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ABSTRACT 
While the existence of very large and scalable Database 
Management Systems (DBMSs) is well recognized, it is the usage 
and extension of these technologies to managing spatial data that 
has seen increasing amounts of research work in recent years. A 
focused area of this research work involves the handling of very 
high resolution Light Detection and Ranging (LiDAR) data. 
While LiDAR has many real world applications, it is usually the 
purview of organizations interested in capturing and monitoring 
our environment where it has become pervasive. In many of these 
cases, it has now become the de facto minimum standard expected 
when a need to acquire very detailed 3D spatial data is required. 
However, significant challenges exist when working with these 
data sources, from data storage to feature extraction through to 
data segmentation all presenting challenges relating to the very 
large volumes of data that exist. In this paper, we present the 
complete LiDAR data pipeline as managed in our spatial database 
framework. This involves three distinct sections, populating the 
database, building a spatial hierarchy that describes the available 
data sources, and spatially segmenting data based on user 
requirements which generates a visualization of these data in a 
WebGL enabled web-application viewer. All work presented is in 
an experimental results context where we show how this approach 
is runtime efficient given the very large volumes of LiDAR data 
that are being managed.   

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – spatial 
database and GIS.  

General Terms 
Performance, Design. 

Keywords 
LiDAR, Spatial Database, WedGL, PostGIS. 

 

 

1. INTRODUCTION 
Many academic, governmental, and commercial organizations are 
charged with environmental mapping and monitoring tasks, many 
of which require accurate 3D geographical information. These 
requirements can be achieved using LiDAR that has typically 
been captured from any one or all of the following sources: 

1. Static Terrestrial LiDAR 

2. Mobile Terrestrial LiDAR 

3. Aerial LiDAR 

These geospatial data sources are particularly suited to the case of 
urban modeling and infrastructural mapping where high resolution 
3D geographical information can be collected very quickly. From 
this detailed information bespoke and comparative analysis can be 
performed in order to monitor, understand, and plan the status 
and/or requirements for a survey area. It is in the context of 
managing such urban and road-network survey data that we 
present our LiDAR data management pipeline. 

Generally, the typical workflow when handling LiDAR involves 
processing the raw data into a specific format that can be easily 
viewed. This is due to the sheer volume of LiDAR data which 
precludes easy access and viewing of the data or specific spatial 
regions with the data. Typically, while the raw data is provided at 
the conclusion of the survey only processed simplified formats, 
such as a Digital Elevation Model (DEM), of the data are ever 
viewed. These reasons have led to interest and research into use of 
Database Management Systems (DBMSs) for the storage and 
retrieval of LiDAR data.  

A select amount of research work has been completed in the 
context of managing vast amounts of 3D spatial data in a DBMS, 
[1,7,22,24]. Generally they point to a strong desire to store these 
data in a DBMS as they offer the full optimizations inherent to 
modern databases such as transaction guarantees and multiuser, 
random access of very large datasets. They also offer advanced 
features such as back-up and restore capabilities. To access 
LiDAR data through a DBMS first the raw LiDAR data is gridded 
into spatially equal tiles. The spatial boundaries of these files are 
then stored in a DBMS which provides access to these raw files 
through spatial operations. We are interested in Spatial DBMS 
(SDBMS) where the raw LiDAR data are stored as individual 
spatial points allowing for unrestricted access to all the LiDAR 
and its attributes. This would allow organizations who purchase or 
collect LiDAR data to easily access and view their data.  

Storing LiDAR data in this manner as a spatial element in a 
SDBMS will allow for the optimization of LiDAR processing 

 



workflows. The industrial standard is to cluster the LIDAR data 
into spatial girds and then store each of these grids as a binary file 
in a unique folder for that survey, as shown in Figure 1. It is this 
methodology that prevails in most software suites and has proven 
to be a significant constraint in a number of LiDAR analysis 
requirements. These constraints include an inability to easily 
define a spatial context that improves our ability to 
understand/visualize what LiDAR is available from one or 
multiple surveys. Extending from this is having the ability to 
easily segment a chosen sub-section of LiDAR for bespoke uses. 
Using an example of a road-edge detection processing 
requirement, we find that these systems do not provide a context 
for spatial optimization across an individual or numerous data 
sets/surveys where logical segmentation can be easily 
implemented based on a targeted approach to data processing 
rather that the more common brute force method. 

