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Abstract. In this paper, monotone Boolean functions are studied using harmonic analysis on the cube.
The main result is that any monotone Boolean function has most of its power spectrum on its Fourier
coefficients of “degree” at most O(=n) under any product distribution. This is similar to a result of
Linial et al. [1993], which showed that AC0 functions have almost all of their power spectrum on the
coefficients of degree, at most (log n)O(1), under the uniform distribution. As a consequence of the
main result, the following two corollaries are obtained:

—For any e . 0, monotone Boolean functions are PAC learnable with error e under product
distributions in time 2Õ((1/e)=n).

—Any monotone Boolean function can be approximated within error e under product distributions
by a non-monotone Boolean circuit of size 2Õ(1/e=n) and depth Õ(1/e =n).

The learning algorithm runs in time subexponential as long as the required error is V(1/(=n log n)).
It is shown that this is tight in the sense that for any subexponential time algorithm there is a
monotone Boolean function for which this algorithm cannot approximate with error better than
Õ(1/=n).
The main result is also applied to other problems in learning and complexity theory. In learning

theory, several polynomial-time algorithms for learning some classes of monotone Boolean functions,
such as Boolean functions with O(log2n/log log n) relevant variables, are presented. In complexity
theory, some questions regarding monotone NP-complete problems are addressed.

Categories and Subject Descriptors: F.1.2 [Computation by Abstract Devices]: Modes of Computa-
tion—probabilistic computation; F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical
Algorithms and Problems—computation of transforms, computation on polynomials; G.3 [Mathematics
of Computing]: Probability and Statistics—probabilistic algorithms; I.2.6 [Artificial Intelligence]:
Learning—concept learning

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Approximation, circuits, complexity, Fourier transform, func-
tions, harmonic analysis learning, monotone Boolean, monotone circuits

1. Introduction

In recent years, harmonic analysis on the cube or the discrete Fourier transform
of Boolean functions has emerged as one of the most versatile tools in theoreti-
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cal computer science. It has found various applications in areas such as circuit
complexity [Kahn et al. 1988; Bruck and Smolensky 1992], computational
learning theory1, cryptography [Coppersmith et al. 1993] and others.
Although harmonic analysis on the cube was originally introduced by Kahn,

Kalai, and Linial [1988] for the purpose of studying the “influence” of variables
on Boolean functions, the first paper that introduced the Fourier transform to
learning theory was the beautiful paper of Linial, Mansour, and Nisan [1993]. In
the latter paper, they proved that AC0 functions have almost all of their power
spectrum on the Fourier coefficients of Hamming weight (log n)O(1). This result
led to the PAC-learnability of AC0 functions in time npoly(log n) under the
uniform distribution. The impact of the Fourier transform on learning theory
cannot be underestimated judging from the sequence of papers that followed the
paper [Linial et al. 1993]. This technique alone has made some outstanding
results possible in recent years culminating in Jackson’s result [Jackson 1994] on
the PAC learnability of DNF formulas under the uniform distribution with
membership queries.
In this paper, we study monotone Boolean functions using harmonic analysis

on the cube. Our main result is that any monotone Boolean function has most of
its power spectrum on its Fourier coefficients of degree at most O(=n) under any
product distribution. Based on our main result we derive two important implica-
tions in learning theory and circuit complexity.

—Given any e . 0, the class of monotone Boolean functions is PAC learnable
with error e under product distributions in time 2Õ(1/e=n).

—Given any e . 0 and any monotone Boolean function f, there exists a
nonmonotone Boolean circuit of size 2Õ(=n) and depth Õ(1/e =n) that
approximates f with error e under product distributions.

The time complexity of our learning algorithm is subexponential as long as e 5
V(1/(=n log n)). We will show that this is the best possible error rate for any
subexponential time learning algorithm. To the best of our knowledge, the above
learning result is the first subexponential PAC learning algorithm for monotone
Boolean functions (even for monotone Boolean functions which require an
exponential circuit size) and the second result is the first approximation result for
monotone Boolean functions using nonmonotone Boolean circuit of subexponen-
tial size and sublinear depth.
We also introduce and study a new measure of complexity for probability

distributions called the convex dimension of a distribution. We prove that if a
concept class is approximable under a collection of distributions then it is also
approximable under any distribution that belongs to the convex combination of
that collection. The convex dimension cdim(D) of a distribution D is the minimal
number of product distributions such that D is in their convex combination. We
note that our previous results hold also for any distribution D modulo a
complexity factor of cdim(D) and in particular, our algorithm is subexponential
for any distribution D with a subexponential convex dimension.

1 See Linial et al. [1993], Furst et al. [1991], Kushilevitz and Mansour [1993], Aiello and Mihail
[1991], Bellare [1992], Mansour [1992], Blum et al. [1994], and Jackson [1994].
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Further applications of the main result include some improvements on two
efficient, that is, polynomial time, learning algorithms for monotone Boolean
functions. Kearns and Valiant [1989] proved that any monotone Boolean func-
tion is efficiently weakly PAC learnable with error (1/ 2) 2 (1/ 2n) under the
uniform distribution. We improve their result by showing that there is an
efficient weak PAC learning algorithm under the uniform distribution with error
(1/2) 2 V((log2 n)/n). Our result is based on a direct application of a result due
to Kahn et al. [1988]. Furthermore, under any product distribution, we show that
there is an efficient weak PAC learning algorithm with error (1/ 2) 2 (c/n), for
any constant c.
Our second improvement is on Sakai and Maruoka’s [1994] PAC learnability

result of monotone O(log n)-term DNF under the uniform distribution. We
improve their result in two ways. First, we prove that their result extends to any
constant-bounded product distribution, and second, we give an extension to a
more general concept class. In particular, let A(k) be the class of Boolean
functions of the form f(T1, . . . , Tk) where f is a monotone Boolean function on
k inputs and each Ti is a monotone conjunction or disjunction. Our other results
state that there are polynomial time PAC learning algorithms for A(log n), for
A(O(log2 n/(log log n)3)), and for monotone Boolean functions that depend on
O(log2 n/log log n) relevant variables (the last two results require the error e to
be constant).
Finally, we apply our results to monotone graph properties. We show that

