
Data Structures
ROBERTO TAMASSIA

Department of Computer Science, Brown University, ^rt@cs.brown.edu&

INTRODUCTION

The study of data structures, that is,
methods for organizing data that are
suitable for computer processing, is one
of the classic topics of computer science.
At the hardware level, a computer views
storage devices such as internal mem-
ory and disks as holders of elementary
data units (bytes), each accessible
through its address (an integer). When
writing programs, instead of manipulat-
ing the data at the byte level, it is conve-
nient to organize them into higher-level
entities called data structures.
Most data structures can be viewed as

containers that store a collection of ob-
jects of a given type, called the elements
of the container. Often a total order is
defined among the elements (e.g., al-
phabetically ordered names or points in
the plane ordered by x-coordinate).
A data structure has an associated

repertory of operations, classified into
queries, which retrieve information on
the data structure (e.g., return the num-
ber of elements or test the presence of a
given element), and updates, which
modify the data structure (e.g., inser-
tion and deletion of elements). The per-
formance of a data structure is charac-
terized by the space requirement and
the time complexity of the operations in
its repertory. The amortized time com-
plexity of an operation is the average
time over a suitably defined sequence of
operations.
Efficiency is not the only quality mea-

sure of a data structure. Simplicity and
ease of implementation should be taken
into account when choosing a data
structure for solving a practical prob-
lem.

Data structures are concrete imple-
mentations of abstract data types
(ADTs). A data type is a collection of
objects. A data type can be mathemati-
cally specified (e.g., real number, di-
rected graph) or concretely specified
within a programming language (e.g.,
int in C, set in Pascal). An ADT is a
mathematically specified data type
equipped with operations that can be
performed on the objects. Object-ori-
ented programming languages such as
C11 provide support for expressing
ADTs by means of classes. ADTs specify
the data stored and the operations to be
performed on them.
The following issues are of foremost

importance in the study of data struc-
tures.

Static Versus Dynamic. A static data
structure supports only queries,
whereas a dynamic data structure also
supports updates. A dynamic data
structure is often more complicated
than its static counterpart supporting
the same repertory of queries. A persis-
tent data structure is a dynamic data
structure that supports operations on
past versions. There are many problems
for which no efficient dynamic data
structures are known. It has been ob-
served that there are strong similarities
among the classes of problems that are
difficult to parallelize and those that
are difficult to dynamize. Further inves-
tigations are needed to study the rela-
tionship between parallel and incremen-
tal complexity.

Implicit Versus Explicit. Two funda-
mental data organization mechanisms
are used in data structures. In an ex-
plicit data structure, pointers (i.e.,

Copyright © 1996, CRC Press.

ACM Computing Surveys, Vol. 28, No. 1, March 1996

http://crossmark.crossref.org/dialog/?doi=10.1145%2F234313.234323&domain=pdf&date_stamp=1996-03-01


memory addresses) are used to link the
elements and access them (e.g., a singly
linked list, where each element has a
pointer to the next one). In an implicit
data structure, mathematical relation-
ships support the retrieval of elements
(e.g., array representation of a heap).
Explicit data structures must use addi-
tional space to store pointers. However,
they are more flexible for complex prob-
lems. Most programming languages
support pointers and basic implicit data
structures, such as arrays.

Internal Versus External Memory. In
a typical computer, there are two levels
of memory: internal memory (RAM) and
external memory (disk). The internal
memory is much faster than external
memory but has much smaller capacity.
Data structures designed to work for
data that fit into internal memory may
not perform well for large amounts of
data that need to be stored in external
memory. For large-scale problems, data
structures need to be designed that take
into account the two levels of memory.
For example, two-level indices such as
B-trees have been designed to search
efficiently in large databases.

Space Versus Time. Data structures
often exhibit a tradeoff between space
and time complexity. For example, sup-
pose we want to represent a set of inte-
gers in the range [0, N ] (e.g., for a set of
social security numbers N 5 1010 2 1)
such that we can efficiently query
whether a given element is in the set,
insert an element, or delete an element.
Two possible data structures for this
problem are an N-element bit-array
(where the bit in position i indicates the
presence of integer i in the set), and a
balanced search tree (such as a 2-3 tree
or a red-black tree). The bit-array has
optimal time complexity, because it sup-
ports queries, insertions, and deletions
in constant time. However, it uses space
proportional to the size N of the range,
irrespective of the number of elements
actually stored. The balanced search
tree supports queries, insertions, and

deletions in logarithmic time but uses
optimal space proportional to the cur-
rent number of elements stored.

