
Exploiting Large-Scale Check-in Data to Recommend
Time-Sensitive Routes

Hsun-Ping Hsieh1, Cheng-Te Li1, Shou-De Lin1,2
1Graduate Institute of Networking and Multimedia

2Department of Computer Science and Information Engineering
National Taiwan University, Taipei, Taiwan

{d98944006, d98944005, sdlin}@csie.ntu.edu.tw

ABSTRACT
Location-based services allow users to perform geo-spatial check-
in actions, which facilitates the mining of the moving activities of
human beings. This paper proposes to recommend time-sensitive
trip routes, consisting of a sequence of locations with associated
time stamps, based on knowledge extracted from large-scale
check-in data. Given a query location with the starting time, our
goal is to recommend a time-sensitive route. We argue a good
route should consider (a) the popularity of places, (b) the visiting
order of places, (c) the proper visiting time of each place, and (d)
the proper transit time from one place to another. By devising a
statistical model, we integrate these four factors into a goodness
function which aims to measure the quality of a route. Equipped
with the goodness measure, we propose a greedy method to
construct the time-sensitive route for the query. Experiments on
Gowalla datasets demonstrate the effectiveness of our model on
detecting real routes and cloze test of routes, comparing with
other baseline methods. We also develop a system TripRouter as a
real-time demo platform.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data
mining.

General Terms
Algorithms, Management, Performance.

Keywords
Time-sensitive query, trip recommendation, check-in data.

1. INTRODUCTION
Location-based Services (LBS), such as Foursquare 1 and
Gowalla2, allow users to perform check-in actions that pin the
geographical information of current location and time stamp onto
their personal pages. The rapid accumulation of user check-in
records can not only collectively represent the real-world human
activities, but also serve as a great resource for location-based
recommendation systems. Since the user-moving records
implicitly reveal how people travel around an area with rich

1 Fouresquare: https://foursquare.com/
2 Gowalla: http://gowalla.com/

spatial and temporal information, including longitude, latitude,
and check-in timestamp, one reasonable application leveraging
such user-generated check-in data is to recommend the travel
routes. Indeed, much existing work recommends routes using GPS
trajectories [2][14] or geo-tagged photos [1][4][18].

In this paper, instead of purely relying on past moving trajectories
to recommend traveling paths, we propose a novel time-sensitive
trip route recommendation framework that takes advantage of the
user-check-in data. We argue that a proper route recommendation
system should consider the following factors when designing a
route:

 The popularity of a place. Popular landmarks by definition
should attract more visitors.

 The proper time to visit a place. In general, the pleasure of
visiting a place can be significantly diminished if arriving at
the wrong time. Some places have a wider range of visiting
time while others are constrained to certain particular time
slots. For example, most people do not want to visit a beach
during boiling hot noon, but rather arrive in the late afternoon
to enjoy the sunset scene. Or certain ball game events usually
take place at particular time period (e.g. in the evening). As
shown in Figure 1, as derived from the Gowalla check-in data
described in Section 5, visitors visit some places with higher
probability during certain time slots. For example, people
usually visit the Empire State Building from about 12:00 to
the mid night (note that this place is famous for its excellent
night view), (b) people tend to visit the Madison Square
Garden in the early evening for a basketball game, (c) the
proper time to visit the Central Park is during daytime, and (d)
Time Square is preferred from afternoon to midnight.

 The amount of time required to transit from one place to
another. The transit time between places is highly correlated
to visiting the next places at proper time. To find the next
place with the proper visiting time, we should consider the
amount of time spent on traveling from the current location to
the next. For example, one has bought tickets to a football
game at a stadium 2 hours away. He will logically choose to
start traveling toward the stadium 2 hours ahead of the official
kick off time instead of going to a nearby museum 30 minutes
away.

 The visiting order of places. The visiting order of places is
important as it depends on the nature of places and human
preference. For example, going to the gym first then going to
nearby restaurant for dinner is a better plan than the other way
around since it is unhealthy to exercise right after a meal.