there is a Boolean circuit of size 2Õ(n/e=r(n)) and depth Õ((n/e) =r(n)) that
approximates within error e any monotone graph property with a threshold
function of r(n). For example, there is a Boolean circuit of size nO(1/e=logn) that
approximates to within error e the Hamiltonian property on random graphs G(n,
p), for any p. We also discuss the connection of this work with a related result
[Bollobás et al. 1987].
All of the algorithms considered in this papers fall in the category of a

statistical query algorithm, and hence, by the result of Kearns [1993], are
noise-tolerant.
The paper is organized as follows: Section 2 is devoted to a description of the

learning models considered in this paper. Section 3 describes notations and the
basic theory of the Fourier transform for Boolean functions. It also contains
some basic facts that will be required in proving some of the later results. In
Section 4, we prove our main spectral characterization of Boolean functions that
is based on influence and the average sensitivity. The next section, Section 5, is
devoted to learning monotone Boolean functions. This section also contains
some lower bound results that shows near optimality of the learning results.
Section 6 describes the application of the main result to the circuit approxima-
tion of monotone Boolean functions and Section 7 considers the approximation
of monotone graph properties. Finally, Section 8 discusses applications of the
main result in deriving some efficient learning algorithms.

2. The Learning Model

The learning model considered in this paper is the Probably Approximately
Correct (PAC) learning model introduced by Valiant [1984] and its weak variant
introduced by Kearns and Valiant [1989]. Let Cn be a class of Boolean functions
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over n variables, let D be a probability distribution over {0, 1}n, and let f [ Cn
be a target function. The learning algorithm has access to an example oracle
EX(D, f ) which generates random labeled examples (a, f(a)), where a e
{0, 1}n is drawn according to distribution D. Given any positive e and d, after
observing some random examples, the learning algorithm must output a hypoth-
esis h that satisfies

Pr@D~hDf ! # e# $ 1 2 d,

where hDf 5 { x;h( x) Þ f( x)}. The above probability is taken with respect to
the random examples seen by the algorithm and some internal randomization in
the algorithm. The running time of the learner will depend on n, 1/e, 1/d, and
the size s( f ) of f (under some predetermined representation). If there is such a
learning algorithm that succeeds for all f [ Cn then Cn is PAC learnable under
distribution D. We sometimes refer to such a learning algorithm as an (e, d) PAC
learning algorithm. We say that Cn is weakly PAC learnable under distribution D
if there is a fixed polynomial p and a learning algorithm that succeeds for an
error e 5 (1/ 2) 2 (1/p(n, s( f ))).

3. Preliminaries

In this section we review some notation and some standard facts about the
discrete Fourier transform of Boolean functions.
When we write log we mean log2. We will use the shorthand [n] for the set {1,

2, . . . , n} and the Iversonian I[statement] to mean 1 if the statement is true and
0 otherwise. For a [ {0, 1}n, let ai denote the ith bit of a. The vector ei [ {0,
1}n denotes the vector with all zeros except for the ith bit which is 1. The
Hamming weight of a, that is, the number of ones in a, is denoted by ua u.
Let f;{0, 1}n 3 {21, 11} be a Boolean function. Let D be a product

distribution over {0, 1}n with Pr[ xi 5 1] 5 m i. Thus for a [ {0, 1}n we have
the distribution of a is D(a) 5 )ai51 m i )ai50 (1 2 m i). The distribution D is
called constant bounded if there exists a constant c [ (0, 1) independent of n
such that for all i we have m i [ [c, 1 2 c]. The standard deviation of xi is
defined as

s i 5 Îm i~1 2 m i! .

The influence of variable xi on f (see Kahn et al. [1988] and Hancock and
Mansour [1991]) over a product distribution D is defined as the probability that
f( x) differs from f( x Q ei) when x is chosen according to D. Here x Q ei means
x with its ith bit flipped. We will use the notation ID,i( f ) to denote the above
probability. Often we will use the restriction notation of functions, f0 5 f uxi40
and f1 5 f uxi41. With this notation we have that for any Boolean function f

ID,i~ f ! 5 ED@I@ f~ x! Þ f~ x % ei!## 5
1

2
ED@ uf1 2 f0u# 5

1

4
ED@~ f1 2 f0!2# .

If f is a monotone Boolean function, that is, f0 # f1 always, then this simplifies to
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ID,i~ f ! 5
1

2
ED@ f1 2 f0# .

To facilitate stating some of our results we introduce the following notion of
influence norm I D( f ) of f with respect to a product distribution D:

ID~ f ! 5 ÎO
i51

n

~2s iID,i~ f !!2.

The sensitivity of f at a point a [ {0, 1}n, denoted by sa( f ), is defined as the
number of neighbors of a (in the standard n-cube ordering) whose f-values differ
from f(a). More formally,

sa~ f ! 5 u$i [ @n#;f~a % ei! Þ f~a!% u 5 O
i51

n

I@ f~a! Þ f~a % ei!# .

The average sensitivity of f with respect to a product distribution D, denoted
sD( f ), is defined as

sD~ f ! 5 ED@sx~ f !# .

It is well known that the average sensitivity is equivalent to the sum of the
influences, as seen from the following simple derivation:

sD~ f ! 5 ED@sx~ f !# 5 O
i51

n

ED@I@ f~ x! Þ f~ x % ei!## 5 O
i51

n

ID,i~ f ! .

The Fourier transform of Boolean functions over product distribution is
defined as follows [Furst et al. 1991]. First we define the inner product over the
2n-dimensional vector space of all real-valued functions over {0, 1}n as follows:

~ f, g!D 5 O
x

D~ x! f~ x! g~ x! 5 ED@ fg# .

Now let zi( x) 5 (m i 2 xi)/s i. Note that zi has mean zero and variance one (i.e.,
it is standard normal). Next we define the basis function

fa~ x! 5 P
ai51

zi~ x! .