Theory Versus Practice. A large and
ever-growing body of theoretical re-
search on data structures is available in
which the performance is measured in
asymptotic terms (“big-Oh” notation).
Although asymptotic complexity analy-
sis is an important mathematical sub-
ject, it does not completely capture the
notion of efficiency of data structures in
practical scenarios, where constant fac-
tors cannot be disregarded and the diffi-
culty of implementation substantially
affects design and maintenance costs.
Experimental studies comparing the
practical efficiency of data structures
for specific classes of problems should
be encouraged to bridge the gap be-
tween the theory and practice of data
structures.

FUNDAMENTAL DATA STRUCTURES

The following four data structures are
used ubiquitously in the description of
discrete algorithms, and serve as basic
building blocks for realizing more com-
plex data structures.

Sequence. A sequence is a container
that stores elements in a certain linear
order, which is imposed by the opera-
tions performed. The basic operations
supported are retrieving, inserting, and
removing an element given its position.
Special types of sequences include
stacks and queues, where insertions
and deletions can be done only at the
head or tail of the sequence. The basic
realization of sequences is by means of
arrays and linked lists. Concatenable
queues support additional operations
such as splitting and splicing, and de-
termining the sequence containing a
given element. In external memory,
a sequence is typically associated with a
file.

Priority Queue. A priority queue is a
container of elements from a totally or-
dered universe that supports the basic

24 • Roberto Tamassia

ACM Computing Surveys, Vol. 28, No. 1, March 1996



operations of inserting an element and
retrieving/removing the largest ele-
ment. A key application of priority
queues is to sorting algorithms. A heap
is an efficient realization of a priority
queue that embeds the elements into
the ancestor/descendant partial order of
a binary tree. A heap also admits an
implicit realization in which the nodes
of the tree are mapped into the ele-
ments of an array. Sophisticated varia-
tions of priority queues include pagodas,
binomial heaps, and Fibonacci heaps.
The buffer tree is an efficient external-
memory realization of a priority queue.

Dictionary. A dictionary is a container
of elements from a totally ordered uni-
verse that supports the basic operations
of inserting/deleting elements and
searching for a given element. Hash ta-
bles provide an efficient implicit realiza-
tion of a dictionary. Efficient explicit
implementations include balanced
search trees (e.g., AVL-trees, red-black
trees, 2-3 trees, and weight-balanced
trees) and skip lists. The technique of
fractional cascading speeds up search-
ing for the same element in a collection
of dictionaries. In external memory, dic-
tionaries are typically implemented as
B-trees and their variations.

Union-Find. A union-find data struc-
ture represents a collection of disjoint
sets and supports the two fundamental
operations of merging two sets and find-
ing the set containing a given element.
There is a simple and optimal union-
find data structure (rooted tree with
path compression) whose time complex-
ity analysis is very difficult to analyze.

Examples of fundamental data struc-
tures used in three major application
domains are mentioned in the following.

— Graphs and Networks: adjacency
matrix, adjacency lists, link-cut tree,
dynamic expression tree, topology
tree, block-cutpoint tree, SPQR-tree,
sparsification tree.

— Text Processing: string, suffix tree,
Patricia tree.

— Geometry and Graphics: binary
space partition tree, chain tree, trap-
ezoid tree, range tree, segment tree,
interval tree, priority-search tree,
hull tree, quad tree, R-tree, grid file,
metablock tree.

FURTHER INFORMATION

Many textbooks and monographs have
been written on data structures.1 Re-
cent papers surveying the state-of-the
art in data structures include Chang
and Tamassia [1992], Galil and Italiano
[1991], Mehlhorn and Tsakalidis [1990],
and Vitter and Flajolet [1990]. The
LEDA project [Mehlhorn and Naher
1995] aims at developing a C11 library
of efficient and reliable implementa-
tions of sophisticated data structures.

