
LLiDAR Data Management Pipeline; from Spatial Database
Population to Web-Application Visualization

Paul Lewis
National Centre for Geocomputation,

National University of Ireland,
Maynooth, Co.Kildare, Ireland

+353 (0)1 7086204

paul.lewis@nuim.ie

Conor P. Mc Elhinney
National Centre for Geocomputation,

National University of Ireland,
Maynooth, Co.Kildare, Ireland

+353 (0)1 7086204

conormce@cs.nuim.ie

Timothy McCarthy
National Centre for Geocomputation,

National University of Ireland,
Maynooth, Co.Kildare, Ireland

+353 (0)1 7086180

tim.mccarthy@nuim.ie

ABSTRACT
While the existence of very large and scalable Database
Management Systems (DBMSs) is well recognized, it is the usage
and extension of these technologies to managing spatial data that
has seen increasing amounts of research work in recent years. A
focused area of this research work involves the handling of very
high resolution Light Detection and Ranging (LiDAR) data.
While LiDAR has many real world applications, it is usually the
purview of organizations interested in capturing and monitoring
our environment where it has become pervasive. In many of these
cases, it has now become the de facto minimum standard expected
when a need to acquire very detailed 3D spatial data is required.
However, significant challenges exist when working with these
data sources, from data storage to feature extraction through to
data segmentation all presenting challenges relating to the very
large volumes of data that exist. In this paper, we present the
complete LiDAR data pipeline as managed in our spatial database
framework. This involves three distinct sections, populating the
database, building a spatial hierarchy that describes the available
data sources, and spatially segmenting data based on user
requirements which generates a visualization of these data in a
WebGL enabled web-application viewer. All work presented is in
an experimental results context where we show how this approach
is runtime efficient given the very large volumes of LiDAR data
that are being managed.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – spatial
database and GIS.

General Terms
Performance, Design.

Keywords
LiDAR, Spatial Database, WedGL, PostGIS.

1. INTRODUCTION
Many academic, governmental, and commercial organizations are
charged with environmental mapping and monitoring tasks, many
of which require accurate 3D geographical information. These
requirements can be achieved using LiDAR that has typically
been captured from any one or all of the following sources:

1. Static Terrestrial LiDAR

2. Mobile Terrestrial LiDAR

3. Aerial LiDAR

These geospatial data sources are particularly suited to the case of
urban modeling and infrastructural mapping where high resolution
3D geographical information can be collected very quickly. From
this detailed information bespoke and comparative analysis can be
performed in order to monitor, understand, and plan the status
and/or requirements for a survey area. It is in the context of
managing such urban and road-network survey data that we
present our LiDAR data management pipeline.

Generally, the typical workflow when handling LiDAR involves
processing the raw data into a specific format that can be easily
viewed. This is due to the sheer volume of LiDAR data which
precludes easy access and viewing of the data or specific spatial
regions with the data. Typically, while the raw data is provided at
the conclusion of the survey only processed simplified formats,
such as a Digital Elevation Model (DEM), of the data are ever
viewed. These reasons have led to interest and research into use of
Database Management Systems (DBMSs) for the storage and
retrieval of LiDAR data.

A select amount of research work has been completed in the
context of managing vast amounts of 3D spatial data in a DBMS,
[1,7,22,24]. Generally they point to a strong desire to store these
data in a DBMS as they offer the full optimizations inherent to
modern databases such as transaction guarantees and multiuser,
random access of very large datasets. They also offer advanced
features such as back-up and restore capabilities. To access
LiDAR data through a DBMS first the raw LiDAR data is gridded
into spatially equal tiles. The spatial boundaries of these files are
then stored in a DBMS which provides access to these raw files
through spatial operations. We are interested in Spatial DBMS
(SDBMS) where the raw LiDAR data are stored as individual
spatial points allowing for unrestricted access to all the LiDAR
and its attributes. This would allow organizations who purchase or
collect LiDAR data to easily access and view their data.

Storing LiDAR data in this manner as a spatial element in a
SDBMS will allow for the optimization of LiDAR processing

workflows. The industrial standard is to cluster the LIDAR data
into spatial girds and then store each of these grids as a binary file
in a unique folder for that survey, as shown in Figure 1. It is this
methodology that prevails in most software suites and has proven
to be a significant constraint in a number of LiDAR analysis
requirements. These constraints include an inability to easily
define a spatial context that improves our ability to
understand/visualize what LiDAR is available from one or
multiple surveys. Extending from this is having the ability to
easily segment a chosen sub-section of LiDAR for bespoke uses.
Using an example of a road-edge detection processing
requirement, we find that these systems do not provide a context
for spatial optimization across an individual or numerous data
sets/surveys where logical segmentation can be easily
implemented based on a targeted approach to data processing
rather that the more common brute force method.