While some places are extremely sensitive to the visiting time, the
others (e.g. movie theaters) might not possess such strict
constraint. An intelligent route recommendation system should

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UrbComp’12, August 12, 2012. Beijing, China.
Copyright 2012 ACM 978-1-4503-1542-5/08/2012 ...$15.00.

consider such diversity and be able to create a route that has
higher chance of satisfying users’ needs. This paper argues that by
exploring the check-in data, it is possible to design a statistical
model to achieve such goal.

(a) (b)

(c) (d)

Figure 1: The distribution of the visiting probability at each
time unit (hour) for (a) Empire State Building, (b) Madison
Square Garden, (c) Central Park, and (d) Time Square. These
distributions are derived from the Gowalla check-in data.

Figure 2: An illustration of recommending a trip route for a
query located at the star position with the time stamp 10:00
AM, in Manhattan area, New York City. The goal is to find a
trip route connecting some check-in locations with the
consideration of the mentioned four requirements.

The online check-in data provide plenty of explicit or implicit
information that allows us to fulfill the abovementioned
requirements for the sake of planning a proper trip route. First, we
can derive from the check-in data the number of people who have
visited a certain place, and thus derive the popularity of places.
Second, users in LBS tend to perform check-in actions to keep
track of their trips in traveling days. As a result, we can obtain and
consider the visiting order of places. Third, the check-in records
contain the visiting time stamps of locations. Users in LBS are
able to collectively reveal the proper visiting time of places.
Fourth, followed by the check-in time stamps from existing routes,
we are able to have the transit time between places. Equipped with
such elements, we utilize the check-in data to recommend the trip
routes. Let us use Figure 2 as an example to elaborate the major
idea of our time-sensitive trip route recommendation. Assuming a

certain user starts to travel from his New York City hotel, marked
with a star in Figure 2, at 10:00 AM. There are several popular
attractions he/she can visit in a day, including the four famous
places mentioned in Figure 1. If the user wants to visit all four
places, a possible trip route consists of going to Central Park first,
followed by Empire State Building, Madison Square Garden, and
finally Time Square.

Formally, the goal of this paper is to construct a time-sensitive
route from the check-in data. Given a starting location with a time
stamp as the time-sensitive location query, we propose to find a
sequence of check-in locations as the trip route, in which each
location can be visited at the proper time with the proper transit
time from one place to another in the route. The benefit of such
time-sensitive trip route is three-fold. First, the user can maximize
the capability/price value on visiting each place. Second, with the
suggested transit time, users are able to control their schedule
more accurately and manage their time effectively. Third, the trip
planner can recommend users one or more attractions along the
way.

We propose a statistical approach with a greedy search algorithm
to construct the time-sensitive routes with respect to the query.
The method consists of two phases. In phase one, we measure the
quality of a route by devising a goodness function, which
integrates the abovementioned four requirements. In phase two,
with the query location and time, we greedily find next visiting
places by optimizing the goodness function.

We summarize the contributions of this paper in the following.

 We propose a novel time-sensitive trip route recommendation
problem using the check-in data in location-based services.
We fulfill the idea by developing a TripRouter system based
on the real-world Gowalla check-in data.

 Conceptually, we argue that a good route should consider four
elements: (a) the popularity of a place, (b) the visiting order of
places, (c) the proper visiting time of a place, and (d) the
proper transit time between places.

 Technically, we devise a goodness function to measure the
quality of a route. By exploiting some statistical methods, we
model the four requirements of a good route into the design of
the goodness function. In addition, for the given time-
sensitive location query, we develop a greedy algorithm to
search for the route by optimizing the goodness function.

This paper is organized as follows. We describe the related work
in Section 2. Section 3 devises the goodness of a route and
elaborates the greedy route search algorithm. We evaluate the
proposed method in Section 4 and demonstrate the TripRouter
system in Section 5. Section 6 concludes this work.

