit, which once flipped would yield the

biggest gain, Buzz maintains for each bit i in b̂ a variable Gi, rep-
resenting the gain achieved by flipping bit i, i.e., the reduction in
error. Gi is calculated as follows:

b̃ = b̂

b̃i = b̂i ⊕ 1

Gi = ‖DHb̂− y‖2 − ‖DHb̃− y‖2
(9)

At the beginning of the first iteration, Gi is calculated based on
the randomly initialized b̂. Then after flipping bit i of b̂, Buzz up-
dates Gi and the gains of all nodes which have collided with node
i, i.e., update Gl if the i

th column and lth column of D have 1 in at
least one same row. This could be more clearly seen in the bipartite
graph. After flipping bit i of b̂, only the gains of the bits that are
neighbors of neighbors of the vertex b̂i in the bipartite graph need
to be updated, as other bits are not affected. For example, in Fig. 5
if bit 4 was flipped, we only update the gains of bits 2 and 4. If bit
1 was flipped, we update the gains of bits 1, 3 and 5. A pseudocode
for decoding one bit is shown in Alg. 1.

The algorithm finishes its decoding of the jth bits in the messages
once all gains are negative. It then moves on to the bits at the j+ 1
position. After decoding all positions, the algorithm checks whether
the resulting messages pass the CRC check. If any message passes
the CRC check, the values of the bits in the message will be fixed
for all subsequent decoding. The reader keeps collecting collisions
until all decoded messages pass the CRC check.

(d) Discussion: A few points are worth elaborating on:

• We choose the matrix D to be sparse, i.e., each row of D has
only a few ones but is mostly zero. A sparse D reduces the de-
coding time because only a few gains need to be updated when
a bit is flipped. It also allows the reader to decode the messages
from fewer collisions because it reduces the number of local min-
ima of the error function. This argument is similar to why belief
propagation works well with low density parity check code [20].
Hence, Buzz uses a low density code by making the matrix D

sparse. The sparsity of D is related to K, the number of nodes
that want to transmit. The reader communicates its estimate of K
to the nodes, which they give as an input to the random binary
number generator to bias its output.

• Due to the near-far effect, different nodes may have very different
channel coefficients. Unlike in CDMA, the near-far effect is miti-
gated in Buzz because: first, the code is sparse (only a few nodes
collide at a time); second, each time, a node’s signal combines
with a different subset of nodes, providing diversity. The results
in §9 and §10 are in the presence of near-far effect. Further, this
property can be leveraged to improve decoding and reduce the
overall time. Specifically, bits of nodes with good channels will
have the largest gains and will directly converge to the right bi-
nary values in the first few iterations. Once they are decoded and
pass the CRC check, we set their gains to be negative infinite so
that flipping the bits of nodes with worse channels in later iter-
ations will not flip them back to a wrong value. This effectively
cancels their contributions to the collisions.

• If a backscatter node runs out of power in the middle of the data
collection phase, its impact on the other nodes will be minimal.
Specifically, the nodes which have already been decoded will not
be affected. This node’s influence on the system translates to ad-
ditional noise to the collisions it participated in, i.e., it will take
more collisions to decode the remaining nodes.

• Buzz achieves its goal of delivering a rateless code that adapts to
channel conditions. Specifically, if the decoding process finishes
in L time slots with zero bit error, it means K × P data bits are
successfully delivered using L × P symbols. Hence, the rate of
the system is K

L
bits/symbol. When the channels are good, then

we have L < K and the system delivers multiple bits per sym-
bol. In contrast, in current backscatter systems, nodes transmit
sequentially, thus making the highest rate 1 bit/symbol regard-
less of the quality of the channel [14]. Furthermore, in current
systems if the channel of some node is bad and cannot support
1 bit/symbol, decoding will fail. In contrast, with Buzz, a node
with a bad channel will just take more collisions to decode. This
rateless design eliminates the need for frequent feedback as re-
quired in today’s RFID systems, reducing the overhead on both
the nodes and the reader.

7. IMPLEMENTATION

We build a prototype of Buzz using USRP software radio [28]
as the reader and the UMass Moo computational RFIDs [50] as
backscatter nodes in the network.

Reader:We adopt a USRP implementation of an EPC Gen-2 RFID
reader developed in [8] and customize it to incorporate Buzz’s node

(a) UMASS Moo Computational RFID

(b) General Purpose Commercial RFID

Figure 6—We experiment with two types of RFID tags: (a) The
Moo computational RFIDs with programmable microcontrollers
and (b) the Alien Squiggle General Purpose UHF RFID Tags.

identification and distributed rate adaptation algorithms described
in §5 and §6. This mainly includes changing the reader commands
to allow backscatter nodes to distinguish which algorithm to run.
Due to the overhead of user mode processing in software radios,
we do not run the decoders in real time. Instead, we collect the
traces from the USRP receiver and process them offline.
UHF backscatter systems operate between 860 MHz and

960 MHz [14]. We use RFX900 USRP daughterboards and
Cushcraft 900 MHz RFID antennas which operate in this
range [34]. We run all experiments at a carrier frequency of
925 MHz. The USRP reader transmits its queries at a data rate of
27 kbps and captures measurements of the tags’ signals at 4 MHz.