Figure 1. This example of a Survey-based approach for

LiDAR data management in commercial software is typical.
In presenting our LiDAR data-framework pipeline we
demonstrate how, in the first instance, a spatial approach to the
storage of the raw LiDAR data has consequent benefits to
managing these data from a bespoke segmentation requirements
perspective. We show through our data handling pipeline how a
very large scale spatial database is optimally constructed. How we
can hierarchically represent these data sources in a geographically
meaningful way and how these hierarchies can be used such that a
bespoke LiDAR segmentation requirement can be easily
performed. Finally, this process pipeline is interactively realized
in a web-application that quickly allows a user to interact with the
results of any segmented sections of LiDAR for requirements
such as validation of processing results through to the perusal of
data sources for optimization and quality.

2. BACKGROUND AND RELATED WORK
2.1 LiDAR Frameworks
As Figure 1 shows, and Section 1 mentioned, the standard
methodology for commercially available LiDAR software
solutions is to use spatial grids that define the LiDAR data
contents of a binary file format, for each independent survey.
Having examined a number of these commercial solutions
highlighted at [8,20] we see that the survey based approach is
typically unavoidable as these are independent standalone
installations of software that use locally stored LiDAR. However,
with the expansive growth of Cloud computing services we also
see emerging deployments of distributed web-applications that
handle LiDAR. Currently there are two significant browser based
online implementations, [3,21], that are comparable in scope with
the framework presented in this paper. However, it is currently not
possible to examine these services in the context of the results

presented here as no publications, with a sufficient level of detail,
exist about them.
In [13], OpenTopography’s Service Oriented Architecture is
described which details their underlying use of the LAS format,
[5,26], to store the raw LiDAR point data. This could be
compared, at a methodological level, to our system as we store the
LiDAR directly in the spatial database. However, their paper does
not give enough details on the runtime performances for LiDAR
data importation or retrieval, as is presented here. We could make
a broad comparison based on the size and amount of raw LiDAR
stored in our respective frameworks; however, this is meaningless
without a formally structured study and approach, as both
frameworks are handling raw LiDAR from numerous different
sources to different levels of detail. Also, OpenTopography
maintain Digital Elevation Models (DEMs) of their core data
which we do not.
In [22], a grid approach is used to build the database index. This
structured approach optimized the grid size for the indexed
storage of LiDAR point clouds based on a comprehensive set of
query performance tests. These results are not detailed other than
one basic metric being mentioned which references the average
number of rows (points) their system handled per query when the
index was being built. However, this paper did define aspects of
the hardware requirements that are important to such a
frameworks implementation. Our paper does not focus on the
hardware aspect of the framework, from which our results were
dependent, but future publications could look at such a
comparison. It is worth noting in [22] that future work is
suggested that could investigate a spatial database solution; while
our paper does focus on this issue there is no published paper, to
our knowledge, that would allow us make such a detailed
comparison.
A number of other publications exist that discuss frameworks
which incorporate LiDAR point clouds in a databases solution.
However, a comprehensive analysis and solution to the issue of
importing voluminous LiDAR data into DBMSs has been to date
absent. In [25], a LiDAR management system is detailed that
defines their system as it interacts with users through an
authentication interface, how it can manage these projects, and
how data handling and processing fits into this architecture. In
[15], a comprehensive Urban data management system is detailed
that leverages many aspects of Geographical Information Systems
(GISs), including access to LiDAR stored in a database
component. In [10], a grid-computing solution is detailed for
processing large volumes of LiDAR which is stored in a database.
In [19], this work highlights approaches from the acquisition and
processing perspective where optimized triangular meshes are
generated from LiDAR point clouds stored in a database. In [18],
an Oracle 11g database schema and solution is presented in a
generalized way for the storage of detailed LiDAR point clouds of
buildings, although no data import or query processing
performance metrics are given. In [2], a Microsoft SQL Server
2008 database solution is presented, they also implement a grid
index methodology for the spatial data handling aspects of their
framework, however, while this paper presents some very basic
metrics on query access runtimes it lacks any significant
discussion for a comprehensive comparison. In [7], the authors
implement a database KD-tree approach for their LiDAR with a
table of results from a point-cloud rendering performance test
from their visualization component. It is also worth noting in this
paper that the authors briefly mention Level-Of-Detail data
structures as being inappropriate to optimized visualizations of
LiDAR point clouds, as is discussed in Section 2.2. As is detailed

in Section 6.2 we leverage the GPU based processing power of
WebGL to handle the LiDAR visualization and interaction. As
this implementation is a browser based web-application our point
cloud rendering solutions performance would be dependent on the
specifications of the system hosting the session. Finally, in [4], a
working paper is presented on the state-of-art for LiDAR data
management in a GIS context. It presents a detailed overview of
various aspects of a GIS based LiDAR data-management pipeline
such that the authors intend implementing and publishing on this
topic in the future.

