
A Workflow for Differentially-Private Graph Synthesis

Davide Proserpio
Boston University

dproserp@cs.bu.edu

Sharon Goldberg
Boston University

goldbe@cs.bu.edu

Frank McSherry
Microsoft Research

mcsherry@microsoft.com

ABSTRACT
We present a new workflow for differentially-private publi-
cation of graph topologies. First, we produce differentially-
private measurements of interesting graph statistics using
our new version of the PINQ programming language,
Weighted PINQ, which is based on a generalization of
differential privacy to weighted sets. Next, we show how to
generate graphs that fit any set of measured graph statis-
tics, even if they are inconsistent (due to noise), or if they
are only indirectly related to actual statistics that we want
our synthetic graph to preserve. We combine the answers
to Weighted PINQ queries with an incremental evaluator
(Markov Chain Monte Carlo (MCMC)) to synthesize graphs
where the statistic of interest aligns with that of the pro-
tected graph. This paper presents our preliminary results;
we show how to cast a few graph statistics (degree distribu-
tion, edge multiplicity, joint degree distribution) as queries
in Weighted PINQ, and then present experimental results
synthesizing graphs generated from answers to these queries.

Categories and Subject Descriptors
H.3 [Online Information Services]: Data Sharing

General Terms
Security, Algorithms, Measurement

Keywords
Differential Privacy, Graphs, Privacy, Social Networks

1. INTRODUCTION
Despite recent advances in query languages [8, 12] that

support differential-privacy [2], several emerging areas re-
main underserved by these languages. Perhaps the most
notable is social graph analysis, where edges in the graph
reflect private information between the nodes. Informally,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSN’12, August 17, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1480-0/12/08 ...$10.00.

differential privacy guarantees that the presence or absence
of individual records (edges) is hard to infer from the anal-
ysis output. Because most interesting social graph analyses
reflect paths through the graph, it is difficult to isolate the
influence of a single edge, and mask its presence or absence.

1.1 Exploiting non-uniform noise...
To illustrate this difficulty, consider the problem of pro-

ducing a differentially private measure of a fundamental
graph statistic, the joint degree distribution (JDD): the counts,
for each pair (d1, d2), of the number of edges incident on
nodes with degree d1 and degree d2.

If the maximum node degree in the graph was dmax,
a naive application of sensitivity-based differential privacy
would require that noise proportional to 4dmax +1 is added
to the count at each JDD entry; this would protect privacy
even in the worst case, where d1 = d2 = dmax. While this is
great for privacy, the downside is that when dmax is large,
slathering on noise like this ruins the accuracy of our results.

Is it really necessary to add so much noise to all entries
of the JDD? Happily, the answer is no. The analysis of
[13] shows that the noise required to protect the privacy of
the JDD can be non-uniform: for each (d1, d2) entry of the
JDD, it suffices to add noise proportional to 4max(d1, d2).
Indeed, one consequence of our work is that these sorts of
non-uniformities exist in many graph analysis problems, e.g.,
counting triangles, motifs, etc.. In each case, features on
low degree vertices are measured very accurately, with less
accurate measurements on higher degree vertices.

1.2 ...without custom technical analyses!
We can significantly improve the accuracy of differentially

private graph measurements by exploiting opportunities to
apply noise non-uniformly [13]. However, each new measure-
ment algorithm requires a new non-trivial privacy analysis,
that can be quite subtle and error prone. Moreover, exist-
ing languages like PINQ are no help, as they are explicitly
designed not to rely on custom analyses by unreliable users.

In this work, we use a new declarative programming lan-
guage, Weighted PINQ, designed to allow the user to ex-
ploit opportunities for non-uniformity while still automati-
cally imposing differential privacy guarantees. The key idea
built into the language is the following observation: rather
than add noise non-uniformly to various aggregates of inte-
gral records, we add noise uniformly to aggregates of records
whose weights have been non-uniformly scaled down. The
operators in the language are perfectly positioned to identify
problem records and scale down their weight, rather than
poison the analysis by increasing the noise for all records.