Backscatter Nodes: The Moo tag, shown in Fig 6(a) is a passive
computational RFID that operates in the UHF band [50]. It has an
onboard temperature sensor, accelerometer, and a programmable
MSP430F2618 microcontroller [50]. The original code base imple-
mented in the Moo already supports most parts of the EPC Gen-
2 standard and has all components necessary for Buzz, including
decoding the reader’s commands, reading data from memory and
transmitting it in a random time slot, and changing the impedance
of the antenna to transmit zeros and ones [50]. Since Buzz’s al-
gorithms require randomization in many stages, we randomize the
encoding process offline and program 20 different randomly en-
coded traces into each Moo tag in advance. This allows the tags to
transmit different data in each run without being reprogrammed.
In addition to the Moo, we also experiment with commercial

RFIDs (The Alien Squiggle Inlay [1]) shown in Fig. 6(b). We
use them to study the level of synchronization in general purpose
RFIDs as we will discuss in §8.1.

Setup: We deploy the tags on a movable plastic cart placed on a
1.5m×3m table, where the USRP reader also sits. Distances be-
tween tags and reader vary in a range of [0.5,6] feet. The maximum
distance is limited by the capabilities of the Moo, whose typical
operating range is 2 feet [50].

8. MICROBENCHMARK

We start with a few experiments that provide insight into the
working of the system.

8.1 Synchronization

Buzz assumes that transmissions of backscatter nodes are syn-
chronized. In this section, we present measurement findings for
both commercial RFIDs and computational RFIDs, and show that
the synchronization accuracy in practice is sufficient for Buzz’s
performance. In particular, synchronization in backscatter networks
has two aspects:

• The starting offset of the nodes’ transmissions: Backscatter

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
D

F

Initial Synchronization Offset in µs

Moo RFID
Commercial RFID

Figure 7—CDF of the initial synchronization offset between dif-
ferent RFID tags: Both commercial and computational RFIDs have
an initial offset of less than 1µsec which has negligible impact on
the performance of Buzz.

nodes are naturally synchronized because they are triggered by
the reader’s signal. However, the jitter in detecting the reader’s
signal can lead to initial offsets.

• Drift in the nodes’ digital clocks: Backscatter nodes use a digi-
tal clock to time their operations. Different clocks have different
drifts, which can be corrected by having each node estimate its
clock drift relative to a virtual clock maintained by the reader and
compensate for the difference. This is done by counting the num-
ber of clock ticks between two pulses from the reader separated
by a fixed time interval.

Initial Offset: We measure the offset using two types of off-
the-shelf passive UHF RFID tags: Alien Squiggle commercial
RFIDs [1] and the Moo computational RFIDs [50]. We let the tags
concurrently reply to a reader’s query and measure the offset be-
tween the starting points of their transmissions. We use 20 different
tags of each type and vary the number of concurrent tags in each
run between 2 and 8.
Fig. 7 shows the CDF for the measured offsets. The offset’s 90th

percentile is 0.3 µs for the commercial tags and 0.5 µs for the Moo,
and the maximum is less than 1 µs. The default bit rate used in
practical settings and recommended by manufacturers is 64 kbps [2,
27]. At such rates, a 1 µs offset is about 6.5% of the bit length
(16 µs). We show in §9 that its impact on performance is negligible.
The EPC Gen-2 standard allows for a maximum bit rate of

640 kbps [14]. Although at such maximum rate the offset can be
65% of the bit length, the reader can sample the backscatter signal
at a much higher rate and obtain many samples per bit. The reader
can then use the middle samples of each bit to increase robustness
to synchronization errors, which affect the samples at the boundary
of a bit. For instance, with a sampling rate of 20 MHz (which is
simple with today’s hardware capability [28]), the reader can get
10 synchronized samples of each bit when the tags transmit at the
maximum bit rate of 640 kbps. Alternatively, one can also design
the circuit of the backscatter nodes to further improve synchroniza-
tion accuracy [12, 23, 41].