2.2 LiDAR Data Structures
Numerous methodologies are available when optimized
segmentation and storage of LiDAR point clouds is required.
While these approaches have validity and applications in various
LiDAR data management contexts, our empirical testing and
implementations have shown that gridded, tiled and/or Level-of-
Detail (LOD) structures are not optimal in many instances where a
database implementation, such as that presented here, is used. One
example of implementing a non-database approach is in [6] where
a distributed implementation is described that supports both grid
and quadtree data structures.
When dealing with raw LiDAR files, storing them in LODs, grids,
or tiled structures enables faster access to the data for a user.
While a tiled data structure approach, such as a voxel
implementation, can work for what is typically well distributed
aerial LiDAR, it is not optimal for terrestrial LiDAR, especially
mobile terrestrial LiDAR, where data distributions are non-
uniform across space. Extending on from this is the possibility of
implementing data-source specific solutions where terrestrial data
is optimized in a different data structure than aerial data.
However, implementing different data structure approaches makes
it more difficult and less efficient to generalize our multi-source
LiDAR data such that storage and access methodologies are
consistent. Our framework is designed as an alternative to storing
multiple copies of the same data in different spatial dimensions,
i.e. tiles or grids. By storing the LiDAR point cloud data in the
database we can output tiles or grids of any spatial dimension and
shape.
Also, a pre-determined LOD implementation approach can suffer
from the same problems that were described above, especially
when working with the non-uniformly distributed LiDAR point
clouds captured from a mobile terrestrial platform. Once again,
our database approach can be spatially adapted, in terms of its
geographical point density, to determine dynamic LOD’s. Our
indexing methodology facilitates simple interfaces to request
point clouds based on many possible point cloud attributes, an
LOD filter just extends this functionality. For example, one point
per square meter or every 10th point in the query area can be
returned in a dynamic fashion without any significant changes in
runtime efficiencies. This allows a user to quickly search an area
at a dynamically definable LOD, and if the returns are not of
interest, further sub-area selects at a new or different LOD
requirement, if necessary, are easily accomplished.

3. LIDAR SPATIAL DATA-FRAMEWORK
Empirical experience working with geo-referenced LiDAR data
suggests that the primary obstacles in the processing of these data
are their considerable size and the inability to easily constrain the
data based on spatial attributes. Leading on from this is the
extraction and preparation difficulties when using these data for
bespoke requirements. For example, an algorithm has recently
been developed for the detection of road edges from terrestrial

LiDAR, [16], yet this operation is being constrained by the
survey-processing methodology that prevails in industry standard
software suites. The efficiency of automated processing
algorithms relies on the raw LiDAR data input being spatially
optimised for the algorithm. Most software suites do not easily
allow access to the raw data at different or irregular spatial
dimensions. It is also extremely difficult to search for all the data
in a region irrespective of the survey it belongs to. Thus, towards
a solution to this type of problem we have implemented a Spatial
DBMS (SDBMS) approach that is broadly defined in Figure 2.

Figure 2. LiDAR Data Management Framework Overview.

The first stage in our solution is the development of a platform
and methodology where large volumes of LiDAR data can be
stored in an accessible form. However, LiDAR data is extremely
voluminous where quantities well in excess of 36GB’s per hour
are commonly produced from Mobile Mapping Systems. These
data are typically made up of, but not restricted to, 3D geo-
referenced point-cloud information along with other properties
such as Amplitude, Reflectance and RGB. This stage in our
processing pipeline is detailed in Section 4.

The second stage involves building a 2D spatial hierarchy of the
3D LiDAR data uploaded into the system. The importance of this
step is that it gives a spatial context where optimally located
LiDAR data can be output and viewed based on either a user or
system spatial request, such as data verification or a road-edge
extraction algorithm. This enables a user to more easily validate
results as both the raw data and processed results can be cross
referenced in both a subjective visual inspection through the
WebGL viewer or through an objective analytical validation
process. Building these spatial hierarchies is defined in Section 5.

Finally, given that a process, either user or system defined, has
determined a target LiDAR data set, based on some spatial
constraints, retrieving these data in an optimal fashion is detailed
in Section 6. This involves the efficient retrieval of LiDAR sub-
sections from the 29 billion point 4.2 terabyte sized spatial
database that currently hosts this information.

4. POPULATING A LIDAR SDBMS
4.1 SDBMS Architecture
The LiDAR data is stored in a PostgreSQL relational database
management system. Integrated into this database solution are the
PostGIS spatial extensions and the pg_bulkload data loading
utility. It is through the use of the pg_bulkload utility that LiDAR
data input and spatial index generation have been optimized. In
Figure 3, we provide a detailed sample from our DB schema
which incorporates a number of levels of spatial detail, as
described in Section 4, from which data extraction is optimized.

Figure 3. Sample from our LiDAR spatial database schema.

Using this platform we have shown in [14] how this technology
decision has enabled us to optimize the large volumes of LiDAR
data for processing by feature extraction algorithms. However, the
core component to being able to implement this approach is the
ability to use the extensive functionalities provided by
PostgreSQL’s PostGIS spatial extensions. Through PostGIS we
have been able to generate and store Open Geospatial Consortium
(OGC) compliant spatial objects in a standard object-relational
database. Extending from this functionality is the spatial indexing
options provided by PostGIS. However, while it is trivial to
generate a PostGIS spatial object (geometry) and its associated
spatial-index, doing so for huge volumes of LiDAR data is not
trivial. It is at this point that we need to input these large volumes
of spatial data in an efficient manner. To this end, we highlight
our tested upload procedure and the runtime results in the rest of
this section.