 
Figure 1. This example of a Survey-based approach for 

LiDAR data management in commercial software is typical. 
In presenting our LiDAR data-framework pipeline we 
demonstrate how, in the first instance, a spatial approach to the 
storage of the raw LiDAR data has consequent benefits to 
managing these data from a bespoke segmentation requirements 
perspective. We show through our data handling pipeline how a 
very large scale spatial database is optimally constructed. How we 
can hierarchically represent these data sources in a geographically 
meaningful way and how these hierarchies can be used such that a 
bespoke LiDAR segmentation requirement can be easily 
performed. Finally, this process pipeline is interactively realized 
in a web-application that quickly allows a user to interact with the 
results of any segmented sections of LiDAR for requirements 
such as validation of processing results through to the perusal of 
data sources for optimization and quality.  

2. BACKGROUND AND RELATED WORK 
2.1 LiDAR Frameworks 
As Figure 1 shows, and Section 1 mentioned, the standard 
methodology for commercially available LiDAR software 
solutions is to use spatial grids that define the LiDAR data 
contents of a binary file format, for each independent survey. 
Having examined a number of these commercial solutions 
highlighted at [8,20] we see that the survey based approach is 
typically unavoidable as these are independent standalone 
installations of software that use locally stored LiDAR. However, 
with the expansive growth of Cloud computing services we also 
see emerging deployments of distributed web-applications that 
handle LiDAR. Currently there are two significant browser based 
online implementations, [3,21], that are comparable in scope with 
the framework presented in this paper. However, it is currently not 
possible to examine these services in the context of the results 

presented here as no publications, with a sufficient level of detail, 
exist about them.  
In [13], OpenTopography’s Service Oriented Architecture is 
described which details their underlying use of the LAS format, 
[5,26], to store the raw LiDAR point data. This could be 
compared, at a methodological level, to our system as we store the 
LiDAR directly in the spatial database. However, their paper does 
not give enough details on the runtime performances for LiDAR 
data importation or retrieval, as is presented here. We could make 
a broad comparison based on the size and amount of raw LiDAR 
stored in our respective frameworks; however, this is meaningless 
without a formally structured study and approach, as both 
frameworks are handling raw LiDAR from numerous different 
sources to different levels of detail. Also, OpenTopography 
maintain Digital Elevation Models (DEMs) of their core data 
which we do not. 
In [22], a grid approach is used to build the database index. This 
structured approach optimized the grid size for the indexed 
storage of LiDAR point clouds based on a comprehensive set of 
query performance tests. These results are not detailed other than 
one basic metric being mentioned which references the average 
number of rows (points) their system handled per query when the 
index was being built. However, this paper did define aspects of 
the hardware requirements that are important to such a 
frameworks implementation. Our paper does not focus on the 
hardware aspect of the framework, from which our results were 
dependent, but future publications could look at such a 
comparison. It is worth noting in [22] that future work is 
suggested that could investigate a spatial database solution; while 
our paper does focus on this issue there is no published paper, to 
our knowledge, that would allow us make such a detailed 
comparison. 
A number of other publications exist that discuss frameworks 
which incorporate LiDAR point clouds in a databases solution. 
However, a comprehensive analysis and solution to the issue of 
importing voluminous LiDAR data into DBMSs has been to date 
absent. In [25], a LiDAR management system is detailed that 
defines their system as it interacts with users through an 
authentication interface, how it can manage these projects, and 
how data handling and processing fits into this architecture. In 
[15], a comprehensive Urban data management system is detailed 
that leverages many aspects of Geographical Information Systems 
(GISs), including access to LiDAR stored in a database 
component. In [10], a grid-computing solution is detailed for 
processing large volumes of LiDAR which is stored in a database. 
In [19], this work highlights approaches from the acquisition and 
processing perspective where optimized triangular meshes are 
generated from LiDAR point clouds stored in a database. In [18], 
an Oracle 11g database schema and solution is presented in a 
generalized way for the storage of detailed LiDAR point clouds of 
buildings, although no data import or query processing 
performance metrics are given. In [2], a Microsoft SQL Server 
2008 database solution is presented, they also implement a grid 
index methodology for the spatial data handling aspects of their 
framework, however, while this paper presents some very basic 
metrics on query access runtimes it lacks any significant 
discussion for a comprehensive comparison. In [7], the authors 
implement a database KD-tree approach for their LiDAR with a 
table of results from a point-cloud rendering performance test 
from their visualization component. It is also worth noting in this 
paper that the authors briefly mention Level-Of-Detail data 
structures as being inappropriate to optimized visualizations of 
LiDAR point clouds, as is discussed in Section 2.2. As is detailed 



in Section 6.2 we leverage the GPU based processing power of 
WebGL to handle the LiDAR visualization and interaction. As 
this implementation is a browser based web-application our point 
cloud rendering solutions performance would be dependent on the 
specifications of the system hosting the session. Finally, in [4], a 
working paper is presented on the state-of-art for LiDAR data 
management in a GIS context. It presents a detailed overview of 
various aspects of a GIS based LiDAR data-management pipeline 
such that the authors intend implementing and publishing on this 
topic in the future. 