13

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2342549.2342553&domain=pdf&date_stamp=2012-08-17

1.3 A new workflow for graph release.
We describe a three-phase workflow that can generate syn-

thetic graphs that match any properties of the true (secret)
graph that we can measure in Weighted PINQ:

Phase 1. Measure the secret graph. First, we cast
various graph properties as queries in Weighted PINQ, and
produce differentially private (noisy) measurements of the
secret graph. Some of the queries will have natural inter-
pretations, e.g., a degree complementary cumulative distri-
bution function (CCDF) query (Section 3.1). Other queries
will be only indirectly meaningful, in that they constrain the
set of graphs which could have led to them but they will not
explicitly reveal the quantity of interest (Section 5.4).

At the end of Phase 1, we discard the secret graph and
proceed using only the differentially private measurements
taken from it. When these measurements are sufficient, we
can report them and stop. However, we can go much fur-
ther using probabilistic inference [14], i.e., by fitting a ran-
dom graph to our measurements. While our measurements
are noisy, they constrain the set of plausible graphs that
could lead to them. Moreover, the properties of this set of
plausible graphs may be very concentrated, even if we did
not measure these properties directly. For example, the set
of graphs fitting both our noisy JDD measurements and our
(very accurate) degree CCDF measurements should have as-
sortativity very close to the secret graph, even if they have
little else in common. Thus, we proceed as follows:

Phase 2. Create a “seed” synthetic graph. Our
measurements typically contain queries about degrees that,
cleaned up, are sufficient to seed a simple random graph
generator. We do so, as a very primitive approximation to
the sort of graph we would like to release.

Phase 3. Correct the synthetic graph. Starting
from the seed synthetic graph produced in the second phase,
we search for synthetic graphs whose accurate (noise-free)
answers to our Weighted PINQ queries are similar to the
noisy measurements we took in the first phase. We perform
this search with Markov-Chain Monte Carlo (MCMC), a
traditional approach from machine learning used to search
for datasets matching probabilistic observations, in our case
graphs matching noisy answers to weighted PINQ queries.

Generally, MCMC involves proposing a new candidate
(synthetic graph) at each iteration, and re-evaluating the
Weighted PINQ queries on this graph to see if the fit has
improved. While this could be time consuming, each MCMC
iteration is designed to introduce only small updates to the
candidate graph (e.g., swapping one edge for another), and
our implementation can efficiently process small changes to
its input [10]. Depending on query complexity, we can pro-
cess up to tens of thousands of candidate graphs per second.

1.4 Our results and roadmap.
This short paper reports on our initial experiences us-

ing our new workflow, with full details in our technical re-
port [10]. We focus on a small number of interesting graph
statistics – namely, the degree distribution, edge multiplic-
ity, assortativity, and JDD – and show how our workflow
can generate synthetic graphs that match these statistics.
But these statistics are by no means the end of the story;
we have developed additional queries measuring other statis-
tics of interest, e.g., clustering coefficient, triangles, graph
motifs, etc., and are evaluating their efficacy.

We start in Section 2 with a brief overview of Weighted
PINQ. In Section 3 we present Weighted PINQ queries for
first-order graph statistics, and experimental results of seed
synthetic graphs that were produced using only these statis-
tics (i.e., in Phase 2). In Section 4, we show how MCMC
can be used to“correct” edge multiplicities in these synthetic
graphs, and in Section 5 we show how we used an indirect
measurement of the JDD to“correct” the assortativity of our
synthetic graphs.

2. WEIGHTED DP AND PINQ
We model a dataset A as a weighting of the records:

A : D → R, where A(r) represents the weight of r in A.
Traditionally this number would be a non-negative integer,
but we allow any real number. We provide the following
generalization of differential privacy:

Definition 2.1. A randomized computation M provides
ε-differential privacy if for any weighted datasets A and B,
and any set of possible outputs S ⊆ Range(M),

Pr[M(A) ∈ S] ≤ Pr[M(B) ∈ S]× exp(ε× ‖A−B‖) .
where ‖A−B‖ =

∑
x |A(x)−B(x)|.