2. RELATED WORK
Route Planning by GPS Trajectory Data. There is lots of
related work about route planning using the GPS trajectories. J.
Juan et al. [14] [15] find the fastest routes to a destination. Z.
Chen et al. [2] and L.-Y. Wei et al. [11] search for popular and
attractive trajectories for recommendation. Z. Chen et al. [3] find
the top-k trajectories connecting some user-given locations. H.
Yoon et al. [13] and Y. Zheng et al. [17] propose the itinerary
recommendation by considering user preference based on mined
trajectory attributes. Y. Zheng et al. [16] [17] aim to discover
interesting and classical travel sequences. L.-A. Tang et al. [10]
finds the top-k nearest neighboring trajectories with the minimum
aggregated distance to some query locations. L.-Y. Wei et al. [12]

construct the top-k routes which sequentially pass through the
query locations within the specified time span. Though there are
many successful proposals to solve different kinds of route
planning problems, the issues of proper visiting time of places and
proper transit time between places are never tackled. To achieve
such goal, this work proposes to generate the time-sensitive trip
routes using check-in data.

We use Table 1 to summarize the differences between our work
and other relevant studies. Here we list some important issues
about route planning, including: whether it allows the Query of
certain Locations (QL), and whether it considers the following
ideas: Popularity (PO), Visiting Order (VO), Visiting Time (VT),
Transit Time (TT), User Preference (UP), Distance (DI), Travel
Duration (TD), and Top-k retrieval (TK).

Table 1: Summarization of differences between this paper and
other related work.

 QL PO VO VT TT UP DI TD TK
[14][15] ∎ ∎ ∎ ∎ ∎
[2] ∎ ∎ ∎
[11] ∎ ∎ ∎
[3] ∎ ∎ ∎
[13] ∎ ∎ ∎ ∎ ∎ ∎ ∎
[16][17] ∎ ∎ ∎ ∎ ∎
[10] ∎ ∎ ∎
[12] ∎ ∎ ∎ ∎
This work ∎ ∎ ∎ ∎ ∎ ∎

Route Recommendation Using Social Media. The rapid rise of
social media applications generates huge-volume geo-spatial data
of human activities, such as geo-tagged photos in Flickr and
check-in records in Foursquare. Both geo-tagged photos and
check-in data can reveal how people sequentially visit places in an
area. Using geo-tagged photos, Y. Arase et al. [1] mine frequent
route patterns for recommendation. A.-J. Cheng et al. [4] propose
personalized travel recommendation based on personal profiles
and visual attributes of geo-tagged photos. X. Lu et al. [7] and T.
Kurashima et al. [6] construct routes based on user preference of
must-go destinations, visiting time, and travel duration. Z. Yin et
al. [18] mine and rank trajectory patterns from geo-tagged photos
and diversify the ranking results. L.-Y. Wei et al. [12] infer the
top-k routes traveling a given location sequence within a specified
travel time from uncertain check-in data. Different from these
work, we aim to perform knowledge discovery to construct the
time-sensitive routes.

3. METHODOLOGY
3.1 Basic Definitions
Definition 1: Location. A location li is a tuple, li = (xi, yi), where
xi is the longitude, yi is the latitude.

Definition 2: Route of Check-in Locations. A route is a
sequence of locations with the corresponding time stamps,
denoted by s, s=<(l1,t1), (l2,t2), ..., (ln,tn)>, where n is the number
of locations. Throughout this paper, we focus on recommending
single-day route, which implies tn-t1 is no more than 24 hours.

Definition 3: Time-sensitive Query. We define the Time-
sensitive Query as Q = (lq, tq), where lq is the initial location of a
user, and tq is the starting time for this trip.

Definition 4: Time-sensitive Route. Given a time-sensitive query,
we define the output Time-sensitive Route as a sequence of check-
in locations sr = <(l1,t1), (l2,t2), ..., (lk,tk)>, where l1 = lq, t1 = tq, and
k is the number of locations in the route, which can be either

specified by users or determined using existing time constraint
of the trip.

In the following we will describe how to measure the quality of a
time-sensitive trip route. Based on the proposed goodness
definition, we are able to search and recommend better time-
sensitive routes given an initial time-sensitive query.

3.2 Measuring the Quality of a Trip Route
In order to construct a high-quality route for recommendation, we
need to first design a proper metric to measure the quality of any
given route. We propose that a good trip route should consider
the following four factors: (a) the popularity of a place, (b) the
proper visiting time of a location, (c) the proper transit time
traveling from one location to another, and (d) the visiting order
of places in the route. We attempt to model these factors into the
goodness function, and utilize such function to greedily selecting
locations for the construction of the final trip route.