2.2 LiDAR Data Structures 
Numerous methodologies are available when optimized 
segmentation and storage of LiDAR point clouds is required. 
While these approaches have validity and applications in various 
LiDAR data management contexts, our empirical testing and 
implementations have shown that gridded, tiled and/or Level-of-
Detail (LOD) structures are not optimal in many instances where a 
database implementation, such as that presented here, is used. One 
example of implementing a non-database approach is in [6] where 
a distributed implementation is described that supports both grid 
and quadtree data structures. 
When dealing with raw LiDAR files, storing them in LODs, grids, 
or tiled structures enables faster access to the data for a user. 
While a tiled data structure approach, such as a voxel 
implementation, can work for what is typically well distributed 
aerial LiDAR, it is not optimal for terrestrial LiDAR, especially 
mobile terrestrial LiDAR, where data distributions are non-
uniform across space. Extending on from this is the possibility of 
implementing data-source specific solutions where terrestrial data 
is optimized in a different data structure than aerial data. 
However, implementing different data structure approaches makes 
it more difficult and less efficient to generalize our multi-source 
LiDAR data such that storage and access methodologies are 
consistent. Our framework is designed as an alternative to storing 
multiple copies of the same data in different spatial dimensions, 
i.e. tiles or grids. By storing the LiDAR point cloud data in the 
database we can output tiles or grids of any spatial dimension and 
shape. 
Also, a pre-determined LOD implementation approach can suffer 
from the same problems that were described above, especially 
when working with the non-uniformly distributed LiDAR point 
clouds captured from a mobile terrestrial platform. Once again, 
our database approach can be spatially adapted, in terms of its 
geographical point density, to determine dynamic LOD’s. Our 
indexing methodology facilitates simple interfaces to request 
point clouds based on many possible point cloud attributes, an 
LOD filter just extends this functionality. For example, one point 
per square meter or every 10th point in the query area can be 
returned in a dynamic fashion without any significant changes in 
runtime efficiencies. This allows a user to quickly search an area 
at a dynamically definable LOD, and if the returns are not of 
interest, further sub-area selects at a new or different LOD 
requirement, if necessary, are easily accomplished.  

3. LIDAR SPATIAL DATA-FRAMEWORK 
Empirical experience working with geo-referenced LiDAR data 
suggests that the primary obstacles in the processing of these data 
are their considerable size and the inability to easily constrain the 
data based on spatial attributes. Leading on from this is the 
extraction and preparation difficulties when using these data for 
bespoke requirements. For example, an algorithm has recently 
been developed for the detection of road edges from terrestrial 

LiDAR, [16], yet this operation is being constrained by the 
survey-processing methodology that prevails in industry standard 
software suites. The efficiency of automated processing 
algorithms relies on the raw LiDAR data input being spatially 
optimised for the algorithm. Most software suites do not easily 
allow access to the raw data at different or irregular spatial 
dimensions. It is also extremely difficult to search for all the data 
in a region irrespective of the survey it belongs to. Thus, towards 
a solution to this type of problem we have implemented a Spatial 
DBMS (SDBMS) approach that is broadly defined in Figure 2. 

 
Figure 2. LiDAR Data Management Framework Overview. 

The first stage in our solution is the development of a platform 
and methodology where large volumes of LiDAR data can be 
stored in an accessible form. However, LiDAR data is extremely 
voluminous where quantities well in excess of 36GB’s per hour 
are commonly produced from Mobile Mapping Systems. These 
data are typically made up of, but not restricted to, 3D geo-
referenced point-cloud information along with other properties 
such as Amplitude, Reflectance and RGB. This stage in our 
processing pipeline is detailed in Section 4. 

The second stage involves building a 2D spatial hierarchy of the 
3D LiDAR data uploaded into the system. The importance of this 
step is that it gives a spatial context where optimally located 
LiDAR data can be output and viewed based on either a user or 
system spatial request, such as data verification or a road-edge 
extraction algorithm. This enables a user to more easily validate 
results as both the raw data and processed results can be cross 
referenced in both a subjective visual inspection through the 
WebGL viewer or through an objective analytical validation 
process. Building these spatial hierarchies is defined in Section 5. 