Drift Correction: To test how well backscatter nodes can correct
for their clock drift, we program the Moo tags to use a reader’s
virtual clock and insert extra clock cycles to correct for the drift. We
let two tags transmit the same data stream at 80 kbps and capture
the trace on the USRP reader with and without correcting for the
clock drift. Fig. 8 shows a trace for which the initial synchronization
offset is zero to help visualize the effect of clock drift over time.
After 2 ms (≈ 160 bits) in Fig. 8(a), the clock drift causes the bits of
the two tags to be misaligned by 50% of the symbol length. Fig. 8(b)
shows that after correcting for the clock drift, the bits of the two tags
are still aligned after 2 ms. The results reported in this paper use this
method for drift correction. We note that the clock drift of each tag
is fairly stable [12, 50]. We let each Moo tag compute its clock drift

0.8

0.9

1.0

0.5 1 1.5 2

M
a

g
n

it
u

d
e

Time in ms

(a) Collision Without Correction for the Clock Drift

0.8

0.9

1.0

0.5 1 1.5 2

M
a

g
n

it
u

d
e

Time in ms

(b) Collision after Correcting for the Clock Drift

Figure 8—Two tags concurrently transmit the same data: (a) With-
out correcting for the clock drift, the bits of the two tags are mis-
aligned by 50% of the symbol length after 2 ms. (b) When the tags
correct for their clock drifts, their bits remain aligned.

once and used the same estimate throughout our experiments over
a period of four months.

8.2 Understanding the Belief Propagation Decoder

To better understand how Buzz’s belief propagation algorithm
decodes collisions to achieve distributed rate adaptation, let us
zoom in on one example where 14 Moo tags had messages to send
and the messages were decoded in ten slots. In line with the EPC
Gen-2 standard, each tag transmitted a 96-bit message at a bit rate
of 80 kbps [14].
Fig. 9 shows how the average bit rate adapted over time. For each

time slot, the figure shows the number of tag messages already de-
coded in previous slots as a dark blue bar and the number of newly
decoded tag messages upon the arrival of the current time slot as a
light blue bar. The decoding process started off strong and quickly
reached its peak. Eleven tag messages were decoded within the first
four slots, resulting in a peak bit rate of 2.75 bits/symbol. The de-
coding of these eleven tags can generally be categorized into two
types. Certain tags had a very good channel and were therefore im-
mediately decoded from the first collision they participated in, such
as the two tags decoded in the very first time slot. In contrast, other
tags’ messages were uncovered as the belief on their data gradu-
ally built up when the tags they collided with were decoded. This
process resembled a ripple effect, resulting in the high decoding
efficiency in slot 3 and 4.
After slot 4, it took Buzz another six slots to decode the three

remaining tags (in the same experiment, TDMA and CDMA con-
sistently failed to decode the last two tags’ messages). Notably, the
last tag participated in four collisions to finally get decoded. Be-
cause of this particular tag, the average bit rate was dragged down
and other tags had to transmit an extra number of times. By the end
of the transfer, the aggregate bit rate was 1.4 bits/symbol.
This experiment also shows a limitation of Buzz. Namely, some

nodes may transmit after they have been decoded. This is due to
the fact that Buzz treats all nodes with data to transmit as a sin-
gle distributed sender. An alternative design choice could have the

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

N
u

m
b

e
r

o
f

D
e

c
o

d
e

d
 T

a
g

s

B
it
s
 P

e
r

S
y
m

b
o

l

Time Slot

Newly decoded
Already decoded
Bits per Symbol

Figure 9—The progress of Buzz’s decoding of 14 tags during 10
time slots: Buzz quickly decoded 11 tags within the first 4 slots, and
then gradually adapted the aggregate bit rate to channel conditions
to decode all remaining tags.

reader ACK the tags whose messages have been decoded, so that
they remain silent in subsequent time slots. To silence the tags, the
reader would at least need to ACK by echoing the temporary id of
each decoded tag. A back-of-the-envelope calculation based on the
EPC Gen-2 standard suggests that a 75% overhead on top of the
uplink transmission time is necessary to silence these 14 tags [14].
Therefore, the cost of silencing individual tags seems to outweigh
the benefits, and so Buzz avoids such a design.

9. RESULTS FOR UPLINK TRANSMISSION

In this section, we focus on the efficiency and reliability of the
uplink transmission phase in backscatter networks. We assume that
the backscatter reader has already performed node identification
and resource allocation (evaluated in §10). We compare Buzz with
the following two baseline schemes:

• TDMA: Tags sequentially transmit one after another. In line with
the EPC Gen-2 standard, each tag uses a bit rate of 80 kbps for
both TDMA and Buzz. Miller-4 code is used in TDMA to in-
crease its robustness [14].

• CDMA: We compare Buzz with synchronous CDMA using
Walsh codes, because asynchronous CDMA severely suffers
from the near-far problem [30].6 Walsh codes are the most com-
monly used orthogonal codes in CDMA systems. For K tags,
we use a set of Walsh codes with a spreading factor of K. We
let CDMA use the same symbol rate as Buzz, 80k symbols per
second, and adopt a standard CDMA decoder for orthogonal
codes [30] to decode the received CDMA signal.