4.2 LiDAR Upload Procedure
Through a detailed set of experiments, [17], we have implemented
and tested customized variations of the built-in PostgreSQL bulk
data input functionality of the COPY command and the
pg_bulkload bulk data loading utility. The PostgreSQL COPY
command moves data from a file into a DB table through a SQL
statement. Its performance is better on initial data loading if the
destination table is empty. Performance is also improved when the
data are loaded without an index constraint; thus dropping and re-
creating the indexes after loading is optimal. Pg_bulkload
implements an alternative methodology and has been developed
for PostgreSQL by the Nippon Telegraph and Telephone
Corporation. It is an optimized high volume data loading utility
that skips some of the processing overheads used by COPY. It is
designed to load huge amounts of data to a database where you
can choose whether database constraints are checked, whether

errors are ignored during the loading and to have the index
updated as a synchronous operation. Pg_bulkload has two
operational modes: Direct and Parallel. Direct uses one core of the
system to upload the data while Parallel attempts to distribute as
much processing as possible across the system cores.

Our testing of upload procedures determined an optimal solution
based on an extensive set of comparative results between the use
of COPY and pg_bulkload in a number of scenarios. For this
testing four large LiDAR data files were prepared, as shown in
Table 1. We first selected a large dataset over 6GB’s in size and a
small data-set over 800MB’s in size. We created two files from
each containing 10 columns and 14 columns respectively. By
keeping the data constant and only changing the row size we
intended to examine the effect row size had on the uploading
approaches. We used these sample data-sets in a series of three
experimental approaches where our attempt to develop a method
to predict the length of time uploading a file would take was based
on the file attributes.

Table 1. LiDAR Data test file properties

File Rows Cols Size (MBs) Avg. Row Size

La 66 million 10 4359.52 0.0675

Lb 66 million 14 6757.94 0.1046

Sa 8 million 10 526.90 0.0663

Sb 8 million 14 821.85 0.1034

The procedure that showed the best LiDAR data upload was
achieved from a comparison between the most efficient
approaches we found for both the COPY and pg_bulkload options
[17]. For our data we found that by pre-processing the files, using
python, to predefine the geometry data format, significantly
decreased the upload time. This process involved using the
Longitude, Latitude, and Altitude fields in the LiDAR data file to
concatenate a canonically suitable representation of the PostGIS
base-geometry data type. This base data type is an Extended Well
Known Text (EWKT) representation, in three dimensional space,
of the OGC Simple Features for SQL specifications. Our optimal
process for loading large volumes of LiDAR into a PostGIS
database table is:

1. Python – Process the original file to add the PostGIS
geometry data type representation into it.

2. Create the Table – An empty table is created from the
input file header fields.

3. Create geometry column – Add a PostGIS POINT-
geometry data type field to the table.

4. Create Spatial Index – Create the spatial index on the
PostGIS geometry field.

5. Load Data – Populate the whole table with all the raw
LiDAR file data.

4.3 Results
In Table 2 we present the fastest runtime results in our
comparative tests between the standard PostgreSQL COPY
command and the pg_bulkload utility. Significantly, it can be seen
that the speed-up gain using pg_bulkload in parallel mode is, on
average, 13% that of the standard COPY procedure.

Table 2. Comparative upload times (minutes) for the
optimized COPY and pg_bulkload procedures.

File Python SQL COPY PG Direct PG Parallel

La 5.14 55.40 52.42 48.08

Lb 6.26 59.47 56.03 51.75

Sa 0.63 5.87 5.28 5.09

Sb 0.79 6.42 5.82 5.59

As expected, the time to upload a row of data for the two files
with 10 columns, Figures 4 and 5 (a), was shorter than when
uploading the data for the 14 column case, Figures 4 and 5 (b).
However, uploading the smaller file had a consistently shorter per
row upload time. Also, the percentage increase in row processing
time for these extra 4 columns was always significantly smaller
than the percentage increase in row size (kilobytes). Adding these
columns to the files resulted in a file size change ranging between
33-56%, while the resulting row uploading time change increased
by only 8-15%. In Figures 6 and 7, the timing information per
kilobyte is plotted. For all experiments an increase in row size
resulted in a reduction in the row processing time per kilobyte.
These results show that, with PostgreSQL, as the number of rows
of data to upload increases the time per row increases and that an
increase in row size will lead to a decrease in time per kilobyte.
This implies that there is a non-linear relationship between upload
time, the number of rows and row size.

Having completed these sets of experiments, the next section in
our framework pipeline is to generate meaningful 2D spatial
representations of these very large data tables such that an
informed process or user decision can be made when applying a
spatial constraint to these data.

Figure 4. Timing plots for data load time per row for files (a)

La and (b) Lb.