3.2.1 Route Popularity
A popular place, by definition, should be somewhere that attracts
more visitors in general. If a route contains more popular places, it
has higher potential to satisfy a user. The popularity of a place can
be represented by the number of check-in actions performed at
that place. In our goodness measure of a route, we first consider
the popularity of places in the route. We define the relative
popularity of a location li as: ݌݋݌(݈௜) = ܰ(݈௜)ܰ௠௔௫

where N(li) is the number of check-in of the location li, and Nmax is
the maximum number of check-in among all the locations in the
check-in data. Given a route s=<(l1,t1), (l2,t2), ..., (ln,tn)>, we
define the popularity-based goodness function fpop(s) as:

௣݂௢௣(ݏ) = ൭ෑ ௡(௜݈)݌݋݌
௜ୀଵ ൱ଵ௡

3.2.2 Proper Visiting Time
The check-in data reveals that while some locations (e.g. park and
movie theater) are popular regardless of the visiting time in a
given day, other locations (e.g. stadium and beach) are more
attractive during certain time period of the day. We propose to
learn such time-dependent popularity of each location from the
check-in data. We begin from defining the Temporal Visiting
Distribution as the following.

Definition 5: Temporal Visiting Distribution (TVD) of a
Location. We define a Temporal Visiting Distribution for a
location l, TVDl (ti), as the probability distribution of a randomly
picked check-in record of l occurs at time ti. For example, in a 24-
hour span, TVD can be a legal probability distribution shown in
Figure 3. TVD can easily be learned from check-in data,
representing how popular a place is at a given time.

Using TVD, we can determine whether it is proper to visit a place
at a given time. For example, assuming we want to know how
well a decision is to visit a place at 8:00AM, given the location’s
TVD is represented as the green dotted line in Figure 3. To do that,
we propose to first generate a thin Gaussian distribution ݐ)ܩ; ,ߤ ଶ (e.g. standard deviation is 1). And then we can transform theߪ is 8 with a very small variance ߤ ଶ) whose mean valueߪ
original task into measuring the difference between the Gaussian
distribution with the learnt TVD of such location. Here we use the

symmetric Kullback-Leibler (KL) Divergence between ݐ)ܩ; ,ߤ (ଶߪ
and ܸܶܦ௟(ݐ) to represent the fitness of the assignment. The formal
mathematical definition of a fitness score between a place l and a
time t can be defined as ܦ௄௅(ݐ)ܩ; ,ߤ = ((ݐ)௟ܦܸܶ||(ଶߪ ෍ ;ݔ)ܩ ,ߤ ଶ)௫ߪ ݃݋݈ ;ݔ)ܩ ,ߤ (ݔ)௟ܦܸܶ(ଶߪ + ෍ ௫(ݔ)௟ܦܸܶ ݃݋݈ ;ݔ)ܩ(ݔ)௟ܦܸܶ ,ߤ (ଶߪ

Conceivably, a smaller KL value indicates better match between
the assignment and the distribution learned from data.

Consequently, we formally define the temporal visiting goodness
function fvisit(s) of a route s=<(l1,t1), (l2,t2), ..., (ln,tn)>, as a
combination of the popularity of places together with the fitness
of each location over time, in the following equation.

௩݂௜௦௜௧(ݏ) = ൭ෑ ;ݐ)ܩ௄௅൫ܦ ,௜ݐ ൯(ݐ)௟೔ܦܸܶ||(ଶߪ × ௡(௜݈)݌݋݌1
௜ୀଵ ൱ିଵ௡

If the places in a route s are visited during the proper time period,
the ௩݂௜௦௜௧(ݏ) value would become higher.

Figure 3: Examples of the temporal visiting distribution (TVD)
(the green dotted curve) for a certain location li, and the
duration distribution (DD) (the blue dashed curve) between
location li and lj. The black solid curve represents a normal
distribution of a particular time assignment to measure the
fitness values.