Finally, given that a process, either user or system defined, has 
determined a target LiDAR data set, based on some spatial 
constraints, retrieving these data in an optimal fashion is detailed 
in Section 6. This involves the efficient retrieval of LiDAR sub-
sections from the 29 billion point 4.2 terabyte sized spatial 
database that currently hosts this information. 



4. POPULATING A LIDAR SDBMS 
4.1 SDBMS Architecture 
The LiDAR data is stored in a PostgreSQL relational database 
management system. Integrated into this database solution are the 
PostGIS spatial extensions and the pg_bulkload data loading 
utility. It is through the use of the pg_bulkload utility that LiDAR 
data input and spatial index generation have been optimized. In 
Figure 3, we provide a detailed sample from our DB schema 
which incorporates a number of levels of spatial detail, as 
described in Section 4, from which data extraction is optimized. 

 
Figure 3. Sample from our LiDAR spatial database schema. 

Using this platform we have shown in [14] how this technology 
decision has enabled us to optimize the large volumes of LiDAR 
data for processing by feature extraction algorithms. However, the 
core component to being able to implement this approach is the 
ability to use the extensive functionalities provided by 
PostgreSQL’s PostGIS spatial extensions. Through PostGIS we 
have been able to generate and store Open Geospatial Consortium 
(OGC) compliant spatial objects in a standard object-relational 
database. Extending from this functionality is the spatial indexing 
options provided by PostGIS. However, while it is trivial to 
generate a PostGIS spatial object (geometry) and its associated 
spatial-index, doing so for huge volumes of LiDAR data is not 
trivial. It is at this point that we need to input these large volumes 
of spatial data in an efficient manner. To this end, we highlight 
our tested upload procedure and the runtime results in the rest of 
this section. 

4.2 LiDAR Upload Procedure 
Through a detailed set of experiments, [17], we have implemented 
and tested customized variations of the built-in PostgreSQL bulk 
data input functionality of the COPY command and the 
pg_bulkload bulk data loading utility. The PostgreSQL COPY 
command moves data from a file into a DB table through a SQL 
statement. Its performance is better on initial data loading if the 
destination table is empty. Performance is also improved when the 
data are loaded without an index constraint; thus dropping and re-
creating the indexes after loading is optimal. Pg_bulkload 
implements an alternative methodology and has been developed 
for PostgreSQL by the Nippon Telegraph and Telephone 
Corporation. It is an optimized high volume data loading utility 
that skips some of the processing overheads used by COPY. It is 
designed to load huge amounts of data to a database where you 
can choose whether database constraints are checked, whether 

errors are ignored during the loading and to have the index 
updated as a synchronous operation. Pg_bulkload has two 
operational modes: Direct and Parallel. Direct uses one core of the 
system to upload the data while Parallel attempts to distribute as 
much processing as possible across the system cores. 

Our testing of upload procedures determined an optimal solution 
based on an extensive set of comparative results between the use 
of COPY and pg_bulkload in a number of scenarios. For this 
testing four large LiDAR data files were prepared, as shown in 
Table 1. We first selected a large dataset over 6GB’s in size and a 
small data-set over 800MB’s in size. We created two files from 
each containing 10 columns and 14 columns respectively. By 
keeping the data constant and only changing the row size we 
intended to examine the effect row size had on the uploading 
approaches. We used these sample data-sets in a series of three 
experimental approaches where our attempt to develop a method 
to predict the length of time uploading a file would take was based 
on the file attributes. 

 

Table 1. LiDAR Data test file properties 

File Rows Cols Size (MBs) Avg. Row Size 

La 66 million 10 4359.52 0.0675 

Lb 66 million 14 6757.94 0.1046 

Sa 8 million 10 526.90 0.0663 

Sb 8 million 14 821.85 0.1034 

 
The procedure that showed the best LiDAR data upload was 
achieved from a comparison between the most efficient 
approaches we found for both the COPY and pg_bulkload options 
[17]. For our data we found that by pre-processing the files, using 
python, to predefine the geometry data format, significantly 
decreased the upload time. This process involved using the 
Longitude, Latitude, and Altitude fields in the LiDAR data file to 
concatenate a canonically suitable representation of the PostGIS 
base-geometry data type. This base data type is an Extended Well 
Known Text (EWKT) representation, in three dimensional space, 
of the OGC Simple Features for SQL specifications. Our optimal 
process for loading large volumes of LiDAR into a PostGIS 
database table is: 
 