This definition is equivalent to differential privacy on inte-
gral weighted datasets, but is stricter on weighted datasets.

Node vs. edge privacy. Our secret datasets contain
directed edges with weight 1.0, where differential privacy
masks the presence or absence of each edge. The set of all
outgoing edges from a vertex v can be protected by weighting
down each directed edge by 0.5/dv , trading some accuracy
for a stronger notion of privacy. Note that this is not as
strong as “node privacy”, where the existence of each vertex
is masked; Ashton Kutcher’s existence on Twitter would not
be masked, though each of his followers’ shame would be.

2.1 Weighted PINQ.
Like Privacy Integrated Queries (PINQ) [8], Weighted

PINQ is a declarative programming language over datasets
that guarantees differential privacy for every program writ-
ten in the language. We refer the reader to [8] for details on
the design philosophy behind these languages, and to [10] for
full technical details on Weighted PINQ’s operators. Here
we only provide a short overview of how queries are written
in Weighted PINQ.

Overview. Weighted PINQ can apply two types of op-
erators to a (secret) dataset: transformations, and noisy ag-
gregations. Transformation operators (e.g., Select, Where,
GroupBy, SelectMany, Join, ...) transform a weighted secret
dataset while automatically rescaling the resulting record
weights. The datasets that result from these transformations
remain secret; before they can be exposed to the user, they
must be fed to noisy aggregation operators (e.g., Noisy-

Count) that aggregate the weighted secret records, add (ε-
amplitude Laplace) noise, and expose the results. Each
transformation operator scales down record weights in a
manner that guarantees differential privacy after noisy ag-
gregation (e.g., Join always rescales weights per Equation (1)
in Section 5.2).

Weighted PINQ vs. PINQ. Weighted PINQ inherits
many of PINQs operators. However, because it acts on
records of arbitrary weights (rather than integral weights),
it deviates from PINQ in a few important ways:

14

ITEM W
(A,C) 1
(B,D) 1
(B,C) 1
(D,B) 1
(D,C) 1
(C,A) 1
(C,B) 1
(C,D) 1

Select

ITEM W
A 1
B 2
D 2
C 3

Shave

ITEM W
(A,0) 1
(B,0) 1
(B,1) 1
(C,0) 1
(C,1) 1
(C,2) 1
(D,0) 1
(D,1) 1

Select

ITEM W
0 4
1 3
2 1
3 0

ccdfCounts

Shave

ITEM W
(0,0) 1
(0,1) 1
(0,2) 1
(0,3) 1
(1,0) 1
(1,1) 1
(1,2) 1
(2,0) 1

Select

ITEM W
0 3
1 2
2 2
3 1

degSeqCounts

Noisy
Count

Noisy
Count

First, transformations in PINQ that required either scal-
ing up the noise or the privacy parameter ε, now scale down
the weights associated with records. The most germane op-
erators for this note are SelectMany (produces many records
(e.g., k), each with weight scaled down by a factor of k),
GroupBy (collects records, and results in a group with weight
divided by 2), and Join (produces the cross-product of records,
with weights rescaled as in Equation (1)). Join is the workhorse
of non-uniformity in our graph analysis.

Second, there is a transformation operator to manipu-
late weights, Shave, which takes a sequence of weights {wi}
and transforms each record x with weight w into the set of
records (0, x), (1, x), . . . with weights w0, w1, . . ., for as many
terms as

∑
i wi ≤ w. The functional inverse of Shave is Se-

lect, which can transform each wi-weighted indexed pair
from (i, x) to x whose weight re-accumulates to

∑
i wi = w.

Third, Weighted PINQ’s NoisyCount now returns a dic-
tionary from records to noised weights, rather than a single
noisy count. If one looks up the value of a record not in the
input, a weight of zero is introduced and noise added. This
generalizes PINQ’s NoisyCount to weights and multi-output
“histogram queries” [2]; to reproduce PINQ’s NoisyCount we
can first map all records to some known value, e.g., true.