These basis functions satisfy the following properties.

(1) decomposable. fab( xy) 5 fa( x)fb( y), where xy is the concatenation of
strings x and y (possibly of different lengths).

(2) orthonormal

~fa, fb!D 5 H 1 if a Þ b

0 otherwise .

Given the orthonormality of these fas we get the Fourier representation of any
Boolean function f as
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f 5 O
a

f̃~a!fa,

where f̃(a) 5 ( f, fa)D 5 ED[ ffa]. Also because of orthonormality we have
Parseval’s equation:

1 5 ED@ f2# 5 O
a

f̃ 2~a! .

Finally, note f̃(0n) 5 ED[ f], where 0n is the n-bit all-zero vector.
For the case of D being the uniform distribution, the following notations are

used: xa in place of fa and f̂(a) in place of f̃(a). Note that in this case, m i 5 s i
5 1/ 2, for all i [ [n].
In this paper we will deal with two different notions of approximation to a

Boolean function. For the first type, we say that a Boolean function h approxi-
mates another Boolean function f to within error e in the Boolean sense if

Pr@h~ x! Þ f~ x!# # e.

On the other hand, we say that a real-valued function h approximates another
function f to within error e in the mean square sense if

E@~h~ x! 2 f~ x!!2# # e.

Unless otherwise stated, we will use the Boolean sense as the default case.
In most cases, we will appeal to the following version of Chernoff–Hoeffding

bounds [Hagerup and Rub 1989; Mansour 1995].

THEOREM 3.1. (CHERNOFF–HOEFFDING BOUNDS) Let x1, . . . , xm be indepen-
dent identically distributed random variables with E[ xi] 5 p, uxiu # B, and let sm 5 x1
1 . . . 1 xm. Then

m $
2B2

e2
ln
2

d
implies PrF U smm 2 pU . eG # d.

4. Spectral Lemmas

We are now ready for a lemma which relates the influence and the Fourier
transform of Boolean functions. The next lemma is a folklore result whose proof
we include for completeness.

LEMMA 4.1. For any Boolean function f, for any product distribution D and for
any i [ [n],

4s i
2ID,i~ f ! 5 O

a:ai51

f̃ 2~a! .

PROOF. Without loss of generality, let i 5 1. First recall that ID,1( f ) 5
1/4ED[( f0 2 f1)

2]. Applying Parseval to the right hand side gives

ID,1~ f ! 5
1

4
O

b[{0,1}n21

~ f̃ 0 2 f̃ 1!2~b! 5
1

4
O

b[{0,1}n21

~ f̃ 0~b! 2 f̃ 1~b!!2.
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We now find some relation for f̃0 and f̃1. Recall that

f~ x! 5 O
a

f̃~a!fa~ x! 5 O
0b

f̃~0b!fb~ y! 1 O
1b

f̃~1b!fb~ y!
m1 2 x1

s1
.

The last step uses the decomposable property of fa. From this we will get

f0 ; f ux140 5 O
b
S f̃~0b! 1

m1

s1
f̃~1b!Dfb~ y! ,

and

f1 ; f ux141 5 O
b
S f̃~0b! 2

~1 2 m1!

s1
f̃~1b!Dfb~ y! .

This implies

f̃ 0~b! 5 f̃~0b! 1
m1

s1
f̃~1b! , and f̃ 1~b! 5 f̃~0b! 2

~1 2 m1!

s1
f̃~1b! .

So continuing with ID,1( f ).

ID,1~ f ! 5
1

4
O
b

~ f̃ 0~b! 2 f̃ 1~b!!2

5
1

4
O
b
S f̃~0b! 1

m1

s1
f̃~1b! 2 f̃~0b! 1

~1 2 m1!

s1
f̃~1b!D 2

5
1

4
O
b
Sm1 1 ~1 2 m1!

s1
D 2 f̃ 2~1b! 5 O

b
S f̃~1b!

2s1
D 2. e

The following definition extends the definition of Hamming weight of a Boolean
vector to the case of product distributions.

Definition 4.2. (Hamming weight). Let D be a product distribution. We
define the weight of a [ {0, 1}n under D to be

iaiD 5 log P
ai51

1

s i
.

Note that iaiD $ ua u for any product distribution, and equality is attained
precisely when D is the uniform distribution. When the context is clear we will
drop the subscript D from iaiD and just write iai.

THEOREM 4.3. (MAIN THEOREM). For any product distribution D, for any
Boolean function f, for all positive integer k,

753Fourier Spectrum of Monotone Functions



O
iai$k

f̃ 2~a! #
2

k
ID~ f ! ÎO

i51

n Ss i log
1

s i
D 2 # 1.062

În
k
ID~ f ! .

PROOF. Note that from Lemma 4.1

O
i51

n

4s i
2ID,i~ f !log s i

21 5 O
i51

n O
a:ai51

log s i
21 f̃ 2~a!

5 O
a[{0,1}n

f̃ 2~a! O
i:ai51

log s i
21

5 O
a[{0,1}n

iai f̃ 2~a! .

Recall that the Cauchy–Schwartz inequality is

S O
i51

n

aibiD 2 # S O
i51

n

ai
2D S O

i51

n

bi
2D .

Now we let ai 5 2s iID,i( f ) and bi 5 2s i log s i
21 to get

ID~ f !2 5 O
i51

n

4s i
2ID,i~ f !2

$
~O i51

n 4s i
2ID,i~ f !log s i

21!2

4 O i51
n ~s i log s i

21!2
, by Cauchy–Schwartz

5
1

4 O i51
n ~s i log s i

21!2 S O
a

iai f̃ 2~a! D 2
$

1

4 O i51
n ~s i log s i

21!2 S k O
iai$k

f̃ 2~a!D 2
for any positive integer k, which proves the first inequality. The second inequal-
ity can be seen using simple calculus since ( x log x21)2 # e22 log2e # 0.2817,
for all x [ [0, 1/ 2] (simply note that 2=0.2817 5 1.062). e

An alternative way of viewing and deriving the above result is via the notion of
average sensitivity. On occasion, we will drop the subscript D from sD( f ) when
the product distribution D is clear from context.