We run the experiments for K = 4, 8, 12, and 16 Moo tags. For
each run of all experiments, the tags decode which scheme to use
from the reader signal (TDMA, CDMA, or Buzz), and transmit a
32-bit message with a 5-bit cyclic-redundancy check. We repeat
the experiments at ten different locations for each value of K. At
each location, we run the three schemes to collect five traces each,
immediately one after another without changing the environment,
i.e., moving the tags or reader antennas.

Transmission Efficiency: Fig. 10 shows the time it takes the three
schemes to complete data transfer. TDMA and CDMA have a fixed
aggregate bit rate, and therefore always finish transmission in a
fixed amount of time for each value of K. In contrast, Buzz only
completes the data transmission phase when the reader has suc-
cessfully decoded the messages of all tags. Hence the total transfer
time for Buzz is variable. As we can see, Buzz finishes in approxi-
mately half the time of TDMA and CDMA on average,7 translating

6In cellular CDMA systems, the near-far problem is addressed by
adjusting the power level at the transmitters [30], which is not fea-
sible for backscatter nodes.
7The bump on the CDMA curve at K = 12 is due to the lack of

 1

 2

 3

 4

 5

 6

 7

 4 6 8 10 12 14 16

T
o

ta
l
D

a
ta

 T
ra

n
s
fe

r
T

im
e

 (
m

s
)

Number of Tags

BUZZ
TDMA
CDMA

Figure 10—Total data transfer time: Buzz achieves 2× improve-
ment in total transfer time over TDMA and CDMA. Unlike TDMA
and CDMA which have a fixed rate of 1 bit/symbol, the rateless na-
ture of Buzz allows it to adapt to an average rate of 2 bits/symbol.

0

1

2

3

4

4 8 12 16N
u

m
b

e
r

U
n

d
e

c
o

d
e

d
 T

a
g

s

Number of Tags

BUZZ
TDMA
CDMA

Figure 11—Message errors: CDMA has the lowest reliability.
TDMA has few errors because it uses Miller-4 code. Buzz’s bars
are not visible because it has zero errors due to its rateless code.

to a 2× increase in aggregate bit rate of the network. However, this
statistic understates the efficiency gain Buzz brings about. Unlike
Buzz, TDMA and CDMA do not adapt their rates, and therefore
might have decoding errors upon the completion of all the nodes’
transmissions. These decoding errors lead to retransmissions, fur-
ther reducing their efficiency.

Message Reliability: Commercial backscatter systems use a
checksum to decide whether a message is decoded correctly and
send a NAK if the checksum does not pass [14]. Thus, the num-
ber of messages decoded incorrectly represents a lower bound of
retransmissions needed. Fig. 11 shows the number of tags whose
messages were not correctly decoded for the same traces in Fig. 10.
Due to its automatic rate adaptation, Buzz decodes all messages

correctly. TDMA has very few errors because it uses Miller-4 code
which increases its robustness to bad channels. CDMA is less re-
liable, and as the number of tags in the network increases, its reli-
ability quickly degrades. This is mainly because all tags get equal
shares of the channel in CDMA, despite the fact that there is gen-
erally a disparity in channel quality between them. Note that in
Fig. 11, CDMA for K = 12 has fewer undecoded messages than
both K = 8 and K = 16. The reason for this is that we let each of
the twelve tags use unique Walsh code of 16 bits, as no Walsh code
of 12 bits is available [30]. This implies that one could use a longer
code to increase reliability in CDMA, however, this comes at the
expense of efficiency.
Next, we focus on more challenging channel conditions to further

investigate the reliability of Buzz and TDMA. In this experiment,
we use four tags and keep moving the tags further and further away
from the reader to worsen the channels of all tags. Fig. 12 shows the
comparison between Buzz and TDMA.When the channel quality in
the network is good, Buzz decodes all four tags’ messages correctly
in a single time slot (4 bits/symbol), while TDMA requires 4 time
slots to decode. As the channel worsens, TDMA starts failing to

a set of orthogonal Walsh codes of length 12 [30]. So instead, for
K = 12 we use the orthogonal Walsh codes of length 16.