1. Python – Process the original file to add the PostGIS 
geometry data type representation into it. 
 

2. Create the Table – An empty table is created from the 
input file header fields. 
 

3. Create geometry column – Add a PostGIS POINT-
geometry data type field to the table. 
 

4. Create Spatial Index – Create the spatial index on the 
PostGIS geometry field. 
 

5. Load Data – Populate the whole table with all the raw 
LiDAR file data. 
 



4.3 Results 
In Table 2 we present the fastest runtime results in our 
comparative tests between the standard PostgreSQL COPY 
command and the pg_bulkload utility. Significantly, it can be seen 
that the speed-up gain using pg_bulkload in parallel mode is, on 
average, 13% that of the standard COPY procedure. 

 

Table 2. Comparative upload times (minutes) for the 
optimized COPY and pg_bulkload procedures. 

File Python SQL COPY PG Direct PG Parallel 

La 5.14 55.40 52.42 48.08 

Lb 6.26 59.47 56.03 51.75 

Sa 0.63 5.87 5.28 5.09 

Sb 0.79 6.42 5.82 5.59 

 

As expected, the time to upload a row of data for the two files 
with 10 columns, Figures 4 and 5 (a), was shorter than  when 
uploading the data for the 14 column case, Figures 4 and 5 (b). 
However, uploading the smaller file had a consistently shorter per 
row upload time. Also, the percentage increase in row processing 
time for these extra 4 columns was always significantly smaller 
than the percentage increase in row size (kilobytes). Adding these 
columns to the files resulted in a file size change ranging between 
33-56%, while the resulting row uploading time change increased 
by only 8-15%. In Figures 6 and 7, the timing information per 
kilobyte is plotted. For all experiments an increase in row size 
resulted in a reduction in the row processing time per kilobyte. 
These results show that, with PostgreSQL, as the number of rows 
of data to upload increases the time per row increases and that an 
increase in row size will lead to a decrease in time per kilobyte. 
This implies that there is a non-linear relationship between upload 
time, the number of rows and row size. 

Having completed these sets of experiments, the next section in 
our framework pipeline is to generate meaningful 2D spatial 
representations of these very large data tables such that an 
informed process or user decision can be made when applying a 
spatial constraint to these data. 

 
Figure 4. Timing plots for data load time per row for files (a) 

La and (b) Lb. 

 
Figure 5. Timing plots for data load time per row for files (a) 

Sa and (b) Sb. 
 

 
Figure 6. Timing plots for data load time per kilobyte for files 

(a) La and (b) Lb. 
 

 
Figure 7. Timing plots for data load time per kilobyte for files 

(a) Sa and (b) Sb. 
 

5. LIDAR SPATIAL HIERARCHY 
5.1 LiDAR Concave Hull 
To efficiently understand what data the SDBMS holds a 2D 
spatial hierarchy was implemented where all the spatial data 
sources; mobile terrestrial, aerial, and terrestrial-static are stored 
at different levels of spatial detail. This does not affect the raw 
spatial detail of the raw LiDAR but allows a user to process or 
evaluate the available LiDAR in approximate coverage zones. 
Two examples are highlighted in Figure 8, in both the user moved 
to a localized area of a Bing Maps UI where the LiDAR coverage 
is shown as a blue transparent polygon. In Figure 8 (a), the full 
coverage of an aerial survey containing 1,700 million points is 
shown and in Figure 8 (b) the LiDAR coverage for a sub-section 
of a 400 million point mobile terrestrial survey is shown. Within 
this UI the user can use standard GIS point and polygon creation 
tools to intersect a planar view of the available data in this area, 
which is presented in Section 6. 

 



 
Figure 8. Approximated LiDAR coverage zone for (a) aerial 

LiDAR and (b) mobile terrestrial LiDAR. 
The procedure to perform this operation has been implemented as 
a bespoke version of the PostGIS 2.0 ST_ConcaveHull. The 
PostGIS version, unfortunately, is still a beta implementation and 
as such is currently only available as a Procedural 
Language/PostgreSQL Structured Query Language (PL/pgSQL) 
option. This presents a significant performance issue especially as 
the quantity of LiDAR being processed is so large. Thus, we have 
implemented our own version where a data source specific 
requirement is required. This is because the three different LiDAR 
data source types have very different point density properties, at a 
minimum. For example, mobile terrestrial LiDAR can have a 
point density in excess of 4,000 points per m2. Point densities 
reduce as a function of distance orthogonal to the survey vehicles 
direction of operation. Effectively this LiDAR data source 
produces a very dense and detailed route corridor point cloud. On 
the other hand aerial platform LiDAR, which can also be 
presented in a corridor like fashion representing the aerial vehicles 
flight path, the point densities are very much uniform across the 
scan area and typically are less than 10 points per m2.  