Writing “good” queries. We emphasize that the fact
that a query is expressed using Weighted PINQ operators
(i.e., transformations, followed by aggregations) suffices to
prove that it provides differential privacy; the task of a user
then becomes to write a “good” Weighted PINQ query. A
query’s quality is judged by (1) its computational complex-
ity and, since results in Weighted PINQ are always noisy, (2)
its accuracy. Writing “good” queries requires ingenuity; here
we present some example queries that provide high accuracy
and performance with little loss of privacy. We note that it
can be more challenging to write “good” queries that directly
measure properties with high sensitivity [2] (e.g., graph di-
ameter); one way to get around this could combine indirect
measurements with probabilistic inference (Section 1.3).

3. CREATING THE SEED GRAPH
We start by creating a “seed” synthetic graph based on

queries related to the degree distribution.

Weighted PINQ Operators. The queries in this section
use the NoisyCount aggregation described in Section 2.1, as
well as Select and Where transformations that function in
the same manner as their namesakes in LINQ and PINQ
without rescaling record weights [8, 10].

3.1 Degree CCDF
We present a Weighted PINQ query for computing the

complementary cumulative distribution function
(CCDF) of node outdegree. Starting from edges, the se-
cret dataset of unit-weight directed edges (no, ni), do:

var deqCCDF = edges.Select(edge => edge.src)

.Shave(1.0)

.Select((index, srcname) => index);

var ccdfCounts = degCCDF.NoisyCount(epsilon);

The steps of the query are depicted in the figure above. We
start by transforming the dataset so that each record is a
node’s name nj , weighted its outdegree dj . Next, we shave
each nj record into dj unique, unit-weight pairs: (nj , 0), (nj , 1),
..., (nj , dj − 1). By keeping only the index of the pair, we
obtain records i = 0, 1, 2, ..., dmax − 1, each weighted by the
number of nodes in the graph with degree greater than i. Fi-
nally, taking a noisy sum the weight of each record gives the
outdegree CCDF. (Unsurprisingly, replacing the first line of
our algorithm with edge.Select(edge => edge.tgt) would re-
sult in the indegree CCDF.) Neither Shave nor Select scale
down record’s weight; it follows that our CCDF query pro-
vides ε-differential privacy while preserving all of the weight
in our edges dataset.

3.2 Degree Sequence
The degree CCDF is the functional inverse of the degree

sequence, i.e., the monotonically non-increasing sequence of
node degrees in the graph, i.e., d1, d2, ..., dn such that di ≥
di+1. To get the degree sequence, we need only transpose
the x- and y-axis of a plot of the degree CCDF. We can do
this in weighted PINQ without scaling down the weight of
any of our records:

var deqSeq = degCCDF.Shave(1.0)
.Select((index, degree) => index);

var degSeqCounts = degSeq.NoisyCount(epsilon);

This query, illustrated in the figure above, is actually a
Weighted PINQ implementation of an ε-differential privacy
algorithm proposed by Hay et al. [3]!

Query complexity. At every point in these two queries
we have at most |E| items, resulting in a storage complexity
of |E|. Each transformation takes linear time, so running
these queries on a new (protected) graph takes time O(|E|).

3.3 Relating the degree sequence & CCDF
Hay et al. observed that a significant amount of noise

can be “cleaned up” in the degree sequence by using isotonic
regression (because the degree sequence is known to be non-
increasing) [3, 6]. We observe that the same is true for the
CCDF, and moreover the degree sequence and CCDF give
accurate information about different aspects of the graph:
the former accurately reports the graph’s highest degrees,
whereas the latter (its transpose) better reports the num-
bers of low degree nodes. While PAVA [6], and indepen-
dently [3], can regress either the CCDF or the degree se-
quence to a consistent non-increasing sequence, in [10] we

15

develop a regression technique based on shortest paths that
finds a single sequence optimizing the pair of measurements,
producing a degree sequence that is accurate for both the
high- and low-degree nodes.

Nodes Edges Assort’y max iDeg max oDeg
AS Graph 14233 32600 -0.306 172 2389
Collab. 5242 28980 +0.659 81 81

Table 1: Original (secret) graph statistics

0 500 1000 1500 2000 2500 3000

0

20

40

60

80

100

Nodes

D
eg

re
e

300 350

10

12

Before regression
After regression
Protected graph

SelfLoops = 3
Multiedges = 1120
Assortativity = −0.2689
RMSE= 0.0006

Figure 1: Degree Sequence, ARIN AS graph.