3.2.3 Proper Transit Time Duration
To schedule a good trip route, another key element to be
considered is the visiting time of each place as well as the transit
time from one place to another. Although the check-in data cannot
explicitly tell us the above two kinds of information, we can
simply treat the duration between two checked-in places as the
summation of the visiting time of the first place plus the
transportation time from the first to the second place. Such
duration can further be utilized to evaluate the quality of a trip.
Here we propose the Duration Distribution, as defined in the
following, to model such ‘visiting plus transit time’ between
places.

Definition 6: Duration Distribution (DD) between Two
Locations. We define the Duration Distribution (DD) between
locations li and lj as the probability distribution over time duration
t, ܦܦ௟೔௟ೕ(ݐ), which can be obtained from the following random

experiment: randomly pick two consecutive check-in records (li,
ti), (lj,tj) of a person, and calculate the probability that tj-ti=t.

Again, we consider only one-day trip, and therefore treat the
outcome space of DD between hours 0 through 24. For example,
any legal probability distribution between hours 0 through 24 can
be a DD (e.g. the blue dashed line in Figure 3).

Similar to what we do to TVD, given a pair of locations li and lj
together with an assignment of a given duration ∆ among them,
we can model ∆ as a thin Gaussian distribution and compare it
with ܦܦ௟೔௟ೕ(∆) using symmetric KL divergence. Consequently, for
a route s=<(l1,t1), (l2,t2), ..., (ln,tn)>, it is possible to know how
good the route is based on the durations between places by
defining a goodness function of duration:

ௗ݂௨௥௔௧௜௢௡(ݏ) = ൭ෑ ;ݐ)௄௅൫݃ܦ ∆௜,௜ାଵ; ,௜݈)ܦܶܮ||(ଶߪ ௝݈)൯௡ିଵ
௜ୀଵ ൱ ିଵ௡ିଵ

A route s with higher value of fduration(s) indicates such route can
be visited with proper “transit+staying” time between places.

Here we use Figure 4 as an illustration to summarize our idea of
utilizing TVD and DD to measure the goodness of a trip route.
Given a route s=<(l1,t1), (l2,t2), ..., (ln,tn)>. We use symmetric KL
divergence to measure the visiting fitness of each location li by
calculating a DKL(li) value between TVDli and a narrow Gaussian
distribution. We also use KL divergence to measure the fitness of
each transition li→lj and derive a DKL(Δij) between ܦܦ௟೔௟ೕ and a
thin Gaussian distribution. Eventually we compute the geometric
mean of such DKL values to be the time-related route goodness.

Figure 4: For a route s=<(l1,t1), (l2,t2), ..., (lk,tk)>, we compute
2k-1 values of KL-divergence and then take the geometric
mean of such values as the time-dependent goodness of a route.

3.2.4 Proper Visiting Order
Due to the characteristic of each place, there might be certain
latent patterns about the order of the places to be visited. With the
check-in data, we are able to learn such orders and exploit them to
evaluate the quality of a route. For example, going to restaurant
for dinner and then going back to hotel is better than the other
way around. In this section, we propose to exploit the idea of the
n-gram language model to measure the quality of the order of
visits in a trip route. Using the check-in corpus, we can first
generate the n-gram probabilities of locations. Then, given a route
s=<(l1,t1), (l2,t2), ..., (ln,tn)>, we can compute its n-gram

probability. We consider such n-gram probability as the goodness
of visiting order. Technically, we use the average value of the
probabilities of uni-gram, bi-gram, and tri-gram to estimate the
goodness of orders. Note that the uni-gram probability is
corresponding to the popularity-based route goodness. We can
formally write the probabilities as follows.

௨ܲ௡௜(ݏ) = ௣݂௢௣(ݏ)

௕ܲ௜(ݏ) = (ܲ(݈ଵ)ܲ(݈ଶ|݈ଵ)ܲ(݈ଷ|݈ଶ) ⋯ ܲ(݈௡|݈௡ିଵ))ଵ௡

௧ܲ௥௜(ݏ) = (ܲ(݈ଵ)ܲ(݈ଶ|݈ଵ)ܲ(݈ଷ|݈ଵ݈ଶ) ⋯ ܲ(݈௡|݈௡ିଶ݈௡ିଵ))ଵ௡

Therefore, the goodness of visiting order of a route can be defined:

௢݂௥ௗ௘௥(ݏ) = ൫ ௨ܲ௡௜(ݏ) + ௕ܲ௜(ݏ) + ௧ܲ௥௜(ݏ)൯3

Higher forder(s) value represents better quality of route. Note that
we utilize the add-one technique for smoothing.