The first stage in our process is to snap all the LiDAR data to a 
spatial grid. A sub-step in the first stage involves the application 
of a sub-sampling threshold to the LiDAR. This sub-sampling is 
applied differently dependent on the LiDAR capture source; in the 
case of mobile terrestrial LiDAR areas with high point densities, 
close to the survey vehicle, are sub-sampled with a higher 
threshold than areas with lower point densities. The second stage 
is to generate concave hulls for all the sub-sampled and gridded 
data. Finally, a spatial union is performed on all the concave hulls 
for the LiDAR data being processed. 

This final stage can take the form of a number of different spatial 
unions where the highest accuracy concave hull is a direct 2D 
spatial representation of a single table of raw LiDAR. This idea 
follows through to unions that define all the data in different 
spatial configurations; local, regional, national, etc. The spatial 
union can also be applied in a number of other ways such as 
modeling the data using the survey based approach that exists in 
typical commercial software suites. 

5.2 Results 
In this section two sets of results are presented. They examine 
how the procedure described in the previous section performed in 
a runtime scenario from a dual perspective, one looks at the 
procedure with our threshold controlled sub-sampling system 
implemented while at the same time the grid size is changed to see 

its effect. The results presented in Table 3 show a clear 
improvement when the threshold procedure is applied. This is 
because the LiDAR that is being applied to the grid operation at 
each pass of the algorithm is much reduced based on its collection 
source and point density due to the sub-sampling. 
 

Table 3. Comparative runtime results for concave hull 
generation over a 1 million point LiDAR database. 

Grid Size 
(meters) 

Without 
Threshold 
(seconds) 

Threshold Applied 
(seconds) 

50*50 1763.40 1.058 

40*40 1541.40 1.058 

30*30 912.60 1.093 

20*20 525.00 1.112 

10*10 277.20 1.305 

5*5 154.80 1.559 

 
We applied this procedure to a survey containing 1.9 billion 
LiDAR points in our framework, which required 89.5 minutes to 
compute. Finally, we have tested our upload and concave hull 
computation process on two surveys with the results displayed in 
Table 4. The first survey was a small mobile terrestrial survey 
with 91 million points with each point storing its XYZ position 
and a color attribute in RGB requiring 42 minutes to upload and 
compute the coverage. The second survey was a large aerial 
survey with over 1,123 million points alongside an intensity value 
for each point, a little over 12 hours were required to input the 
data and compute the LiDAR coverage. In the next section, we 
will demonstrate the advantages to storing these data in a 
SDBMS. 
 
Table 4. Timing results for uploading and computing concave 

hulls for a mobile and aerial LiDAR survey. 

Survey Type No Points Attributes Time (H:M:S) 

Mobile 91,329,780 XYZ RGB 00:41:56 

Aerial 1,123,594,793 XYZI 12:14:26 

 

6. LIDAR SPATIAL SEGMENTATION 
6.1 2D LiDAR Segmentation Interface 
Having approached each stage of this framework pipeline with a 
spatial constraint perspective to the fore, it is possible at this stage 
to optimize the LiDAR data being output. This can be achieved, 
once again, through procedures that leverage the power of the 
PostGIS platform through its numerous, integrated, spatial 
functionalities. Due to the spatial-indexing and spatial-hierarchies 
that have been generated for the LiDAR, it is relatively easy to 
highlight use cases which generate bespoke LiDAR subsets from 
our 29 billion points stored in a 4.2 TB database. 
These use-cases could be in any relevant form where the process 
being initiated needs access to LiDAR. Consequently, this could 



be an automated processing algorithm, such as the road-edge 
extraction algorithm mentioned earlier. Using this example [16],  
we see that subsets of LiDAR can be spatially optimized such that 
this algorithm’s processes can be easily constrained based on the 
known LiDAR in the system, but can also be informed from the 
availability/knowledge of other spatial data that can be used to 
build the spatial constraint. In Figure 9, we can see a sample of 
the User Interface (UI) which highlights how this can happen. 
Alternatively, this example use-case could just as easily be a 
LiDAR awareness approach where LiDAR can be quickly and 
easily segmented for a user to view the outputs such that they are 
suitable for a given process or requirement. 