THEOREM 4.4. (ALTERNATIVE MAIN THEOREM). For any Boolean function f
and any product distribution D

O
a
H f̃~a!2;iaiD $ S 65D sD~ f !

e
J # e.

PROOF. We start with the identity
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O
a

iai f̃~a!2 5 O
i

4s iSs i log
1

s i
D ID,i~ f ! ,

and use the fact s # 1/2 and x log (1/ x) # 3/5 (not the best), for x [ [0, 1], to
get

O
a

iai f̃~a!2 #
6

5
s~ f !

(because s( f ) 5 i ID,i( f )). But the left-hand side is bounded from below by k
a:iai$k f̃(a)

2 for any k. So in particular choose k 5 (6/5)s( f )/e. e

The following lemma states a key link between the Fourier spectrum and the
influences in monotone Boolean functions.

LEMMA 4.5. For any monotone Boolean function f, for any product distribution
D, and for any i [ [n]

f̃~ei! 5 22s iID,i~ f ! .

PROOF. Let Di be the induced distribution over all the variables except xi. We
have the following derivation.

f̃~ei! 5 ED@ ffei#

5 EDiExi@ fzi#

5 EDiF ~1 2 m i!
m i

s i
f0 1 m i

m i 2 1

s i
f1G

5 EDiFm i~1 2 m i!

s i
~ f0 2 f1!G

5 s iEDi@ f0 2 f1# .

Now recall that for monotone Boolean functions ID,i( f ) 5 1/ 2EDi[ f1 2 f0]. e

5. Learning Monotone Boolean Functions

The main results of this section are a subexponential time PAC learning
algorithm for any monotone Boolean function and some nearly matching lower
bounds on the error rate and some other parameters. But first we review the
connections between Fourier transform and PAC learning that were first given in
Lineal et al. [1993] and Blum et al. [1994] (see also Mansour’s excellent survey
[Mansour 1994]).

Fact 1 (PAC Learning and Fourier Spectrum). Let D be a product distribu-
tion, let f [ {21, 11} be a Boolean function, and let A , {0, 1}n be a set of
assignments. The real-valued function g( x) 5 a[A f̃(a)fa( x) satisfies
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Pr
D

@ f Þ sgn~ g!# # ED@~ f 2 g!2# 5 O
a[y A

f̃ 2~a! ,

where sgn( g)( x) 5 (21)I[ g( x),0] returns the sign of g( x).

Given g, the randomized Boolean function h defined as [Blum et al. 1994]:

h~ x! 5 H21 with probability p~ x!

11 with probability 1 2 p~ x!

where

p~ x! 5
~1 2 g~ x!!2

2~1 1 g2~ x!!
,

satisfies a slightly better error bound

Pr
D

@ f Þ h# #
1

2
ED@~ f 2 g!2# 5

1

2
O
a[y A

f̃ 2~a! .

Using this fact, Boolean functions can be learned by collecting the Fourier
coefficients f̃(a) for all a [ A. This can be done by finding an approximation ha
of ED[ ffa] 5 f̃(a) that satisfies

uha 2 f̃~a! u # Îe/~2 uA u!

with confidence 1 2 d/ uA u, for every a [ A. Then we define the hypothesis h 5

a[A hafa. This hypothesis will be an approximation of f that satisfies

Pr
D

@ f~ x! Þ h~ x!# # O
a[y A

f̃ 2~a! 1
e

2

with probability at least 1 2 d. Now if a[y A f̃
2(a) # e/ 2, then the hypothesis h

will satisfy

Pr
D

@ f~ x! Þ h~ x!# # e.

To approximate the Fourier coefficients, we use sampling to find ED[ ffa] for all
a [ A. By the Chernoff–Hoeffding bounds (Theorem 3.1), if uffau 5 ufau # B,
then we will need a sample of size at least

4B2uA u

e
ln

uA u

d
. (1)

When A is the set of all assignments of Hamming weight less than or equal to
k, the above algorithm is called the k-lowdegree Fourier algorithm. In this case the
number of coefficients that the algorithm must estimate is
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uA u 5 O
i50

k Sni D # Snek D
k

5 2k log~ne/k!. (2)

So exp(k log(ne/k)) will dictate the running time of the k-lowdegree Fourier
algorithm.
Note that, in the above discussion, an e-approximator h in the mean squared

sense is also an e-approximator in the Boolean sense.

5.1. A SUBEXPONENTIAL TIME ALGORITHM. The following theorems will show
that monotone Boolean functions are PAC learnable under product distributions
in subexponential time. For ease of analysis we will assume that the learner
knows the product distribution, that is, the parameters m i are exactly known, for
all i [ [n]. Later in a separate subsection we will discuss the case when the
learner does not know the distribution and show that this only incurs a log n
blow up in the exponent of the time complexity. As in most cases, we deal with
k 5 v(log n), the time complexity is still 2Õ(k).

THEOREM 5.1.1. For any e, d . 0, any monotone Boolean function is PAC
learnable under any product distribution with error e and confidence 1 2 d in time

2O(1/e În log~e În!) log
1

d
.

PROOF. We will use the k-lowdegree Fourier algorithm with

k 5 1.062ID~ f !
În

~e/ 2!

and with the hypothesis set to h 5 iai#k hafa. By Theorem 4.3, h is an
(e/2)-approximation of f. As iai $ ua u, we have that

$a;iai # k% # $a; ua u # k%

and hence the k-lowdegree Fourier algorithm only need to collect (estimate) the
Fourier coefficients of Hamming weight at most k. From the definitions of iai
and fa, if iai # k we get that

ufau 5 U P
ai51

m i 2 xi

s i
U 5 2 iaiU P

ai51

~m i 2 xi!U # 2k,

since um i 2 xiu # 1. Now by (1), (2), and the above, the algorithm outputs a
hypothesis that is an approximation of f to within error e with sample size and
time complexity of

2O(ÎnID( f )/e(ln~ Îne/ID~ f !!)) log
1

d
. (3)

By Lemma 4.5, we note that ID( f ) # 1, for any monotone function f, because
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ID~ f !2 5 O
i

~2s iID,i~ f !!2 5 O
i

f̃~ei!2 # 1

by Parseval’s. Thus, we have ID( f )log(1/ID( f )) # 1, and therefore

ID~ f !log
e În
ID~ f !