REFERENCES

AHO, A. V., HOPCROFT, J. E., AND ULLMAN,
J. D. 1983. Data Structures and Algo-
rithms. Addison-Wesley, Reading, MA.

CHIANG, Y.-J., AND TAMASSIA, R. 1992. Dynamic
algorithms in computational geometry. Proc.
IEEE 80, 9 (Sept.), 1412–1434.

CORMEN, T. H., LEISERSON, C. E., AND RIVEST,
R. L. 1990. Introduction to Algorithms.
MIT Press, Cambridge, MA.

GALIL, Z. AND ITALIANO, G. F. 1991. Data struc-
tures and algorithms for disjoint set union
problems. ACM Comput. Surv. 23, 3, 319–
344.

GONNET, G. H. AND BAEZA-YATES, R. 1991.
Handbook of Algorithms and Data Structures.
Addison-Wesley, Reading, MA.

HOROWITZ, E. AND SAHNI, S. 1983. Fundamen-
tals of Data Structures. Computer Science
Press, Potomac, MD.

KNUTH, D. E. 1968. Fundamental Algorithms.
The Art of Computer Programming, Vol. 1.
Addison-Wesley, Reading, MA.

KNUTH, D. E. 1973. Sorting and Searching. The
Art of Computer Programming, Vol. 3. Addi-
son-Wesley, Reading, MA.

1 See for example Aho et al. [1983], Cormen et al.
[1990], Gonnet and Baeza-Yates [1991], Horowitz
and Sahni [1983], Knuth [1973, 1968], Lewis and
Denenberg [1991], Mehlhorn [1984], Nievergelt
and Hinrichs [1993], Overmars [1983], Sedgewick
[1992], Tarjan [1983], Preparata and Shamos
[1985], and Wood [1993].

Data Structures • 25

ACM Computing Surveys, Vol. 28, No. 1, March 1996



LEWIS, H. R. AND DENENBERG, L. 1991. Data
Structures and Their Algorithms. HarperCol-
lins, New York.

MEHLHORN, K. 1984. Data Structures and Algo-
rithms. Vols. 1–3. Springer-Verlag.

MEHLHORN, K. AND NÄHER, S. 1995. LEDA: A
platform for combinatorial and geometric
computing. CACM 38, 96 –102. http://
www.mp i - sb .mpg .de /gu ide / s t a f f /
uhrig/leda.html.

MEHLHORN, K. AND TSAKALIDIS, A. 1990. Data
structures. In Algorithms and Complexity.
Handbook of Theoretical Computer Science.
Vol. A, J. van Leeuwen, Ed., Elsevier, Amster-
dam.

NIEVERGELT, J. AND HINRICHS, K. H. 1993.
Algorithms and Data Structures: With Applica-
tions to Graphics and Geometry. Prentice-Hall,
Englewood Cliffs, NJ.

OVERMARS, M. H. 1983. The Design of Dynamic

Data Structures, Lecture Notes in Computer
Sciences, Vol. 156. Springer-Verlag.

PREPARATA, F. P. AND SHAMOS, M. I. 1985 Com-
putational Geometry: An Introduction. Spring-
er-Verlag, New York.

SEDGEWICK, R. 1992. Algorithms in C11. Addi-
son-Wesley, Reading, MA.

TARJAN, R. E. 1983. Data Structures and Net-
work Algorithms, CBMS-NSF Regional Con-
ference Series in Applied Mathematics, Vol.
44. Society for Industrial Applied Mathemat-
ics, Philadelphia.

VITTER, J. S. AND FLAJOLET, P. 1990. Average-
case analysis of algorithms and data structures.
In Algorithms and Complexity, Handbook of
Theoretical Computer Science. Vol. A, J. van
Leeuwen, Ed, Elsevier, Amsterdam, 431–524.

WOOD, D. 1993. Data Structures, Algorithms,
and Performance. Addison-Wesley, Reading,
MA.

26 • Roberto Tamassia

ACM Computing Surveys, Vol. 28, No. 1, March 1996