0 1000 2000 3000 4000 5000
−40

−20

0

20

40

60

80

100

120

140

Nodes

D
eg

re
e

60 80 100 120 140
33

34

35

Before regression
After regression
Protected graph

Selfloops = 4
Multiedges = 146
Assortativity = −0.0085
RMSE = 0.0050

Figure 2: Degree Sequence, Collab. Graph.

3.4 Results: Initial synthetic graphs.
We used a version of the 1K-graph generator to generate a

random graph that fits (1) our “cleaned-up” non-increasing
outdegree sequence (that has privacy cost 2ε since it was
generated from two ε-dp measurements, namely, degree se-
quence and CCDF) and (2) our “cleaned-up” indegree se-
quence as well as (3) an ε-dp measure of the number of
nodes in the graph (see query in [10]). Setting ε = 0.1, these
synthetic graphs use a total privacy cost of 5ε = 0.5.

Due to space limitations, we only present results for two
graphs; a graph of autonomous systems in the ARIN re-
gion [1] (available on our project website), the Arxiv GR-QC
collaboration graph [7]. Statistics about the original graphs
are in Table 1. In Figures 2, 1, we plot measured degree
sequences, both before regression and after regression, and
compare them to the degree sequence of the actual protected
graph. Regression removes most of the noise in the mea-
sured degree sequence; the normalized root-mean-square-
error (RSME) after regression for each graph is < 1%.

ITEM W
(A,D) 2
(B,D) 3
(C,C) 2
(D,C) 1

ITEM W
(0,0) 1
(0,1) 1
(0,0) 1
(0,1) 1
(0,2) 1
(1,0) 1
(1,1) 1
(0,0) 1

=

ITEM W
(0,0) 3
(0,1) 2
(0,2) 1
(1,0) 1
(1,1) 1

ITEM W
(A,D),0 1
(A,D),1 1
(B,D),0 1
(B,D),1 1
(B,D),2 1
(C,C),0 1
(C,C),1 1
(D,C),0 1

SelectShave

0: edges
1: selfloops

edges}
} self-loops

multi

Noisy
Count

4. MULTIEDGES AND SELF-LOOPS
Figures 2 and 1 reveal that our seed graphs contain self-

loops (i.e., edges from a node to itself) and a large number
of multiedges (i.e., repeated edges). By writing a Weighted
PINQ query to measure the number of multiedges and self-
loops, we can cause MCMC to prefer graphs that respect
their presence or absence.

Query. The following query uses Shave to report the
multiplicity of each edge, and then Select to classify each
as a self-loop or not. The numbers of each type are then
counted, with noise. Since we only use Select and Shave,
this query is ε-dp without scaling record weights:

var multi = edges.Shave(1.0)
.Select((i, e) => new

Pair(i, e.src == e.tgt ? 1 : 0))
.NoisyCount(epsilon);

The query is illustrated in the figure above.

MCMC. We fed our seed synthetic graph into MCMC,
and let it correct the self-loops and multiplicity. Our edge-
swapping MCMC algorithm first repeats all the measure-
ments taken on the protected graphs on the seed synthetic
graph; then, at each iteration, it (1) randomly chooses a
pair of edges (n1, n2), (n

′
1, n

′
2) from the synthetic graph, (2)

replaces them with (n1, n
′
2), (n

′
1, n2), incrementally updates

its measurements (which can be done in constant time), and
(3) probabilistically decides to either accept the replacement
edges, or revert to the original pair of edges [10]. MCMC
was consistently able to remove all of the extra multiedges
and self loops in the seed graphs depicted in Figure 1 and 2.
Because our edge-swapping MCMC algorithm does not alter
the in- and out-degree distributions, it only improves the fit
to the measurements by correcting self-loop and multi-edges.