 
Figure 9. User initiated sub-sectioning of LiDAR from the 

framework for a road-edge detection processing algorithm. 
In this example both point or polygon spatial-constraint 
geometries can be created by a user, polygons have been created 
in this case as can be seen in Figure 9. This operation provides the 
geographical context for the LiDAR query where the user or 
process can choose between a 2D or 3D implementation. Either 
choice will result in a 3D LiDAR point-cloud being returned. 
However, in the 3D case the extra altitude (Z) parameter is added 
to the spatial query and can be used to bind the point-cloud in the 
Z domain, i.e. a road edge extraction algorithm will not require 
data above the road surface. These optimizations can significantly 
reduce the number of points returned which subsequently 
decreases the query time, required processing time and the 
rendering time. 
Extending on from this example is the possibility of numerous 
different user or process driven use-cases that may require the 
spatially segmented LiDAR data to be returned based on attribute 
constraints as well. For every independent LiDAR attribute, 
including the table’s primary key, an index exists such that 
searching any LiDAR table becomes a function of the index being 
searched and not a dependent process on the table’s primary key. 
Thus, in the previous example we could further constrain the 
returned point cloud data by requesting only points whose 
intensity values fall within a certain range, which allows us to 
continue to leverage the power of the database. Using the 
optimizations that are inherent to the PostgreSQL database, a 
standard spatial query will optimize its search based on the spatial 
index and the primary key of the table. For queries that extend 
such a search, based on other attributes, the primary key element 
is easily replaced with the index of the chosen constraint. In the 
main, runtimes on these attribute constrained queries will be 
comparable in the single constraint case, although as the number 
of attribute constraints increases runtimes would logically extend. 

6.2 WebGL Visualization 
Once this spatially constrained query has been completed the 
resulting LiDAR can be visualized in a 3D viewer, possibly only 
for relevance or validation purposes, but could also be 
downloaded for use in a particular bespoke process or 
requirement. In the case of browser based visualization, WebGL, 
in a Chrome browser, has been leveraged where the functionally 
complete point clouds, representing the polygons selected in 
Figure 9, can be visualized and interacted with, as shown in 
Figure 10. WebGL is an emerging technology with developing 
standards, [11,12], where its functionality and power to render 3D 
data is driven by its ability to execute programs on the client 
system Graphics Processing Unit (GPU).   

 
Figure 10. 3D point cloud WebGL viewer showing polygons 

selected from Figure 9. (a) mobile terrestrial data and (b) full 
color mobile terrestrial data. 

Through this viewer, we can show both intensity and color point 
clouds depending on the LiDAR data, which, for this viewer, is a 
specific example of the LiDAR attribute constraint approach that 
can be leveraged through the database indexing functionality. The 
viewer can also be used, as shown in Figure 11, for visual 
inspection of both LiDAR and processed results. In this example, 
processed road edges and pole objects are plotted in the Map UI. 
A polygon is then selected and the resulting LiDAR and objects 
are displayed color coded in the viewer. This could be a powerful 
aid to organizations wishing to perform validation of processing 
results from large LiDAR surveys. 

 
Figure 11. User defined LiDAR sub-section as displayed in the 

3D point cloud WebGL viewer. 
Extensions being built into this viewing platform include the 
functionality to download the segmented LiDAR dataset in a 
standardized file format. This download functionality is currently 
being implemented to support the existing LiDAR Exchange 
Format (LAS) standard, as defined in [5,26]. However, as is 
highlighted in [23] many formats exist for which bespoke 
download options could be developed but this would only be 
feasible on a requirements or use-case basis. Interestingly, the 
latest improvement on implementations of the LAS storage format 



is LASzip, [9], where savings to the order of 10 to 20 percent of 
the original file size can be achieved and is completely lossless. 

6.3 Results 
Acquiring these spatially sub-sectioned areas of LiDAR data 
obviously comes with a processing and data transfer expense. 
There are a number of factors which influence the runtime of a 
query and subsequent display of the point cloud in the viewer. 
These include the following: 

 
1. The size of the tables in the database. 

 
2. The dimensions of the polygon. 

 
3. The point density of the data. 

 
4. The complexity of the SQL query. 

 
5. And the transfer and subsequent loading of the points 

into the viewer. 
 