5 ID~ f !log
1

ID~ f !
1 ID~ f !log~e În! 5 O~log~e În!! .

This analysis proves the time complexity stated in the theorem. e

Remark 5.1.2. Note that using the above algorithm with subexponential time,
the best achievable error rate is e 5 1/=n. In Section 5.3, we show that this is
the best possible error rate up to a O(log n) factor.
We can alternatively derive the above theorem using the average sensitivity

instead of the influence norm, that is, apply Theorem 4.4 instead of Theorem 4.3.
Note that in this case, sD( f ) # =n, for any monotone Boolean function f.

5.2. LEARNING WHEN THE PRODUCTDISTRIBUTION IS UNKNOWN. In this section,
we address the issue of learning when the parameters of the product distribution,
that is, the m is, are unknown. First, we argue that we may ignore all m is that are
less than n22 or greater than 1 2 n22 as this will add only an additive factor of
n21 to the final error. Formally, let A # {0, 1}n be the set of all good
assignments x, that is, ones that satisfy xi 5 0, for all m i , n22, and xi 5 1, for
all m i . 1 2 n22. Note that the probability of an example x being good is at
least 1 2 n21. Suppose that h is a hypothesis that approximates the target f
quite well on examples from A. Then

Pr
D

@h~ x! Þ f~ x!# # Pr@h~ x! Þ f~ x! ux good# 1 Pr@ x not good# # e 1 n21.

So we may assume that n22 , m i , 1 2 n22, for all i [ [n].
We will estimate each m i up to an error of M

2(log n14) (using Chernoff-
Hoeffding bounds this takes only poly(M log n) time), where setting k 5
O(=n/e),

M 5 2k 5 2O(În/e).

We will consider three quantities

hA 5 O
a[S

ED@ ff9a#f9a,

hB 5 O
a[S

ED9@ ff9a#f9a,

hC 5 O
a[R

ED@ ffa#fa,

where D9 is the estimated distribution (using the estimated m is) and f9as are the
basis functions according to D9, and R and S are the sets of assignments for
which the algorithm needs to estimate the fas and f9as, respectively. Notice that
from the proof of Theorem 5.1.1. and as ID( f ) # 1, for all monotone Boolean
function f, we have
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uf9au # M .

We wanted to learn hC but because only an approximation of m i can be found,
we will try to learn hB. Now, as the example oracle gives the examples according
to the distribution D and not D9 we will instead learn hA. As the learning
parameters (the number of coefficients) are done for D9 we have

ED9@~hB 2 f !2# # e.

Suppose m i 1 t i is the estimation for m i, where ut iu , M2(log n14). Notice that

D9~ x!

D~ x!
5 P

xi51
S 1 1

t i

m i
D P
xi50

S 1 2
t i

1 2 m i
D

5 S 1 1 OS n2

M log n 1 4D D n
5 1 1 OS 1

M log n 1 3D .
We also have the following bound on D( x)/D9( x).

D~ x!

D9~ x!
5 P

xi51
S 1 2

t i

m i 1 t i
D P
xi50

S 1 1
t i

1 2 m i 2 t i
D

# P
xi50

S 1 1
t i

1 2 m i 2 t i
D

5 S 1 1 OS 2n2

M log n 1 4D D n
5 1 1 OS 1

M log n 1 3D
because 1 2 m i 2 t i $ n22 2 M2(log n14) $ n22/ 2, for large enough n.
Now

ED@~hB 2 f !2# 5 ED9F DD9
~hB 2 f !2G

# ED9@~hB 2 f !2#max
D

D9

# eS 1 1 OS 1

M log n 1 3D D
# e 1 OS e

M log n 1 3D .
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Therefore, hB is also a good approximation of f with respect to the distribution
D. Now we show that hA is good enough. We have

uhA 2 hBu 5 U O
a[S

ED@ ff9a#f9a 2 O
a[S

ED9@ ff9a#f9aU
5 U O

a[S

EDF ff9aS 1 2
D9

D D Gf9aU
# uS uM2U 1 2 min

D9

D
U

# OS 1MD ,
because

uS u # O
i50

k Sni D # nk 5 2klog n 5 M log n.

Therefore,

ED@~hA 2 f !2# # 2ED@~hA 2 hB!2 1 ~hB 2 f !2#

5 2ED@~hA 2 hB!2# 1 2ED@~hB 2 f !2#

# 2e 1 OS 1MD .
This completes the analysis for learning when the product distribution is
unknown.

5.3. LOWER BOUNDS. In this section, we give several lower bounds showing
that our algorithm is nearly optimal in terms of running time complexity and
error rate. The following theorem shows that the error rate achieved in our
algorithm is the best possible for a subexponential time algorithm.

THEOREM 5.3.1. Any learning algorithm which PAC-learns any monotone Bool-
ean function under the uniform distribution and which runs in subexponential time
(even with time 2cn, for any c , 1) will output an approximation with an error of at
least V(1/=n log n).

PROOF. There are at least m(n) 5 2(n
n/ 2) $ 2d2

n/=n monotone Boolean
functions over n variables, for some constant d , 1 (see Wegener [1987]).
Suppose A is the e-approximation algorithm for any monotone Boolean function.
If A outputs a hypothesis h then h can e-approximate at most

k~n! 5 O
i#e2n

S 2ni D # 22
n
elog~e/e!
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Boolean functions. Assuming A runs in time 2cn, for some constant c , 1, then
A can output at most 22

cn

possible hypotheses. Therefore, we must have 22
cn

k(n)
$ m(n) which implies

2cn 1 e2n log
e

e
$
d2n

În .