Figure 5. Timing plots for data load time per row for files (a)

Sa and (b) Sb.

Figure 6. Timing plots for data load time per kilobyte for files

(a) La and (b) Lb.

Figure 7. Timing plots for data load time per kilobyte for files

(a) Sa and (b) Sb.

5. LIDAR SPATIAL HIERARCHY
5.1 LiDAR Concave Hull
To efficiently understand what data the SDBMS holds a 2D
spatial hierarchy was implemented where all the spatial data
sources; mobile terrestrial, aerial, and terrestrial-static are stored
at different levels of spatial detail. This does not affect the raw
spatial detail of the raw LiDAR but allows a user to process or
evaluate the available LiDAR in approximate coverage zones.
Two examples are highlighted in Figure 8, in both the user moved
to a localized area of a Bing Maps UI where the LiDAR coverage
is shown as a blue transparent polygon. In Figure 8 (a), the full
coverage of an aerial survey containing 1,700 million points is
shown and in Figure 8 (b) the LiDAR coverage for a sub-section
of a 400 million point mobile terrestrial survey is shown. Within
this UI the user can use standard GIS point and polygon creation
tools to intersect a planar view of the available data in this area,
which is presented in Section 6.

Figure 8. Approximated LiDAR coverage zone for (a) aerial

LiDAR and (b) mobile terrestrial LiDAR.
The procedure to perform this operation has been implemented as
a bespoke version of the PostGIS 2.0 ST_ConcaveHull. The
PostGIS version, unfortunately, is still a beta implementation and
as such is currently only available as a Procedural
Language/PostgreSQL Structured Query Language (PL/pgSQL)
option. This presents a significant performance issue especially as
the quantity of LiDAR being processed is so large. Thus, we have
implemented our own version where a data source specific
requirement is required. This is because the three different LiDAR
data source types have very different point density properties, at a
minimum. For example, mobile terrestrial LiDAR can have a
point density in excess of 4,000 points per m2. Point densities
reduce as a function of distance orthogonal to the survey vehicles
direction of operation. Effectively this LiDAR data source
produces a very dense and detailed route corridor point cloud. On
the other hand aerial platform LiDAR, which can also be
presented in a corridor like fashion representing the aerial vehicles
flight path, the point densities are very much uniform across the
scan area and typically are less than 10 points per m2.

The first stage in our process is to snap all the LiDAR data to a
spatial grid. A sub-step in the first stage involves the application
of a sub-sampling threshold to the LiDAR. This sub-sampling is
applied differently dependent on the LiDAR capture source; in the
case of mobile terrestrial LiDAR areas with high point densities,
close to the survey vehicle, are sub-sampled with a higher
threshold than areas with lower point densities. The second stage
is to generate concave hulls for all the sub-sampled and gridded
data. Finally, a spatial union is performed on all the concave hulls
for the LiDAR data being processed.

This final stage can take the form of a number of different spatial
unions where the highest accuracy concave hull is a direct 2D
spatial representation of a single table of raw LiDAR. This idea
follows through to unions that define all the data in different
spatial configurations; local, regional, national, etc. The spatial
union can also be applied in a number of other ways such as
modeling the data using the survey based approach that exists in
typical commercial software suites.

5.2 Results
In this section two sets of results are presented. They examine
how the procedure described in the previous section performed in
a runtime scenario from a dual perspective, one looks at the
procedure with our threshold controlled sub-sampling system
implemented while at the same time the grid size is changed to see

its effect. The results presented in Table 3 show a clear
improvement when the threshold procedure is applied. This is
because the LiDAR that is being applied to the grid operation at
each pass of the algorithm is much reduced based on its collection
source and point density due to the sub-sampling.

Table 3. Comparative runtime results for concave hull
generation over a 1 million point LiDAR database.

Grid Size
(meters)

Without
Threshold
(seconds)

Threshold Applied
(seconds)

50*50 1763.40 1.058

40*40 1541.40 1.058

30*30 912.60 1.093

20*20 525.00 1.112

10*10 277.20 1.305

5*5 154.80 1.559

We applied this procedure to a survey containing 1.9 billion
LiDAR points in our framework, which required 89.5 minutes to
compute. Finally, we have tested our upload and concave hull
computation process on two surveys with the results displayed in
Table 4. The first survey was a small mobile terrestrial survey
with 91 million points with each point storing its XYZ position
and a color attribute in RGB requiring 42 minutes to upload and
compute the coverage. The second survey was a large aerial
survey with over 1,123 million points alongside an intensity value
for each point, a little over 12 hours were required to input the
data and compute the LiDAR coverage. In the next section, we
will demonstrate the advantages to storing these data in a
SDBMS.

Table 4. Timing results for uploading and computing concave

hulls for a mobile and aerial LiDAR survey.