1

2

3

4

(19-26) (15-22) (6-14) (3-15) (4-12)

1

2

3

4

 N
u
m

b
e
r

o
f
D

e
c
o
d
e
d
 T

a
g
s

A
g
g
re

g
a
te

 B
it
 R

a
te

(B

it
s
/S

y
m

b
o
l)

Channel Quality (SNR Range in dB)

.BUZZ: Decoded Tags

TDMA: Decoded Tags

1

2

3

4

(19-26) (15-22) (6-14) (3-15) (4-12)

1

2

3

4

 N
u
m

b
e
r

o
f
D

e
c
o
d
e
d
 T

a
g
s

A
g
g
re

g
a
te

 B
it
 R

a
te

(B

it
s
/S

y
m

b
o
l)

Channel Quality (SNR Range in dB)

.BUZZ: Bit Rate

TDMA: Bit Rate

Figure 12—Under challenging conditions where TDMA experi-
ences 50% (median) of message loss, Buzz adapts the bit rate to
below 1 bit/symbol to match the channel quality and is able to de-
code with zero errors.

decode while Buzz gradually adapts the aggregate bit rate to below
1 bit/symbol. Notably, in the most challenging channel conditions,
TDMA decodes two tags’ messages incorrectly out of four, expe-
riencing a 50% message loss rate. It is worth noting that for the
same tag placement, CDMA has a message loss rate of 100%. In
contrast, Buzz adapts the aggregate bit rate of the network to 0.57
bits/symbol, taking seven time slots to correctly decode all tags’
messages. This demonstrates Buzz’s ability to adapt to a bit rate of
below 1 bit/symbol under challenging channel conditions, which is
important for improving reliability of backscatter systems.

Power Efficiency: We investigate Buzz’s impact on energy con-
sumption of the backscatter nodes, and compare it to TDMA and
CDMA. Backscatter energy consumption however is ultra-low, and
therefore if we measure it after individual message transmission,
the measurement noise may potentially exceed the consumed en-
ergy. Thus, to obtain robust measurements, we make each scheme
reply to a large number of queries from the reader and measure the
total energy consumption. The Moo has a small capacitor, leaving
us unable to measure this accumulative energy consumption. As a
workaround, we attach a large capacitor (C = 0.1F) to the Moo so
that it can store enough energy in advance for our experiment.
In each experiment, the USRP reader sends a sequence of 8800

queries spaced by 10.2 ms to K = 8 tags.8 Upon receiving each
query, each tag wakes up and replies its message using the three
schemes. We measure the energy consumed by the transfer as:

Econsumed =
1

2
CV

2
0 −

1

2
CV

2
f , (10)

where V0 is the voltage on the backscatter node’s capacitor before
the transfer and Vf is the voltage at the end of the transfer. We mea-
sure Econsumed for three different values of V0 since the amount of en-
ergy spent by a node depends on its initial voltage. For each value of
V0, we repeat the experiment for ten different positions of the tags
and reader. At each position, we run the schemes one after another
without changing the environment.
Fig. 13 shows the average net energy consumption for a single

run (averaged by 8800) across tags and positions. As expected, each
tag transmits for a much longer time in CDMA, and hence con-
sumes more energy. In contrast, independent of the starting volt-
age V0, Buzz does not consume much more energy than TDMA.
There are two primary reasons for this. First, the rateless code in
Buzz is sparse. Each node only transmits its message for very few
times. Second, although in TDMA each node transmits its message

8Backscatter nodes continue to harvest energy from the reader’s
RF signal even while they drain energy performing the operations
of the three schemes. To ensure a fair comparison, we keep the
duration of the reader’s continuous waveform the same between
queries for all three schemes.

 0

 5

 10

 15

 20

 25

 30

3 4 5

E
n

e
rg

y
 C

o
n

s
u

m
e

d
 (

u
J
)

Starting Voltage (V)

BUZZ
TDMA
CDMA

Figure 13—Energy consumption: Buzz does not consume much
more energy than TDMA. Both Buzz and TDMA are significantly
more energy efficient than CDMA.

only once, TDMA uses Miller-4 codes to protect the messages as
recommended and hence has to switch the impedance on the an-
tenna at 8 times of the data rate, which consumes more energy. If
TDMA did not use Miller-4, it would lose its robustness and ex-
perience higher error rates [7]. Consequently, Buzz does not incur
additional energy overhead to improve the efficiency and reliability
of backscatter systems.

10. IDENTIFYING THE BACKSCATTER NODES

Recall that Buzz’s node identification protocol consists of three
stages: 1) estimating the number of backscatter nodes with data,
2) reducing the scale of the compressive sensing problem, and 3)
compressive sensing decoding. In this section, we compare the ef-
ficiency of Buzz’s three-step protocol with two baselines.

• Framed Slotted Aloha (FSA): This is the scheme adopted in
the EPC Gen-2 standard [14]. Here, the reader initiates the iden-
tification phase by sending a query and allocating 2Q time slots.
Each tag picks a random slot and transmits a 16-bit random num-
ber (RN16), which serves as its temporary id. If a tag’s id is cor-
rectly decoded (i.e., no collision), the reader will ACK this 16-bit
temporary id. The reader adjusts Q to better accommodate the
remaining active tag population, and repeats the procedure un-
til all tags are identified. We follow the Q adjustment algorithm
described in the standard [14], which initially sets Q = 4. It in-
creases Q to Q + C when a collision is detected, and reduces Q
to Q− C when no tag replies. We use C = 0.3 as recommended
by the standard.