This implies e 5 V(1/=n log n). e

The next corollary gives a lower bound for the error rate of any learning
algorithm that runs in time bounded by 2=n.

COROLLARY 5.3.2. Any learning algorithm for monotone Boolean functions
under the uniform distribution with a running time bounded by 2=n cannot achieve
an error smaller than

VS 1

n1/4 log nD .
PROOF. Let ! be an algorithm that runs in time 2=n and achieves error e(n),

for any n. We will construct an algorithm @ that learns any monotone Boolean
function over n variables in time 2cn, for some c , 1, and achieves an error of
2e((cn)2). Now because by Theorem 5.3.1.

2e~~cn!2! 5 VS 1

În log nD
we get the result of the corollary.
The algorithm @ with input f( x1, . . . , xn) will pretend that the input is over

(cn)2 variables and runs the algorithm ! to learn the function f. The error rate
achievable by this algorithm is e 5 e((cn)2). This algorithm outputs a hypothesis
h that satisfies

Ex1, . . . , x(cn)2@ f Þ h# , e.

This does not imply that h is a good approximation to f under the original
domain { x1, . . . , xn}. We now proceed by randomly and uniformly choosing
values xn11

0 , . . . , x(cn)2
0 and return the hypothesis

h~ x1, . . . , xn, xn11
0 , . . . , x (cn)2

0 ! .
As the expectation is over the uniform distribution, we have

Ex1, . . . , x(cn)2@ f Þ h# 5 Exn11, . . . , x(cn)2Ex1, . . . , xn@ f Þ h# , e,

and therefore with probability at least 1/2 (by Markov’s inequality) a random
xn11
0 , . . . , x(cn)2

0 gives a 2e 5 2e((cn)2) approximation to f. e

We now investigate the best error rate of the low-degree algorithm. The first
theorem shows that there exists a monotone Boolean function such that to
approximate this function within error e using its low-degree Fourier coefficients,
for e 5 n21/ 2, we need to collect all coefficients of weight less or equal to cn,
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for some constant c , 1. The second theorem shows that to approximate the
majority function with the same error (in the mean square sense) we need to
collect all of its Fourier coefficients of weight up to O(=n).

THEOREM 5.3.3. For any constant c , 1 there is a monotone Boolean function
f that satisfies

O
ua u$cn

f̂2~a! $ VS 1

În log nD .
PROOF. Assume for contradiction that there is some constant c , 1 such that

for any monotone function f

O
ua u$cn

f̂2~a! # OS 1

În log nD .
But this implies that the low-degree algorithm that searches all coefficients of
degree at most cn will approximate f within an error of O(1/(=n log n)). This
contradicts Theorem 5.3.1 modulo constant factors. e

THEOREM 5.3.4. The majority function f satisfies uau$V(În) f̂
2(a) $ V(1/=n).

PROOF. Let f( x) 5 MAJ( x) 5 I[ i51
n xi $ n/ 2]. Because f is a symmetric

function, the influence of all variables are equal. From the first equality in the
proof of Theorem 4.3 we have

O
a

ua u f̂2~a! 5 O
i51

n

Ii~ f ! 5 nI1~ f ! .

To get a bound on I1(MAJ), note that I1(MAJ) $ 22n( nn/ 2) $ c/=n, for some
constant c. Thus

c În # O
a

ua u f̂~a!2 5 O
ua u$c/ 2În

ua u f̂~a!2 1 O
ua u,c/ 2În

ua u f̂~a!2

# n O
ua u$c/ 2În

f̂~a!2 1
c

2
În .

This implies that

O
ua u$c/ 2În

f̂~a!2 $
c

2 În . e

We now use the Vapnik–Chernovenkis dimension to find lower bounds on the
sample size. Kearns [1990] had also observed that the VC dimension can be used
to prove negative learning results for monotone Boolean functions. Recall that if
C is a class of Boolean functions then C shatters A # {0, 1}n if for every
Boolean function g: A 3 {0, 1} there exists a Boolean function f [ C such that
f uA 5 g. The Vapnik–Chernovenkis dimension of C, VCdim(C), is the cardinal-
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ity of the largest subset A that is shattered by C. Ehrenfeucht et al. [1988] proved
a sample complexity lower bound of

VS 1
e
ln
1

d
1
1

e
VCdim~C!D

for PAC learning any class C with error e and confidence d. It is easy to see that
the VC-dimension of monotone functions is at least ( nn/ 2) ; 2n/=n. Hence, we
get the following easy corollary:

COROLLARY 5.3.5. Any PAC learning algorithm for all monotone Boolean
functions under an arbitrary distribution with error e and confidence d (for
sufficiently small e and d) requires at least V(2n/(e=n) 1 (1/e) ln (1/d)) examples.

6. Circuit Approximations of Monotone Boolean Functions

We study the circuit complexity of approximating monotone Boolean functions
using Boolean circuits (nonmonotone). We prove that any monotone Boolean
function can be approximated by a nonmonotone Boolean circuit of subexponen-
tial size and sublinear depth. This result is a consequence of Theorem 4.3.

THEOREM 6.1. For any monotone Boolean function f on n variables and for any
constant e . 0, there is a Boolean circuit of size

2O~1/e Înlog n!

and depth

OS 1
e

În log nD
which approximates f to within e under the uniform distribution.

PROOF. Note that the low-degree algorithm outputs a hypothesis

h~ x! 5 O
ua u#O(1/e În)

caxa~ x! ,

where ca ; E[ fxa]. Note that each ca can be at most 2
O(1/e=nlog n) bits. So

essentially we need to add m number each being m bits, where m(n) 5 test it
and again 2O(1/e=nlog n). This problem is known to be in NC1 (Boolean
functions computable by a bounded fan-in, logarithmic depth, and polynomial
size Boolean circuit). e

In the next section, we will investigate the circuit approximation of monotone
graph properties. For this, we will need the following theorem:

THEOREM 6.2. For any product distribution D with mi 5 m, for all i, any
monotone Boolean function f on n variables and any constant e . 0, there is a
Boolean circuit of size

2O~s/e Înlog~e În/s!!

and depth
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OS 1
e

s În log~e În/s!D
which approximates f to within e.