Privacy. An ε = 0.1 query is added to those used to
generate the seed graph, increasing privacy cost to 6ε.

5. JOINT DEGREE DISTRIBUTION
Our next objective is to correct the assortativity of our

synthetic graph. The assortativity can be computed directly
from the joint degree distribution (JDD), and gives a mea-
sure of degree correlations. Assortativity is high (close to
+1) if nodes tend to be connected to nodes of similar de-
gree, low (close to -1) if the opposite is true, and ≈ 0 in a
random graph. Fortunately, we need not measure the JDD
directly. Instead, we measure a property that is indirectly
related to the JDD, thus forcing MCMC to fit the synthetic
graph to the assortativity of the original graph.

5.1 Using the GroupBy transformation
Our JDD query uses the GroupBy transformation, which

we describe in detail in [10]. For our purposes, on inte-
gral datasets this transformation takes a function mapping
records to key values and a function from a set of records to

16

0 200 400 600 800 1000
−10

0

10

20

30

40

50

60

Degree Product

Fr
eq

ue
nc

y

80 100 120
0

2

4

6 Noisy
Actual
After MCMC

RMSE = 0.012

Figure 3: JDD of Collab., 1.0-differential privacy

a result value, and for each observed key emits a pair with
weight 0.5 containing the key and the function applied to
the corresponding set of records.

We can obtain a dataset containing (node, indegree) pairs,
each of weight 0.5, by taking

var iDegs = edges.GroupBy(e => e.tgt, l => l.Count());

Importantly, these counts are taken without noise. The re-
sults of GroupBy are still protected data, and may only be
examined through noisy aggregation.

5.2 Using the Join transformation
Next, we show how to use the Join transformation, al-

lowing us to scale down record weights in interesting, non-
uniform ways. Join takes two datasets, two key selector
functions, and a reducer from pairs of elements to a result
type. For each pair of records with matching keys, it applies
the reduction function and emits the result. In PINQ, Join
mangled the results when matches were not unique, to pre-
vent multiple release of a single input. Weighted PINQ will
release all the records, but with weights scaled down.

Suppose we Join two datasets A,B, and let Ak and Bk

be the restrictions of A and B, respectively, to those records
mapping to a key k under their key functions. For every k
and for every pair (α, β) ∈ Ak×Bk, the Join operator emits
the record reducer(α, β) with weight

A(α)×B(β)

‖Ak‖+ ‖Bk‖ (1)

The weight of each output record is the product of the cor-
responding weights, divided by the sum of all weights with
the same key. This setting of weights ensure that any ε-
dp measurement of the output provides ε-dp for each input.
Note that if the same dataset is used twice, in each input
for example, it incurs the ε cost twice.

As an example, consider applying the Join to our edges
dataset and the iDegs dataset produced above:

var iDegEdges =
edges.Join(iDegs, edge => edge.tgt, ideg => ideg.node,

(edge, ideg) => new Pair(edge, ideg.deg))

If the di(v) in-neighbors of v are u1, . . . udi(v), then the re-
strictions of edges and iDegs to key v are:

edgesv = {(“(u1, v)”, 1), . . . , (“(udi(v), v)”, 1)}
iDegsv = {(“(v, di(v))”, 0.5)}

The outputs for each key v are therefore

“((u1, v), di(v))”, “((u2, v), di(v))”, ..., “((udi , v), di(v))” .

We have ‖edgesv‖ = di(v) and ‖iDegsv‖ = 0.5, so the the
weight of every output element equals

0.5/(di(v) + 0.5) = 1/(2di(v) + 1) .

Note that the result uses edges twice (iDegs derives from
edges) so using the dataset will cost twice the ε.