• FSA Augmented with Estimated K:We feed K̂, the estimate of
K derived from Stage 1 of Buzz’s identification protocol to FSA.
Once FSA knows K̂, it sets Q = log2K̂, i.e., allocating K̂ slots,
instead of Q = 4 as the initial value. The maximum throughput
for FSA is known to be 1

e
= 36.8%, and is achieved when the

number of allocated slots is equal to the number of nodes [8,
16]. Hence, setting Q = log2K̂ improves the efficiency of FSA.
Further, knowing K̂ can help FSA work with a smaller temporary
id space as in Buzz. Specifically, we let each tag in FSA transmit
a shorter random temporary id in the slot it picks instead of the
RN16. This reduces both the uplink and downlink transmission
time in FSA.

We run the experiment for K = 4, 8, 12 and 16 Moo tags, and
repeat for ten locations each. Fig. 14 shows the total amount of time
spent on identifying the tags, including the overhead for ACKing
the tags. While in Buzz, the reader only sends a single signal to
tell all tags to stop, in the compared schemes, each tag needs to be
ACKed individually.
For 16 tags, using Buzz’s compressive sensing scheme achieves

a 5.5× reduction in identification time over original FSA, and is
4.5× more efficient than FSA with estimated K. Also, as we can

 5

 10

 15

 20

 25

 4 6 8 10 12 14 16

Id
e

n
ti
fi
c
a

ti
o

n
 T

im
e

 (
m

s
)

Number of Tags

BUZZ
Framed Slotted Aloha

FSA with known K

Figure 14—Identification time: Compared to Framed Slotted
Aloha used in commercial RFID solutions, Buzz is significantly
more efficient in identifying the nodes that want to transmit. Us-
ing the estimate of K from Stage 1 of Buzz’s identification protocol
improves the efficiency of Framed Slotted Aloha by 20%-40%.

see, using the estimate of K from Stage 1 of Buzz reduces the iden-
tification time in FSA by 20%-40%. This is mainly because the size
of the temporary id space is reduced to a function of K, instead of
216. In conclusion, by compressing the sparse identity space and re-
ducing the reader feedback overhead, Buzz reaches the goal of sig-
nificantly speeding up the node identification phase in backscatter
systems. Combined with the 2× throughput gain in data transmis-
sion, Buzz reduces the overall communication time by 3.5×.

11. RELATED WORK

Various protocols have been proposed to improve the perfor-
mance of backscatter communication [31]. Most of them are based
on TDMA, such as Framed Slotted Aloha adopted by the EPC Gen-
2 RFID protocol [14] and the binary search tree algorithm [31]. Re-
searchers have also studied the use of CDMA in this scenario [37].
FDMA and SDMA based schemes are proposed in [36, 49]. The
common problems with these anti-collision protocols are twofold.
First, since collisions (over time, frequency, code or space) can
never be efficiently eliminated, these systems still end up wasting
resources over collisions. Second, they divide the medium evenly
among all backscatter nodes which typically have diverse channels.
In the context of ultra-low power systems (e.g., passive RFIDs),

[43] is the only piece of work similar to ours in the sense that it also
aims to decode collisions. However, it does not reduce identifica-
tion overhead, or address the rate adaptation problem, but instead
focuses on decoding repeated collisions in a low frequency proxim-
ity card environment. Further, the heavy machine learning decoders
employed in [43] are not practical in high throughput systems.
There has recently been a lot of work on decoding collisions in

WiFi networks to increase throughput [26, 21]. However, apply-
ing these techniques to backscatter networks is challenging. Suc-
cessive interference cancellation requires exponential differences
in the power levels of colliding nodes [26]. ZigZag decoding re-
quires an offset between colliding messages [21], which is ineffi-
cient given the short messages in backscatter systems.
In the area of compressive sensing, the closest to our work is an

algorithm in [40] which eliminates chunks of the space to improve
running time. However, it uses complex deterministic codes which
are not applicable to low power backscatter networks. [17] provides
a theoretical analysis of using compressive sensing for sparse detec-
tion in on-off random access channels. It requires nodes to transmit
arbitrary values chosen from a Gaussian distribution, which is in-
feasible since backscatter nodes can only transmit binary values.
Belief propagation in a sparse scenario is best-known for its use

in LDPC codes [20]. Our belief propagation algorithm is similar to
a bit flipping algorithm introduced in [33]. However, the algorith-
mic novelty of Buzz lies in distributedly coding the bits of mutiple
transmitters, on the air. Accordingly, Buzz’s bit flipping algorithm

is devised to effectively decode such a rateless code on a complex
constellation graph representing multiple sources, unlike bit flip-
ping decoding in the modulo-2 domain often employed by the cod-
ing theory community [33, 44].
Lastly, the rate adaptation problem in wireless networks has been

extensively studied. Our design is inspired by recent advances in
automatic rate adaptation using rateless codes, such as spinal and
strider codes [39, 25], but differs in that we adapt the aggregate
bit rate of the network through the design of a sparse distributed
rateless code that is easy to decode using belief propagation.

