
Compiling Functional Languages with Flow Analysis
SURESH JAGANNATHAN AND ANDREW WRIGHT

NEC Research Institute, Princeton, NJ ^{suresh,wright}@research.nj.nec.com&

GOALS

We argue for the use of aggressive inter-
procedural flow analysis to guide optimi-
zations for higher-order languages such
as Scheme [Clinger and Rees 1991] and
ML [Milner et al. 1990]. Functional lan-
guages provide abstraction through first-
class procedures and abstract datatypes.
Without sophisticated interprocedural
analysis, compilers must make overly
conservative assumptions about how ab-
stractions are used in the program. These
assumptions often lead to poor perfor-
mance. We present a strategy for building
high-performance implementations that
relaxes these assumptions and provides a
framework upon which useful optimiza-
tions can be built. We describe two exper-
iments that provide some evidence that
this approach is viable.

MOTIVATION

Our strategy for building high-perfor-
mance implementations of higher-order
languages is to use aggressive interpro-
cedural flow analysis to drive a variety
of global program optimizations, and to
use more traditional dataflow analyses
to make possible local optimizations. In
our view, these two classes of optimiza-
tions are not completely orthogonal.
Useful global optimizations are likely to
make local optimizations more effective
by exposing optimization opportunities
that would otherwise be missed. They
are also likely to facilitate program
transformations whose results are more

amenable for optimization by local anal-
yses.
Among the global optimizations we

have considered are:

(1) Specialized calling protocols. Well
written functional programs consist
of many small procedures. If all call
sites of a procedure P are known,
then a specialized calling protocol can
be used for P. The calling protocol
may allocate P’s closure on the stack
or in registers. If P is suitably small,
its body may be inlined at the call
sites, eliminating the call altogether.

(2) Specialized data representations. Most
functional language implementations
assume all values are uniformly repre-
sented in a single machine word. Ob-
jects that do not fit in a single word
(e.g., floating-point numbers, closures,
records, lists) or objects whose size can-
not be determined by the compiler are
typically boxed, that is, allocated on the
heap and referenced via a pointer. If all
references to a boxed object are known,
the object may be unboxed and refer-
ences to the object replaced with the
object itself.

(3) Specialized primitive operations.
Functional languages are type-safe.
Type safety ensures that the behavior
of both correct and incorrect pro-
grams is fully explained by the lan-
guage semantics. In other words, pro-
grams cannot “dump core.” Type
safety requires that many primitive
operations check the validity of their

Permission to make digital /hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1996 ACM 0360-0300/96/0600–0337 $03.50

ACM Computing Surveys, Vol. 28, No. 2, June 1996

http://crossmark.crossref.org/dialog/?doi=10.1145%2F234528.234743&domain=pdf&date_stamp=1996-06-01

arguments at runtime. Even stati-
cally typed languages require runt-
ime checks for projections from sum
types. If all arguments to which a
primitive is applied can be deter-
mined to be a member of the type
expected by the primitive, the primi-
tive need not include a runtime check.

Interprocedural analysis is essential
to build optimizations of the kind listed
because these optimizations depend on
global properties of the program. Once
procedures have been inlined, special-
ized closure representations selected,
values unboxed, and runtime checks re-
moved, conventional intraprocedural
optimizations that use cheaper analyses
are likely to have more effect.
We believe that our compilation strat-

egy is viable because recent developments
in flow analysis research are yielding
practical analyses. These new analyses
can handle large programs with reason-
able time and space, and the information
they produce is sufficiently precise to
drive useful optimizations [Heintze 1994;
Jagannathan and Wright 1995, 1996;
Serrano and Feeley 1996]. We expect our
approach to work best for mostly func-
tional programs that make extensive use
of higher-order procedures, polymor-
phism, and data abstraction.

FLOW ANALYSIS

In its simplest form, a flow analysis for a
higher-order language determines the
sets of values to which variables may be
bound and the sets of values that expres-
sions may yield [Shivers 1991]. Some im-
plementations of higher-order languages
incorporate this kind of simple analysis,
but optimizations based on it have had
only limited success. Because these mono-
variant analyses fail to distinguish the
behavior of a procedure at one call site
from its behavior at another, the informa-
tion they compute may be too imprecise to
support effective optimizations.
Polyvariant [Bulyonkov 1984] analyses

distinguish different uses of a procedure
based on some notion of abstract context.

An abstract context identifies a set of
program states. Analyses whose abstract
contexts describe smaller sets of program
states tend to yield more precise informa-
tion than analyses whose abstract con-
texts describe larger sets. At one extreme,
a monovariant analysis can be regarded
as using a single abstract context that
represents all possible program states. At
the other extreme, an (uncomputable)
analysis that represented each program
state with a unique abstract context
would yield exact information.
The tradeoff between precision and cost

in polyvariant flow analysis is unclear.
There is no direct correlation between the
granularity of abstract contexts and the
precision of the analysis. Too many ab-
stract contexts can lead to redundant re-
computation that increases the cost of the
analysis without increasing its precision.
But too few abstract contexts can lead to
overly conservative estimates of the set of
procedures called at each call site which,
in turn, means the analysis must investi-
gate more abstract procedure calls. Find-
ing a polyvariant analysis that provides
precise information at reasonable cost
and is robust over different programming
styles and paradigms remains a challeng-
ing research problem.