5.3 A direct measure of the JDD.
Given the (edge, indegree) dataset iDegEdges described

above, we form the analogous (edge, outdegree) dataset
oDegEdges, and join the two together to obtain the (out-
degree, indegree) dataset required for the JDD:

var jdd =
oDegEdges.Join(iDegEdges, o => o.edge, i => i.edge,

(i, o) => new Pair(o.deg, i.deg));

var jddCount = jdd.NoisyCount(epsilon);

For each edge (u, v), the weighted sets oDegEdges(u,v) and
iDegEdges(u,v) both contain single elements, with weights

(2do(u) + 1)−1 and (2di(v) + 1)−1, respectively. The re-
sulting output record, (do(u), di(v)), has weight (2do(u) +
2di(v) + 2)−1. Taking a NoisyCount of the jdd dataset
provides a 4ε-differential privacy measure of the JDD (as
each input uses edges twice). This corresponds to an ε-
differential privacy measurement of the true count of (d1, d2)
edges with noise 8(d1+d2+1)/ε, similar to (but worse than)
the 4max(d1, d2)/ε from the custom analysis of [13].

5.4 An indirect measure of the JDD.
Noise of magnitude 8(d1 + d2 + 1)/ε in counts that are

often zero and rarely much more can be a serious problem;
even 4max(d1, d2) was found to be too much to add to all
entries in [13]. At this point, the combination of Weighted
PINQ and MCMC shines. Instead of directly computing a
NoisyCount on the jdd dataset, we significantly improve our
signal-to-noise ratio by bucketing degrees based on informa-
tion from our degree distribution measurements, and then
taking a NoisyCount on the larger weight in each bucket:

var jddBucketCount = jdd.Select(x => bucket(x, buckets))
.NoisyCount(epsilon);

The bucket function takes the pair (do(u), di(v)) to a pair
(x, y) corresponding to the indices of the buckets the degrees
land in. Weighted PINQ guarantees differential privacy (we
don’t need a new analysis) and MCMC focuses on graphs
with the same bucket counts (we don’t need any new post-
processing). All that we need to do is see how well it works.

Query complexity. We have at most O(|E|) items at
every point in our JDD queries, resulting in a storage and
computational complexity of O(|E|) when we run the query
on a new (protected) graph. Incrementally updating the
measurement during an iteration of MCMC that swaps edges
(u, v), (u′, v′) takes time O(do(u) + di(u

′) + do(v) + di(v
′)).

5.5 Results: Fitting the assortativity.
The assortativity of our seed AS graph (Figure 1) is al-

ready quite close to that of the original AS graph (Table 1).
Therefore, we only present results for the collaboration graph,

17

0 0.5 1 1.5 2

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MCMC Steps

A
ss

or
ta

tiv
ity

49
676
961
1600
No Buckets

Figure 4: Assort’y vs MCMC steps (Collab.)

generated using the six previously-discussed queries of pri-
vacy cost ε, as well as a JDD query with cost 4ε, for total
privacy cost of 10ε = 1.0.

Figure 3. We plot the “scaled-down JDD” where the
count in each pair (do, di) is scaled by (2do + 2di + 2)−1.
We compare the measured value (jddCount) to that of the
original graph, and the synthetic graph after 2M iterations
of MCMC. (For simplicity, we plot the degree product dodi
on the x-axis instead of the two-dimensional degree pairs
(do, di)). While our measured JDD is extremely noisy for the
high degree pairs, it has much better accuracy for the low
degree pairs. If we use MCMC to combine the noisy JDD
measurement with our highly-accurate degree distribution
measurements (Figure 2), we clean up most of this noise;
our scaled-down JDD has normalized RSME of only 0.01
(averaging five trials) after MCMC.

Figure 4. Next, we consider the effect of bucketizing. We
plot the assortativity of our synthetic graph versus the num-
ber of iterations of MCMC, for different choices of buckets.
We plot the mean of five experiments and their relative stan-
dard deviation. Our synthetic graphs start out with assorta-
tivity ≈ 0, and climb towards the target assortativity of 0.65
as MCMC proceeds. Moreover, there seems to be a ‘happy-
medium’ for bucketizing; with too few buckets, we lose too
much information, and with too many buckets (or none at
all), our signal-to-noise ratio is too low. For this configu-
ration, using 312 = 961 buckets works best; averaging five
trials we obtain assortativity 0.62, and normalized RSME
of 0.003 and 0.009 in the degree CCDF and “scaled-down
JDD” respectively, with an average of 6 spurious multiedges
and 10 self-loops (the real collaboration graph has 12 self
loops). Note that different graphs or choices of the privacy
parameter ε may require different bucketizing strategies; we
are characterizing this as part of our ongoing work.