12. CONCLUSION

For ultra-low power backscatter networks to reach the stage of
widespread deployment, issues of reliability and efficiency must be
addressed. This paper addresses these issues by modeling uplink
transmissions in backscatter networks as if they were performed by
a single virtual sender and treating collisions as a sparse rateless

code across the nodes. We introduce a novel compressive sensing
algorithm which significantly speeds up backscatter node identifi-
cation and a belief propagation algorithm which enables distributed
rate adaptation in data transfer. Evaluation of the new design shows
a large improvement in both reliability and efficiency of backscatter
communication.

Acknowledgments: We thank Nate Kushman, Ben Ransford, Shane
Clark, Fadel Adib, Arthur Berger, Yu-Chih Tung, Phillip Nadeau, Shyam-
nath Gollakota, Hong Zhang, the reviewers and our shepherd, Michael
Mitzenmacher for their insightful comments. We also thank Omid Aryan
for helping with the experimental setup. This research is funded by NSF
and the Interconnect Focus Center. We thank the members of the MIT Cen-
ter for Wireless Networks and Mobile Computing, including Amazon.com,
Cisco, Intel, Mediatek, Microsoft, and ST Microelectronics, for their inter-
est and support.

13. REFERENCES
[1] Alien Technology Inc. ALN-9640 Squiggle Inlay.

www.alientechnology.com.
[2] Alien Technology Inc. Common RFID Implementation Issues. Tech.

Report. http://www.alientechnology.com/docs/.
[3] P. Bardell, W. McAnney, and J. Savir. Built-In Test for VLSI:

Pseudorandom Techniques. John Wiley & Sons, 1987.
[4] R. Berinde, A. Gilbert, P. Indyk, H. Karloff, and M. Strauss.

Combining geometry and combinatorics: a unified approach to sparse
signal recovery. Allerton Conference, 2008.

[5] R. Berinde and P. Indyk. Sequential sparse matching pursuit. Allerton
Conference, 2009.

[6] M. Brazeal. RFID: Improving the Customer Experience. Paramount
Market Publishing, 2009.

[7] M. Buettner and D. Wetherall. A Gen 2. RFID Monitor Based on the
USRP. SIGCOMM Communication Review, 2010.

[8] M. Buettner and D. Wetherall. A Software Radio-based UHF RFID
Reader for PHY/MAC Experimentation. IEEE RFID, 2011.

[9] E. Candès, J. Romberg, and T. Tao. Stable signal recovery incomplete
and inaccurate measurements. Comm. Pure Appl. Math., 2006.

[10] E. Candes and T. Tao. Near-optimal signal recovery from random
projections and universal encoding strategies. IEEE Transactions on

Information Theory, November 2004.
[11] I. Carron. Compressive sensing: Section 4 sparse recovery solvers.

http://sites.google.com/site/igorcarron2/cs, 2012.
[12] N. Cho, S.-J. Song, S. Kim, S. Kim, and H.-J. Yoo. A 5.1-µw UHF

RFID tag chip integrated with sensors for wireless environmental
monitoring. In ESSCIRC, 2005.

[13] D. Donoho. Compressed sensing. IEEE Trans. on Info. Theory, 2006.
[14] EPCglobal Inc. EPCglobal Class 1 Generation 2 V. 1.2.0.

http://www.gs1.org/gsmp/kc/epcglobal/uhfc1g2.
[15] C. Estan, G. Varghese, and M. Fisk. Bitmap algorithms for counting

active flows on high speed links. In IMC, 2003.
[16] K. Finkenzeller. RFID Handbook. John Wiley & Sons, 2010.
[17] A. Fletcher, V. Goyal, and S. Rangan. A sparsity detection framework

for on-off random access channels. In ISIT, 2009.

[18] Frost & Sullivan. Global RFID healthcare and pharmaceutical
market. Industry Report, 2011.