PROOF (SKETCH). We have iai 5 ua ulog 1/s, where s 5 =m(1 2 m). By
Theorem 4.3,

O
ua u$k

f̃~a!2 #
2s

k
ID~ f ! În .

To get an error e, we need k $ 2s/e ID( f ) =n. Recall that for monotone
Boolean functions, ID( f ) # 1. Notice that we can truncate the m is and s is while
only incurring a polynomial blow-up in error. When these are truncated, fa( x)
can be computed in polynomial time and therefore there is a polynomial size
circuit that computes them. Now we proceed as in Theorem 6.1. e

6.1. CIRCUIT APPROXIMATION OFMONOTONE GRAPH PROPERTIES. We consider
some monotone graph properties on the random graph G(n, p), where n is the
number of vertices of G and p is the edge existence probability. Some well-
known graph properties are monotone: the clique function CLIQUEk

n which is
one if and only if the graph has a clique of size at least k, the hamiltonicity
function HAMn which is one if and only if the graph has a Hamiltonian cycle, the
planarity function PLAN ARn which is one if and only if the graph is planar, and
so on. We investigate the problem of approximating these monotone graph-
theoretic functions.
We adopt the probabilistic model of the random graph on n vertices (see

Spencer [1994] for other models). The random graph G 5 G(n, p) is a
probability distribution on the edges of the complete graph Kn on n vertices,
where each edge exists independently with probability p [ [0, 1]. A Boolean
function f on the edge set E(G) is called a monotone graph property if f is a
monotone (or antimonotone) Boolean function over E(G). Any monotone graph
property exhibits a threshold phenomena (see Bollobás [1995] and Spencer
[1994]). Let f be a monotone graph property on G(n, p). A function r(n) is
called a threshold function for f if it satisfies

(1) if limn3` p(n)/r(n) 5 0, then limn3` Pr[ f(G(n, p)) 5 1] 5 0.
(2) if limn3` r(n)/p(n) 5 0, then limn3` Pr[ f(G(n, p)) 5 1] 5 1.

Definition 6.1.1. (e-G(n, p) circuit). For a graph property A, for fixed e . 0
and p [ [0, 1], and random inputs drawn from G(n, p), we call a Boolean
circuit an e-G(n, p) circuit if it outputs a correct answer to the property A with
probability at least 1 2 e. Here the probability is with respect to the distribution
G(n, p) on the input graphs.

THEOREM 6.1.2. Let f be a monotone graph property with a threshold function
r(n) (the number of inputs to f is m 5 (2

n)). Then, for any fixed e . 0, p [ [0, 1],
there is an e-G(n, p) circuit for f of size

2O((Înr(n)/e)log(e În/Î r(n))).
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PROOF. Fix e, p . 0. By (1) and (2), there exists a constant c . 1 such that
for p $ cr(n) we have Pr[ f(G(n, p)) 5 1] $ 1 2 e and for p # r(n)/c we
have Pr[ f(G(n, p)) 5 0] $ 1 2 e. Therefore, for p $ cr(n), we build the
constant circuit 1 and for p # r(n)/c we build the constant circuit 0. For p in the
range (r(n)/c, cr(n)), we build the circuit in Theorem 6.2 with m 5 p and error
e/c. This circuit has the required size and depth. e

Next we consider two monotone graph properties that are NP-complete:
CLIQUEk

n and HAMn. The clique function has a threshold of r(n) 5 n22/(k21)

and the Hamiltonicity function has a threshold of r(n) 5 ln n/n. Our approach
failed to give an interesting bound for the clique function. For the Hamiltonicity
function, we have the following:

COROLLARY 6.1.3. For any e and a fixed p, there is a Boolean circuit that
approximates HAMn to within error e and has size

2O(1/e Înlog
1.5n)

and depth

OS 1
e

În log1.5 nD .
PROOF. Apply Theorem 6.1.2. with r(n) 5 ln n/n. e

Remark 6.1.4. The above results can be contrasted with several works on
solving the search versions of NP-hard problems on random graphs. For example,
Bollobás et al. [1987] described an expected polynomial time algorithm for
finding Hamiltonian cycles in the random graph G(n, m) with n vertices and

m 5 n log n/ 2 1 n log log n/ 2 1 cnn

edges, where cn is some sequence of integers. Their model of the random graph
G(n, m) is a uniform distribution on undirected graphs with n vertices and m
edges. They proved that the success probability of their algorithm equals to that
of the existence of such Hamiltonian cycles. Their result differs from ours in
several ways. First, our result only concerns the approximation of the decision
problem, and second, we don’t need to impose any restriction on the number of
edges in our random graph (also, our random graph model is slightly different
from theirs, that is, G(n, p) vs. G(n, m)), but third, their algorithm runs in
expected polynomial time whereas our algorithm runs in subexponential time.

7. Approximating over a Convex Mixture of Distributions

The result in this section states that approximability over a collection of
distributions {Di} implies the approximability over any distribution in the convex
space of {Di}. First, we need to introduce a notion of convex dimension of a
probability distribution.

Definition 7.1. (Convex Dimension of a Distribution). Let I be some index set.
Let $ 5 {Di} i[I be the set of all product distributions over {0, 1}

n. Consider a
distribution D of the form
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D 5 O
i[I

l iDi,

where l i [ [0, 1], for each i [ I, and i[I l i 5 1. We call D the convex linear
combination of distributions { Di;i [ I}. The convex dimension cdim( D) of D is
the least m such that D can be represented as a convex linear combination of m
product distributions.

LEMMA 7.2. Let t1, . . . , tm [ {21, 1} and let d1, . . . , dm be positive real
numbers. If i51

m diti , 0, then

O
t i521

di $
1

2
O
i51

m

di.

