
Human Factors in Programming and Software Development
MARY BETH ROSSON

Virginia Polytechnic Institute and State University, Blacksburg ^rosson@vt.edu&

Behavioral studies of programming,
which emerged in the late 1970s, were
among the earliest in the field of hu-
man-computer interaction (HCI). HCI is
the study of humans interacting with
computing systems, and well before the
appearance of modern interactive com-
puter applications, programmers were
using text-based command and pro-
gramming languages to solve complex
problems on computers. Cognitive scien-
tists are intrigued by the complex and
open-ended nature of software design
problems; practitioners are eager to an-
alyze and improve the productivity and
reliability of software development.
This article discusses issues and find-
ings of behavioral research in this area.

NORMATIVE STUDIES OF PROGRAMMING

As a user population, programmers
present many challenges for scientific
study [Curtis 1988]. They vary wildly in
ability and style, so much so that some
have argued that the most effective way
to “teach” design skills is to identify
individuals with inherent talent and
simply nurture them. It is exceedingly
difficult to recruit professional program-
mers for empirical studies, and histori-
cally most such work has studied com-
puter science undergraduates. As
programmers, university students are
at once unrepresentative of the target
population, yet still marked by great
variation in individual ability.
The tasks of software development

also vary a great deal—the factors influ-
encing twenty minutes of code compre-
hension may have no influence on a
program-generation task taking several

hours. Pragmatic problems such as
these have frustrated attempts to pro-
duce normative accounts of the factors
influencing programming. For example,
while the prima facie intuition is that
structured programming techniques
must certainly aid programming, rele-
vant empirical findings are mixed, due
to the variability introduced by individ-
ual differences, languages, tasks, and so
on [Curtis 1985].

ANALYSES OF PROGRAMMER
COGNITION

Many studies have analyzed the mental
activities of individual programmers de-
signing, building, testing, or compre-
hending code [Hoc 1993]. These studies
often employ qualitative methods,
studying a few carefully selected indi-
viduals in great detail by recording and
analyzing verbal “think-aloud” proto-
cols. Programmers’ behaviors and com-
ments are organized and tabulated and
used as evidence for the cognitive repre-
sentations and strategies in play. Stud-
ies of this sort often exploit the “unrep-
resentativeness” of university students
by contrasting their emerging knowl-
edge structures and strategies with
those of more advanced programmers.
Important theoretical constructs in

the analyses of programmer cognition
are the plan—a hypothesized mental
structure corresponding to a stereotypi-
cal program component, such as a condi-
tional expression or a counter mecha-
nism—and the strategy an expert
follows in using his or her plan knowl-
edge. As expertise develops, program-
mers exhibit more “plan-like” behavior:

Copyright © 1996, CRC Press.

ACM Computing Surveys, Vol. 28, No. 1, March 1996

http://crossmark.crossref.org/dialog/?doi=10.1145%2F234313.234396&domain=pdf&date_stamp=1996-03-01


they decompose design problems in a
more orderly and balanced fashion (es-
pecially if they possess domain experi-
ence). Their code composition is orga-
nized by these stereotypical structures;
sometimes a focal piece of a plan is
generated first and the details filled in
later, while at other times a more lin-
earized “read-out” of the complete plan
occurs. When experts are asked to com-
prehend or test programs, they use
their general and domain-specific
knowledge to develop hypotheses about
program content, and then search for
“beacons” (cues) that signify the pres-
ence of corresponding code structures.

PROGRAMMING-IN-THE-LARGE

A complementary vein of work considers
programming-in-the-large—realistic soft-
ware development projects, typically
carried out by teams working within a
software development organization. A
major focus is on team dynamics that
improve productivity: for example, a
structured team with a chief program-
mer is suitable for large, simple projects
on a tight schedule, but complex projects
requiring high creativity are better
served by teams with high individual
flexibility. Team programming can be
viewed as distributed cognition, where
the product is viewed as the result of a
complex system of programmers, their
internal mental activities, and their
shared externalized task representa-
tions [Hutchins (to appear)].
The organizational context of soft-

ware development also has important
effects on programming-in-the-large.
Professional programmers spend con-
siderable time communicating with oth-
ers in their organization, both individu-
ally and as part of a group. Thus the
analysis of communication problems—
for example, groups not realizing they
are even supposed to communicate, mis-
understandings about a shared issue,
conflicting views from different groups,
or changes in project personnel [Curtis
1988]—is a key element in understand-

ing how to better support the software
development process.

PROGRAMMING LANGUAGES AND TOOLS

When confronted with novel problems,
expert programmers often adopt an op-
portunistic working style, decomposing
the problem in a flexible fashion that
enables them to develop partial solu-
tions along the way and to recognize
possibilities for code reuse. Green
[1993] discusses three dimensions of
programming languages and tools that
influence a programmer’s working style:
viscosity: the degree of resistance to lo-
cal changes; premature commitment: the
extent to which a decision must be made
before its consequences can be seen; and
role expressiveness: the ease of discover-
ing the purpose of software components.
A well-encapsulated object-oriented

language such as Smalltalk improves
viscosity, aiding refinement and the
composition of partial solutions. Struc-
tured editors can simplify code genera-
tion, but may force premature decisions
about control and data structures. Lan-
guages that allow names for extended
variables increase role expressiveness,
thus facilitating comprehension and the
reuse of existing code.

FUTURE DIRECTIONS

A topic currently attracting great inter-
est is the potential impact of the object-
oriented (OO) paradigm on program-
ming and software development [Hoc
1993]. Proponents claim that the OO
technique, which emphasizes problem-
oriented software abstraction, should in-
crease the naturalness of software devel-
opment and support a more seamless
integration of analysis, design, and imple-
mentation activities. As yet little empiri-
cal work has assessed this; most reports
document the difficulties of teaching OO
design and programming to experts
trained in functional decomposition and
procedural programming. However, sig-
nificant changes are occurring in com-
puter science education, with an increas-
ing number of universities and colleges

194 • Mary Beth Rosson

ACM Computing Surveys, Vol. 28, No. 1, March 1996



integrating OO techniques into their cur-
ricula, setting the stage for more mean-
ingful assessments in the future. At the
same time, researchers are applying OO
concepts to the problems of end-user pro-
gramming, for example, exploring the
metaphor of intelligent objects as active
agents assisting users with simple pro-
gramming tasks.

REFERENCES

CURTIS, B. 1985. Tutorial: Human Factors in
Software Development. IEEE Computer Soci-
ety, New York.

CURTIS, B. 1988. Five paradigms in the psy-

chology of programming. In Handbook of Hu-
man-Computer Interaction, M. Helander, Ed.
North Holland, Amsterdam, 87–106.

HUTCHINS, E. L. Distributed Cognition. MIT
Press, Cambridge, MA. (to appear)

GREEN, T. R. G. 1993. Programming languages
as information structures. In Psychology of
Programming, J.-M. Hoc, T. R. G. Green, R.
Samurcay and D. J. Gilmore, Eds. Academic
Press, New York, 117–138.

HOC, J.-M., GREEN, T. R. G., SAMURCAY, R., AND

GILMORE, D. J. 1993. Psychology of Pro-
gramming. Academic Press, New York.

ROSSON, M. B. AND ALPERT, S. R. 1990. The
cognitive consequences of object-oriented de-
sign. Human-Comput. Interaction 5, 345–379.

Human Factors in Programming and Software Development • 195

ACM Computing Surveys, Vol. 28, No. 1, March 1996