[19] Frost & Sullivan. Global RFID market. Industry Report, 2011.
[20] R. Gallager. Low-density parity-check codes. IEEE Transactions on

Information Theory, 1962.
[21] S. Gollakota and D. Katabi. ZigZag decoding: Combating hidden

terminals in wireless networks. In SIGCOMM, 2008.
[22] M. Grant, S. Boyd, and Y. Ye. CVX: Matlab software for disciplined

convex programming. http://cvxr.com/cvx.
[23] R. E. Greeff, F. W. Smith, and D. K. Ovard. RFID device time

synchronization. Patent US7889083, 2006.
[24] J. Griffin and G. Durgin. Complete link budgets for backscatter-radio

and RFID systems. IEEE Antennas and Propagation Magazine, 2009.
[25] A. Gudipati and S. Katti. Strider: Automatic rate adaptation and

collision handling. In ACM SIGCOMM, 2011.
[26] D. Halperin, T. Anderson, and D. Wetherall. Taking the sting out of

carrier sense: Interference cancellation for wireless lans. In ACM
MobiCom, 2008.

[27] Impinj Speedway. R420 RFID reader. www.impinj.com.
[28] E. Inc. Universal Software Radio Peripheral. http://ettus.com.
[29] T. Jayram and D. Woodruf. Optimal bounds for

Johnson-Lindenstrauss transforms and streaming problems with
sub-constant error. In SODA, 2011.

[30] M. Karim and M. Sarraf. W-CDMA and CDMA2000 for 3G mobile

networks. McGraw-Hill, 2002.
[31] D. Klair, K.-W. Chin, and R. Raad. A survey and tutorial of RFID

anti-collision protocols. IEEE Comm. Surveys, 2010.
[32] M. Kodialam and T. Nandagopal. Fast and reliable estimation

schemes in RFID systems. MobiCom, 2006.
[33] Y. Kou, S. Lin, and M. Fossorier. Low-density parity-check codes

based on finite geometries: a rediscovery and new results.
Transactions on Information Theory, 2001.

[34] Laird Technologies. Crushcraft S9028PCRW RFID antenna.
http://www.arcadianinc.com/.

[35] T. Lee. The Design of CMOS Radio-Frequency Integrated Circuits.
Cambridge University Press, 1998.

[36] H.-C. Liu and J.-P. Ciou. Performance analysis of multi-carrier RFID
systems. In SPECTS, 2009.

[37] C. Mutti and C. Floerkemeier. CDMA-based RFID systems in dense
scenarios: Concepts and challenges. In IEEE Int. Conf. RFID, 2008.

[38] M. Pelino, C. Mines, J. Warner, and S. Musto. M2M connectivity
helps telcos offset declining traditional services. Forrester Research,
2011.

[39] J. Perry, H. Balakrishnan, and D. Shah. Rateless spinal codes. In
HotNets-X, 2011.

[40] E. Porat and M. Strauss. Sublinear time, measurement optimal, sparse
recovery for all. In SODA, 2012.

[41] J. Posamentier. RFID tag clock synchronization. Patent
US20070205871, 2006.

[42] PowerID. Battery assisted passive RFID tags read at 160+ feet. The
RFID Network, 2012. www.rfid.net.

[43] D. Shen, G. Woo, A. Lippman, D. Reed, and J. Wang. Separation of
multiple passive RFID signals using software defined radio. In IEEE
Int. Conference on RFID, 2009.

[44] M. Sipser and D. Spielman. Expander codes. IEEE Transactions on

Information Theory, 42:1710–1722, 1996.
[45] C. Swedberg. Visual data center combines RFID with 3-d thermal

imaging. RFID Journal, July 2010.
[46] D. Tse and P. Vishwanath. Fundamentals of Wireless

Communications. Cambridge University Press, 2005.
[47] M. Vutukuru, H. Balakrishnan, and K. Jamieson. Cross-layer wireless

bit rate adaptation. In ACM SIGCOMM, 2009.
[48] A. Wang, S. Cho, C. Sodini, and A. Chandrakasan. Energy efficient

modulation and mac for asymmetric RF microsensor systems. In Int.
Symposium on Low Power Electronics, 2001.

[49] J. Yu, K. Liu, and G. Yan. A novel RFID anti-collision algorithm
based on sdma. InWiCOM, 2008.

[50] H. Zhang, J. Gummeson, B. Ransford, and K. Fu. Moo: A batteryless
computational RFID and sensing platform. Tech Report UMASS,
2011. http://spqr.cs.umass.edu/moo/.

[51] Y. Zhang, H.-H. Chen, and M. Guizani. Cooperative Wireless

Communications. CRC Press, 2009.
[52] T. Zimmerman. Assessing the capabilities of RFID technologies.

Gartner, 2009.

	Introduction
	Backscatter Communication
	Illustrative Examples
	Collisions Enable Distributed Rate Adaptation
	Collisions Facilitate Assigning Unique IDs

	Problem Domain
	Node Identification Using Compressive Sensing
	Optimizing Performance

	Distributed Rate Adaptation
	Implementation
	Microbenchmark
	Synchronization
	Understanding the Belief Propagation Decoder

	Results for Uplink Transmission
	Identifying the Backscatter Nodes
	Related Work
	Conclusion
	References