PROOF. If i51
m dit i , 0, then i:t i51 di , i:t i521 di. Thus, i51

m di , 2
i:t i521 di. e

THEOREM 7.3. Let f be a Boolean function that can be approximated over each
Di from the set {Di}i51

m of distributions. Then f can be approximated over any
distribution D that is a convex linear combination of the Dis, say D 5 i51

m liDi,
provided that the lis are known and each distribution Di is known and is polynomial
time computable.

PROOF. Suppose i51
m l i 5 1 and D 5 i51

m l iDi. Let hi be a hypothesis
over distribution Di satisfying EDi[hi Þ f] # e/ 2. Define the hypothesis H over
D to be

H~ x! 5 sgnS O
i51

m

l iDi~ x!hi~ x!D .
Then,

ED@H Þ f# 5 ED@l1D1h1f 1 · · · 1 lmDmhmf , 0# .

Using Lemma 7.2, if l1D1h1f 1 . . . 1 lmDmhmf , 0 for some x, then

O
i:hi( x) f( x)521

l iDi $
l1D1 1 · · · 1 lmDm

2
.

Therefore, we have the following.

ED@H Þ f# 5 O
x0:H( x0)Þf( x0)

O
i

l iDi~ x0!

# 2 O
x0:H( x0)Þf( x0)

O
i:hi( x0)Þf( x0)

l iDi~ x0! , Lemma 7.2

# 2 O
x0

O
i:hi( x0)Þf( x0)

l iDi~ x0!

5 2 O
i

l iEDi@hi Þ f# # e. e
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8. Learning in Polynomial Time

In this section, we describe some polynomial time learning results on some
subclasses of monotone Boolean functions.

8.1. WEAK LEARNING. Kearns and Valiant [1989] proved that monotone
Boolean functions are weakly learnable under the uniform distribution with error
1/ 2 2 1/(2n), In the following, we improve their result slightly. In particular,
there is a weak learner with error 1/2 2 V(log2 n/n) under the uniform
distribution and there are weak learners with error 1/ 2 2 c/n, for any constant
c, under any product distribution.
For learning under the uniform distribution, we will use the following result of

Kahn et al. [1988] on the lower bound of the sum of the squares of the influences
of variables.

LEMMA 8.1.1. [KAHN ET AL. 1988]. Let f [ {0, 1} be a Boolean function with
p 5 Pr[ f(x) 5 1] # 1/2. Then

O
i51

n

Ii~ f !2 $
p2

5

~log n!2

n
.

THEOREM 8.1.2. There is a polynomial time weak PAC learning algorithm with
error e 5 1/2 2 V(log2 n/n) for any monotone Boolean function under the uniform
distribution.

PROOF. We will assume that without loss of generality that p 5 Pr[ f( x) 5 1]
# 1/ 2, as we can take ¬ f(¬ x1, . . . , ¬ xn). This transformation does not affect
the influences.
If p , 1/4 we already have a weak learning using the all-zero hypothesis,

otherwise, as Ii( f )
2 5 f̂2(ei) and using Lemma 8.1.1, i51

n f̂2(ei) $ p2 log2

n/(5n) $ log2 n/80n. Combining this with Fact 1 with A 5 {ei;i [ [n]}, we get
a weak learner with the claimed accuracy. e

THEOREM 8.1.3. For any constant k there is a polynomial time weak PAC
learning algorithm with error e 5 1/2 2 k/n for monotone Boolean functions under
any product distribution.

PROOF. By Fact 1, if iai$k f̃
2(a) # 1/ 2, then we get a 1/4-approximator by

the standard low-degree algorithm (using again the fact that iai $ ua u).
Otherwise, by Theorem 4.3, we have 1.062 =n/k ID( f ) $ 1/ 2 and hence i

f̃2(ei) $ k2/4(1.062)2n. e

8.2. STRONG LEARNING. Sakai and Maruoka [1994] proved that monotone
O(log n)-term DNF is PAC learnable under the uniform distribution. We
improve their result in two ways. First, we extend the class to a larger subclass of
the monotone Boolean functions and second we extend the distribution to
constant-bounded product distributions.
A variable xi is relevant for f if there are a, b [ {0, 1}n with a 5 b Q ei and

f(a) Þ f(b). Note that xi is relevant if and only if Ii( f ) . 0.

Definition 8.2.1. (The concept class A(k)). Let A(k) be the class of Boolean
functions of the form f(T1, . . . , Tk), where f is an arbitrary monotone Boolean
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function on k inputs and each Ti is a monotone conjunction or a disjunction over
n variables.

THEOREM 8.2.2. The class A(log n) is PAC learnable under constant bounded
product distributions.

PROOF. From Lemma 4.1, the influence of a variable is

ID,i~ f ! 5
1

4s i
2 O
a:ai51

f̃~a!2.

As the product distribution is constant-bounded, s i is a constant and therefore if
the influence is small, then we may assume that xi is not relevant, as this incurrs
only a small additional error to the hypothesis. Now the divide-conquer learning
algorithm presented in Bshouty [1995] can be used in the same way. e

THEOREM 8.2.3. For any constant e, the class of monotone functions that
depend on O(log2n/log2log n) variables is PAC learnable with error e under constant
bounded product distributions.

PROOF. By the assumption, there are at most m(n) 5 log2n/log2log n
variables having nonzero influence. Note that we may ignore all the variables
with very small influence as we are dealing with constant bounded product
distributions. So we can apply the low-degree algorithm which will run in time
2=m(n)log m(n) 5 nO(1). e

THEOREM 8.2.4. For any constant e, the class A(log2n/log3log n) is PAC
learnable with error e under constant bounded product distributions.

PROOF. First, we claim that any term with size V(log log n) may be ignored
without incurring an error of more than O(1). Now observe that with this
simplification, there are at most log2 n/(log log n)2 variables. This problem
reduces to Theorem 8.2.3. e

Remark 8.2.5. The learning algorithms discussed so far fit into the statistical
query learning model introduced by Kearns [1993]. Hence by Kearns’ results,
these algorithms are robust against classification noise in the example oracle.
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