Survey Type No Points Attributes Time (H:M:S)

Mobile 91,329,780 XYZ RGB 00:41:56

Aerial 1,123,594,793 XYZI 12:14:26

6. LIDAR SPATIAL SEGMENTATION
6.1 2D LiDAR Segmentation Interface
Having approached each stage of this framework pipeline with a
spatial constraint perspective to the fore, it is possible at this stage
to optimize the LiDAR data being output. This can be achieved,
once again, through procedures that leverage the power of the
PostGIS platform through its numerous, integrated, spatial
functionalities. Due to the spatial-indexing and spatial-hierarchies
that have been generated for the LiDAR, it is relatively easy to
highlight use cases which generate bespoke LiDAR subsets from
our 29 billion points stored in a 4.2 TB database.
These use-cases could be in any relevant form where the process
being initiated needs access to LiDAR. Consequently, this could

be an automated processing algorithm, such as the road-edge
extraction algorithm mentioned earlier. Using this example [16],
we see that subsets of LiDAR can be spatially optimized such that
this algorithm’s processes can be easily constrained based on the
known LiDAR in the system, but can also be informed from the
availability/knowledge of other spatial data that can be used to
build the spatial constraint. In Figure 9, we can see a sample of
the User Interface (UI) which highlights how this can happen.
Alternatively, this example use-case could just as easily be a
LiDAR awareness approach where LiDAR can be quickly and
easily segmented for a user to view the outputs such that they are
suitable for a given process or requirement.

Figure 9. User initiated sub-sectioning of LiDAR from the

framework for a road-edge detection processing algorithm.
In this example both point or polygon spatial-constraint
geometries can be created by a user, polygons have been created
in this case as can be seen in Figure 9. This operation provides the
geographical context for the LiDAR query where the user or
process can choose between a 2D or 3D implementation. Either
choice will result in a 3D LiDAR point-cloud being returned.
However, in the 3D case the extra altitude (Z) parameter is added
to the spatial query and can be used to bind the point-cloud in the
Z domain, i.e. a road edge extraction algorithm will not require
data above the road surface. These optimizations can significantly
reduce the number of points returned which subsequently
decreases the query time, required processing time and the
rendering time.
Extending on from this example is the possibility of numerous
different user or process driven use-cases that may require the
spatially segmented LiDAR data to be returned based on attribute
constraints as well. For every independent LiDAR attribute,
including the table’s primary key, an index exists such that
searching any LiDAR table becomes a function of the index being
searched and not a dependent process on the table’s primary key.
Thus, in the previous example we could further constrain the
returned point cloud data by requesting only points whose
intensity values fall within a certain range, which allows us to
continue to leverage the power of the database. Using the
optimizations that are inherent to the PostgreSQL database, a
standard spatial query will optimize its search based on the spatial
index and the primary key of the table. For queries that extend
such a search, based on other attributes, the primary key element
is easily replaced with the index of the chosen constraint. In the
main, runtimes on these attribute constrained queries will be
comparable in the single constraint case, although as the number
of attribute constraints increases runtimes would logically extend.

6.2 WebGL Visualization
Once this spatially constrained query has been completed the
resulting LiDAR can be visualized in a 3D viewer, possibly only
for relevance or validation purposes, but could also be
downloaded for use in a particular bespoke process or
requirement. In the case of browser based visualization, WebGL,
in a Chrome browser, has been leveraged where the functionally
complete point clouds, representing the polygons selected in
Figure 9, can be visualized and interacted with, as shown in
Figure 10. WebGL is an emerging technology with developing
standards, [11,12], where its functionality and power to render 3D
data is driven by its ability to execute programs on the client
system Graphics Processing Unit (GPU).

Figure 10. 3D point cloud WebGL viewer showing polygons

selected from Figure 9. (a) mobile terrestrial data and (b) full
color mobile terrestrial data.

Through this viewer, we can show both intensity and color point
clouds depending on the LiDAR data, which, for this viewer, is a
specific example of the LiDAR attribute constraint approach that
can be leveraged through the database indexing functionality. The
viewer can also be used, as shown in Figure 11, for visual
inspection of both LiDAR and processed results. In this example,
processed road edges and pole objects are plotted in the Map UI.
A polygon is then selected and the resulting LiDAR and objects
are displayed color coded in the viewer. This could be a powerful
aid to organizations wishing to perform validation of processing
results from large LiDAR surveys.

Figure 11. User defined LiDAR sub-section as displayed in the

3D point cloud WebGL viewer.
Extensions being built into this viewing platform include the
functionality to download the segmented LiDAR dataset in a
standardized file format. This download functionality is currently
being implemented to support the existing LiDAR Exchange
Format (LAS) standard, as defined in [5,26]. However, as is
highlighted in [23] many formats exist for which bespoke
download options could be developed but this would only be
feasible on a requirements or use-case basis. Interestingly, the
latest improvement on implementations of the LAS storage format

is LASzip, [9], where savings to the order of 10 to 20 percent of
the original file size can be achieved and is completely lossless.

6.3 Results
Acquiring these spatially sub-sectioned areas of LiDAR data
obviously comes with a processing and data transfer expense.
There are a number of factors which influence the runtime of a
query and subsequent display of the point cloud in the viewer.
These include the following:

1. The size of the tables in the database.

2. The dimensions of the polygon.

3. The point density of the data.

4. The complexity of the SQL query.

5. And the transfer and subsequent loading of the points

into the viewer.