OPTIMIZATIONS

To illustrate the effectiveness of flow analy-
sis as a compilation tool, we summarize two
experiments drawn from our own work.
Our first experiment investigated

eliminating runtime type checks from
Scheme programs using information
computed by a polyvariant flow analysis
[Jagannathan and Wright 1995]. Con-
sider a particular application of a prim-
itive p to arguments v1, v2, . . . , vn. In
general, p requires that each of its argu-
ments belong to a certain type, and in
the absence of any optimizations, the
compiled code for applications of p will
usually include runtime checks to en-
sure type safety. A flow analysis of the
program containing this application
computes approximate sets of values for
each of the vi. If the set of values the

338 • S. Jagannathan and A. Wright

ACM Computing Surveys, Vol. 28, No. 2, June 1996

analysis computes for vi is a subset of
the type p requires for its ith argument,
then the runtime check on the ith argu-
ment, then the runtime check on the ith
argument can safely be omitted from
this application. We have found that
runtime check elimination based on a
polyvariant flow analysis can eliminate
the majority of runtime checks in realis-
tic programs.
Our second experiment investigated

inlining in Scheme programs [Jagan-
nathan and Wright 1996]. Inlining is an
especially important optimization in
functional languages because proce-
dures are the primary means by which
data and control abstractions are built.
By eliminating procedure-call overhead,
other optimizations and simplifications
may become apparent.
Conventional inlining optimizations

are typically based on syntactic criteria
that use ad hoc heuristics to determine
the procedures that are candidates for
inlining and the call sites where inlin-
ing can be performed. Such heuristics
provide only a weak capability to iden-
tify inlining sites. Procedures used in
higher-order ways are rarely inlined be-
cause the heuristics are too weak to
identify their call sites. In many sys-
tems, a given procedure is inlined at
either all of its call sites or none of
them, because the heuristics are unable
to distinguish the profitability of inlin-
ing at one call site from another.
By using flow analysis as the basis for

an inlining optimization, however, we
derive a very different methodology.
The output of a polyvariant flow analy-
sis can be used to disambiguate differ-
ent uses of a procedure at different call
sites. Thus inlining can be highly selec-
tive. Flow analysis is also well suited to
tracking the movement of higher-order
procedures. An inlining optimization
can take advantage of this property by
inlining procedures that were passed in
a higher-order manner. Flow analysis
can also yield a more precise measure of
a procedure’s cost. The cost defined for
inlining a procedure P at some call site
C should be some approximation of P’s

size when specialized at C. The special-
ized copy may be smaller if conditional
branches can be computed statically
based on the abstract context in which
C is evaluated. Here, also, we have
found that interprocedural analysis ex-
poses many opportunities for inlining
that are unlikely to have been discov-
ered otherwise.

CONCLUSION

We propose that compilers for higher-
order languages use flow analysis to
drive global optimizations. Flow analy-
sis is becoming a mature technology. A
compilation framework that combines
global analyses and a suite of interpro-
cedural optimizations, along with more
traditional dataflow analyses and local
optimizations, offers a sound basis upon
which high-performance implementa-
tions for higher-order languages can be
built.

REFERENCES

BULYONKOV, M. A. 1984. Polyvariant mixed
computation for analyzer programs. Acta Inf.
21, 473–484.

CLINGER, W. AND REES, J., EDS. 1991. Revised4

report on the algorithmic language scheme.
ACM Lisp Pointers 4, 3 (July).

HEINTZE, N. 1994. Set-based analysis of ML
programs. In Proceedings of the ACM Sympo-
sium on Lisp and Functional Programming,
306–317.

JAGANNATHAN, S. AND WRIGHT, A. 1995. Effective
flow-analysis for avoiding runtime checks. In
Proceedings of the Second International Sympo-
sium on Static Analysis, LNCS 983, Springer-
Verlag, 207–225.

JAGANNATHAN, S. AND WRIGHT, A. 1996. Flow-
directed inlining. In Proceedings of the ACM
Conference on Programming Language Design
and Implementation.

MILNER, R., TOFTE, M., AND HARPER, R. 1990. The
Definition of Standard ML. MIT Press, Cam-
bridge, MA.

SERRANO, M. AND FEELEY, M. 1996. Storage use
analysis and its applications. In Proceedings
of the ACM International Conference on Func-
tional Programming (May).

SHIVERS, O. 1991. The semantics of Scheme
control-flow analysis. In Proceedings of the
ACM SIGPLAN Symposium on Partial Evalu-
ation and Semantics-Based Program Manipu-
lation, 190–198.

Compiling Functional Languages • 339

ACM Computing Surveys, Vol. 28, No. 2, June 1996