6. RELATED WORK
Since the introduction of differential privacy [2], numer-

ous bespoke analyses have emerged for specific problems, as
well as general tools such as PINQ [8]. The bulk of this
work has focused on statistical analyses of tabular data. Al-
though graph-structure data can be viewed in a tabular form
(each edge has a“source”and“destination”attribute), graph
queries typically result in many Join operations over the
tables, requiring excessive amounts of additive noise using
standard tools [11]. Bespoke analyses have recently emerged
for degree distributions [3], joint degree distribution (and

assortativity) [13], triangle counting [9], and some general-
izations of triangles [5]. We can provide analogues of each
of these approaches in Weighted PINQ, typically matching
proven bounds (within constants) and always exploiting the
non-uniformities described in Section 1.1.

Many graph analyses satisfy privacy definitions other than
differential privacy [4]. These definitions generally do not ex-
hibit the robustness of differential privacy, and a comparison
is beyond the scope of this note.

7. FUTURE WORK
In this short paper, we provided an overview of our new

workflow for differentially-private graph synthesis, and pre-
sented initial results of our experiments to generate synthetic
graphs that fit the degree distribution, edge multiplicity, and
assortativity of the protected graph. But this is only a first
step; our current work involves developing improved queries
of these graph statistics, and expanding to new ones, includ-
ing triangles, clustering coefficient, motifs, and more.

8. REFERENCES
[1] Ying-Ju Chi, Ricardo Oliveira, and Lixia Zhang. Cyclops:

The Internet AS-level observatory. ACM SIGCOMM CCR,
2008.

[2] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. Calibrating noise to sensitivity in private data
analysis. In Theory of Cryptography, volume 3876 of
Lecture Notes in Computer Science, pages 265–284. 2006.

[3] M. Hay, Chao Li, G. Miklau, and D. Jensen. Accurate
estimation of the degree distribution of private networks. In
IEEE ICDM ’09, pages 169 –178, dec. 2009.

[4] Michael Hay, Kun Liu, Gerome Miklau, Jian Pei, and
Evimaria Terzi. Tutorial on privacy-aware data
management in information networks. Proc. SIGMOD’11,
2011.

[5] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and
Grigory Yaroslavtsev. Private analysis of graph structure.
In Proc. VLDB’11, pages 1146–1157, 2011.

[6] Jan De Leeuw, K. Hornik, and P. Mair. Isotone
optimization in r: Pool-adjacent-violators algorithm (pava)
and active set methods. Journal of statistical software,
32(5), 2009.

[7] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph
evolution: Densification and shrinking diameters. ACM
Trans. KDD, 1(1), 2007.

[8] Frank D. McSherry. Privacy integrated queries: an
extensible platform for privacy-preserving data analysis. In
Proc. SIGMOD ’09, pages 19–30, 2009.

[9] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
Smooth sensitivity and sampling in private data analysis.
In ACM STOC ’07, pages 75–84, 2007.

[10] Davide Proserpio, Sharon Goldberg, and Frank McSherry.
A workflow for differentially-private graph synthesis.
Technical report, March 2012.

[11] Vibhor Rastogi, Michael Hay, Gerome Miklau, and Dan
Suciu. Relationship privacy: output perturbation for
queries with joins. In Proc. PODS ’09, 2009.

[12] Indrajit Roy, Srinath T. V. Setty, Ann Kilzer, Vitaly
Shmatikov, and Emmett Witchel. Airavat: security and
privacy for mapreduce. In Proc. USENIX NSDI’10, pages
20–20. USENIX Association, 2010.

[13] Alessandra Sala, Xiaohan Zhao, Christo Wilson, Haitao
Zheng, and Ben Y. Zhao. Sharing graphs using
differentially private graph models. In IMC, 2011.

[14] Oliver Williams and Frank McSherry. Probabilistic
inference and differential privacy. Proc. NIPS, 2010.

18

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