 It has also been shown in [22] that the configuration of hardware
in such a system can lead to performance increases of greater than
4 times. For these reasons we will test the runtimes for both aerial
data, where there is generally a uniform point density and table
size, and mobile terrestrial data, where the point density can vary
significantly as does the table size. Each test query selected a
random sub-sectioning point and reported access times to LiDAR
in these spatially constrained areas on a 20 query average. This
timing procedure included the preparation of the spatial query
object, the operation of the spatial SQL statement, runtime of the
query on the database and transferring the resulting LiDAR 3D
point cloud data to the WebGL viewer.
In Table 5, we display results for mobile terrestrial LiDAR data
and demonstrate the effect of using 2D and 3D box spatial objects.
The length parameter is maintained at 20 meters and represents a
length along the known road center-line geometry and can be
defined at any point forward, back or around the query space focal
point. The width is the dimension orthogonal to the direction the
vehicle was travelling. It can be seen in Table 5 that there is a
strong correlation between the number of points returned by the
spatial query and the runtime.

Table 5. Timing results for mobile terrestrial LiDAR
comparing 2D and 3D spatial queries

Dimensions (m) –
(length x width x height)

Time –
average (s)

Points –
average

3D 20x5x1 9.42 65596

2D 20x5 10.37 91030

3D 20x20x1 23.76 236645

2D 20x20 29.12 319307

3D 20x40x1 33.73 355854

2D 20x40 49.64 551149

Also in Table 5 we highlight the results for a 3D box spatial
object query where height of the polygon is fixed at 0.54 meters
above and below the surface of the road. Effectively, this example
filters the LiDAR in an optimal way for the roadside feature
extraction algorithms, where all points returned are within half a
meter above and below the road surface. It is important to note
that the 3D query, although more complex, has a quicker
execution time in all cases. This highlights how important the
PostGIS spatial indexing, as initiated and updated during the
pg_bulkload data ingestion stage described in Section 4.2, is to the
efficient retrieval of spatially optimized LiDAR point clouds.

Table 6. Timing results for aerial LiDAR

Dimensions (m) –
(length x width)

Time –
average (s)

Points –
average

10x10 2.05 1386

50x50 5.31 30557

100x100 24.61 140521

250x500 60.98 1525803

Table 6 displays the results for our aerial data and further
demonstrates the impact of point density on runtime. This allows
us to view much larger areas of LiDAR data in the same time due
to the point density. Finally, a plot of query time versus number of
returned points for both mobile and aerial data is displayed in
Figure 11. There is not a clear linear relationship between the
number of points and runtime. This is not unexpected as there are
a number of other factors that we have listed that impact on
runtime. There also seems to be an increased efficiency in the
aerial data case when querying larger areas. We believe this is due
to the physical table size of the aerial data. In this experiment, its
size is typically 10% that of the table size of the mobile data, this
allows for much faster querying of the data.

Figure 12. Graph plot for analysis of the timing results for

mobile and aerial LiDAR data.

7. CONCLUSIONS
We have demonstrated a system which can store billions of
LiDAR points and their attributes. It enables easy access to and
interaction with the data in a web application through a 2D map
and 3D point cloud viewer. The storage of LiDAR as a spatial
object which can be queried allows for the development of
spatially optimized workflows for processing algorithms. As
highlighted in the previous sections, it is the LiDAR data

management aspects of the framework being integrated into a
PostgreSQL object-relational database that fundamentally
underpins our optimizations of the various spatial operations.
Large volumes of 3D LiDAR point cloud data can now be easily
segmented either geographically through our comprehensive
LiDAR browsing web-application or based on non spatial
constraints that model the traditional survey model. Based on our
requirements for a LiDAR spatial segmentation solution we have
shown how a PostgreSQL database solution with PostGIS spatial
extensions can be an efficient and effective platform for such
work.

8. FUTURE WORK
From this paper it is clear to see that we are developing four
significant bodies of research work: LiDAR data import using
pg_bulkload, spatial hierarchy generation using a concave-hull
approach, data segmentation based on spatial and/or attribute
constraints and point cloud visualization in a WebGL enabled
browser. Going forward, it is hoped that we will be able to fully
extend and publish on each of these sections of work in a more
detailed way. Each of these four areas requires research to
discover the optimal implementation. In particular, investigations
into the use of GPU technology in data management and
processing of DBMSs are only recently receiving attention. Also
worth considering are two other possible directions, a hardware
profiling comparison with other work that has been published by
OpenTopography, and data scaling as a function of availability
and accessibility to the data as opposed to the storage and size on
disk overheads required to maintain such large volumes of
LiDAR.

9. ACKNOWLEDGMENTS
Research presented in this paper was funded by the NRA research
fellowship program, ERA-NET SR01 projects and by a Strategic
Research Cluster grant (07/SRC/I1168) by Science Foundation
Ireland under the National Development Plan. The authors
gratefully acknowledge this support.