 It has also been shown in [22] that the configuration of hardware 
in such a system can lead to performance increases of greater than 
4 times. For these reasons we will test the runtimes for both aerial 
data, where there is generally a uniform point density and table 
size, and mobile terrestrial data, where the point density can vary 
significantly as does the table size. Each test query selected a 
random sub-sectioning point and reported access times to LiDAR 
in these spatially constrained areas on a 20 query average. This 
timing procedure included the preparation of the spatial query 
object, the operation of the spatial SQL statement, runtime of the 
query on the database and transferring the resulting LiDAR 3D 
point cloud data to the WebGL viewer. 
In Table 5, we display results for mobile terrestrial LiDAR data 
and demonstrate the effect of using 2D and 3D box spatial objects. 
The length parameter is maintained at 20 meters and represents a 
length along the known road center-line geometry and can be 
defined at any point forward, back or around the query space focal 
point. The width is the dimension orthogonal to the direction the 
vehicle was travelling. It can be seen in Table 5 that there is a 
strong correlation between the number of points returned by the 
spatial query and the runtime. 
 

Table 5. Timing results for mobile terrestrial LiDAR 
comparing 2D and 3D spatial queries 

Dimensions  (m) – 
(length x width x height) 

Time – 
average (s) 

Points – 
average 

3D     20x5x1 9.42 65596 

2D     20x5 10.37 91030 

3D     20x20x1 23.76 236645 

2D     20x20 29.12 319307 

3D     20x40x1 33.73 355854 

2D     20x40 49.64 551149 

 

Also in Table 5 we highlight the results for a 3D box spatial 
object query where height of the polygon is fixed at 0.54 meters 
above and below the surface of the road. Effectively, this example 
filters the LiDAR in an optimal way for the roadside feature 
extraction algorithms, where all points returned are within half a 
meter above and below the road surface. It is important to note 
that the 3D query, although more complex, has a quicker 
execution time in all cases. This highlights how important the 
PostGIS spatial indexing, as initiated and updated during the 
pg_bulkload data ingestion stage described in Section 4.2, is to the 
efficient retrieval of spatially optimized LiDAR point clouds. 
  

Table 6. Timing results for aerial LiDAR  

Dimensions  (m) – 
(length x width) 

Time – 
average (s) 

Points – 
average 

10x10 2.05 1386 

50x50 5.31 30557 

100x100 24.61 140521 

250x500 60.98 1525803 

 
Table 6 displays the results for our aerial data and further 
demonstrates the impact of point density on runtime. This allows 
us to view much larger areas of LiDAR data in the same time due 
to the point density. Finally, a plot of query time versus number of 
returned points for both mobile and aerial data is displayed in 
Figure 11. There is not a clear linear relationship between the 
number of points and runtime. This is not unexpected as there are 
a number of other factors that we have listed that impact on 
runtime. There also seems to be an increased efficiency in the 
aerial data case when querying larger areas. We believe this is due 
to the physical table size of the aerial data. In this experiment, its 
size is typically 10% that of the table size of the mobile data, this 
allows for much faster querying of the data. 

 
Figure 12. Graph plot for analysis of the timing results for 

mobile and aerial LiDAR data. 

7. CONCLUSIONS 
We have demonstrated a system which can store billions of 
LiDAR points and their attributes. It enables easy access to and 
interaction with the data in a web application through a 2D map 
and 3D point cloud viewer. The storage of LiDAR as a spatial 
object which can be queried allows for the development of 
spatially optimized workflows for processing algorithms. As 
highlighted in the previous sections, it is the LiDAR data 



management aspects of the framework being integrated into a 
PostgreSQL object-relational database that fundamentally 
underpins our optimizations of the various spatial operations. 
Large volumes of 3D LiDAR point cloud data can now be easily 
segmented either geographically through our comprehensive 
LiDAR browsing web-application or based on non spatial 
constraints that model the traditional survey model. Based on our 
requirements for a LiDAR spatial segmentation solution we have 
shown how a PostgreSQL database solution with PostGIS spatial 
extensions can be an efficient and effective platform for such 
work. 

8. FUTURE WORK 
From this paper it is clear to see that we are developing four 
significant bodies of research work: LiDAR data import using 
pg_bulkload, spatial hierarchy generation using a concave-hull 
approach, data segmentation based on spatial and/or attribute 
constraints and point cloud visualization in a WebGL enabled 
browser. Going forward, it is hoped that we will be able to fully 
extend and publish on each of these sections of work in a more 
detailed way. Each of these four areas requires research to 
discover the optimal implementation.  In particular, investigations 
into the use of GPU technology in data management and 
processing of DBMSs are only recently receiving attention. Also 
worth considering are two other possible directions, a hardware 
profiling comparison with other work that has been published by 
OpenTopography, and data scaling as a function of availability 
and accessibility to the data as opposed to the storage and size on 
disk overheads required to maintain such large volumes of 
LiDAR. 
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