10. REFERENCES

1. Breunig, M. and Zlatanova, S. 3D geo-database research:
Retrospective and future directions. Computers &
Geosciences, (2011), 1-13.

2. Chen, Y., Zhang, H., and Fu, X. Organization and Query
of Point Clouds Data Based on SQL Server Spatial.
ICCSIT, (2010), 178-181.

3. Dielmo Technology. Lidar Online - The Lidar Social
Network. 2012. https://www.lidar-online.com/product-
list.php.

4. Ferede, H., Agency, N.G.-intelligence, and Mazzuchi,
T.A. Multi-dimensional data discovery. ASPRS/MAPPS,
ASPRS (2009).

5. Graham, L. The LAS 1.1 Standard. Photogrammetric
Engineering & Remote Sensing 71, July (2005), 777-780.

6. Hongchao, M. and Wang, Z. Distributed data
organization and parallel data retrieval methods for huge

laser scanner point clouds. Computers & Geosciences 37,
2 (2011), 193-201.

7. Hua, L.I.U., Zhengdong, H., Qingming, Z., and Peng,
L.I.N. A database approach to very large LiDAR data
management. ISPRS Congress, ISPRS (2008), 463-468.

8. Idaho LiDAR Consortium. Commercial LiDAR Tools.
2011. http://www.idaholidar.org/tools/commercial.

9. Isenburg, M. LASzip
data. European LiDAR Mapping Forum, (2012).

10. Jaeger-Frank, E., Crosby, C., Memon, A., et al. A Three
Tier Architecture for LiDAR Interpolation and Analysis.
In V. Alexandrov, G. van Albada, P. Sloot and J.
Dongarra, eds., Computational Science – ICCS 2006.
Springer Berlin / Heidelberg, 2006, 920-927.

11. Khronos Group. WebGL Specification 1.0. 2011.
https://www.khronos.org/registry/webgl/specs/1.0/.

12. Khronos Group. WebGL Specification Draft. 2012.
http://www.khronos.org/registry/webgl/specs/latest/.

13. Krishnan, S., Viswanath Nandigam, C., Crosby, M.P.,
Cowart, C., Baru, C., and Arrowsmith, R.
OpenTopography: a services oriented architecture for
community access to LIDAR topography. Earth Science,
(2011).

14. Lewis, P., Mc Elhinney, C.P., Schön, B., and Mc Carthy,
T. Mobile Mapping System LiDAR Data Framework. 3D
Geo-Information 2010, (2010).

15. Matejicek, L., Engst, P., and Janour, Z. A GIS-based
approach to spatio-temporal analysis of environmental
pollution in urban areas: A case study of Prague’s
environment extended by LIDAR data. Ecological
Modelling 199, 3 (2006), 261-277.

16. Mc Elhinney, C.P., Kumar, P., Cahalane, C., and
McCarthy, T. Initial results from European Road Safety
Inspection (EURSI) mobile mapping project. ISPRS
Commission V Technical Symposium, ISPRS (2010),
440-445.

17. Mc Elhinney, C.P., Lewis, P., and Mc Carthy, T. Mobile
Terrestrial LiDAR Data-Sets in a Spatial Database
Framework. MMT 2011, 7th International Symposium on
Mobile Mapping Technology, (2011).

18. Ming, G., Yanmin, W., Youshan, Z., and Junzhao, Z.
Research on Database Storage of Large-Scale Terrestrial
LIDAR Data. 2009 International Forum on Computer
Science-Technology and Applications, IEEE (2009), 19-
23.

19. Mumtaz, S.A. Integrating Terrestrial Laser Scanning
Models into 3d Geodatabase. ICAST, (2008), 124-130.

20. NSF OpenTopography. LiDAR Tool Registry. 2011.
http://opentopo.sdsc.edu/gridsphere/gridsphere?cid=contr
ibuteframeportlet&gs_action=listTools.

21. NSF OpenTopography. Lidar Access Facility. 2012.
http://opentopo.sdsc.edu/gridsphere/gridsphere?cid=datas
ets.

22. Nandigam, V., Baru, C., and Crosby, C. Database Design
for High-Resolution LIDAR Topography Data. Scientific
and Statistical Database 6187/2010, (2010), 151-159.

23. Samberg, A. An Implementation of the ASPRS LAS
Standard. ISPRS Workshop on Laser Scanning and
SilviLaser, (2007), 363-372.

24. Schön, B., Bertolotto, M., Laefer, D.F., and Morrish,
S.W. Storage, Manipulation and Visualization Of Lidar
Data. International Society Of Photogrammetry and
Remote Sensing, 3D-ARCH 2009 (2007).

25. Sharma, N., Parikh, J., and Clark, M. A Lidar
Collaboratory Data Management System. 2006 IEEE
International Symposium on Geoscience and Remote
Sensing, (2006), 817-820.

26. The American Society for Photogrammetry & Remote
Sensing. LAS 1.4 Draft Specification. 2011.