3.2.5 Final Goodness Function
Here we integrate the goodness measures of the proper visiting
time, the proper transit time duration, and the proper visiting order
into the final goodness function f(s). The final goodness function
contains two parts. The first part is the average value of the
temporal visiting goodness fvisit(s) and the location transition
goodness fduration(s). The second part is the visiting order goodness
forder(s). We use a parameter α ∈ [0,1] to devise a linear
combination of such two parts. The final goodness function f(s) is
defined in the following. ݂(ݏ) = α × ቆ ௩݂௜௦௜௧(ݏ) + ௗ݂௨௥௔௧௜௢௡(ݏ)2 ቇ + (1 − α) × ௢݂௥ௗ௘௥(ݏ)

A route s with higher value of f(s) will be considered as a better
route. Experiments in Section 5.3 suggest α ≈ 0.9 being more
effective on measuring route quality. Such result exhibits the
usefulness of the proposed time-sensitive route recommendation.

Algorithm 1. TimeRoute algorithm
Input: (a) ܴܤܦ݁ݐݑ݋: routes extracted from the check-in data;
(b) ܳ = (݈௤, ;௤): the time-sensitive location queryݐ
(c) ݇: the number of locations in the final route.
Output: a time-sensitive route ݏ௥ = 〈(݈ଵ, ,(ଵݐ (݈ଶ, ,(ଶݐ … (݈௞, .〈(௞ݐ
௥ݏ :1 = 〈(݈ଵ = ݈௤, ଵݐ = .〈(௤ݐ
2: for ݅ = 2 to ݇ do:
௜ܥ :3 = ሼ݈௖|݈௜ିଵ → ݈௖ in ܴܤܦ݁ݐݑ݋ሽ.
4: ௠݂௔௫ = 0.
3: for each ݈௖ ∈ :௜ doܥ
௧௠௣ݏ :4 = ௥ݏ + 〈(݈௖, .〈(௖ݐ
5: Compute the goodness ݂(ݏ௧௠௣).
6: if ݂(ݏ௧௠௣) > ௠݂௔௫ do:
௥ݏ :7 = .௧௠௣ݏ
8: ௠݂௔௫ = .(௧௠௣ݏ)݂
9: Return: ݏ௥.

3.3 Greedy Algorithm TimeRoute
In this section, we formally describe the problem of time-sensitive
trip route recommendation based on the proposed goodness
measure. And then we propose a greedy algorithm, TimeRoute, to
construct the time-sensitive routes for a given query.

Problem Definition. Given (a) the routes extracted in the check-
in data, (b) the time-sensitive location query Q = (lq, tq), and (c)

the number k of locations in the final route, the goal is to construct
a route sr=<(l1=lq,t1=tq), (l2,t2), ..., (lk,tk)> to optimize f(sr).

To solve this problem, we devise a greedy algorithm, TimeRoute,
to achieve the local-optimal solution. The basic idea is to select
next place based on the goodness function f(s). Starting from the
query location (line 1 in Algorithm 1), when selecting next
location li (i >2), we first identify a set of candidate locations Ci
by collecting locations which have been ever followed by li (line
3). Then for each location in the candidate set ܥ௜, we select the
candidate lc with the maximum goodness value given the existing
route, and append it to the final route sr. (line 4-8). Such
procedure will terminate when k spots are identified in the route.

4. EXPERIMENTS
4.1 Dataset and Data Analysis
We utilize the Gowalla dataset [5] which has been exploited for
location-based analysis in several places, such as [8] and [9]. The
Gowalla dataset contains 6,442,890 check-in records from Feb.
2009 to Oct. 2010. The total number of check-in locations is
1,280,969. Considering a route as a sequence of check-in
locations of a user within a day, we construct the route database
RouteDB containing 2,605,867 routes, among them 1,469,130 has
only length one and are not used. The average route length is 4.09,
without considering length-1 routes. Figure 5 shows the
distribution of the route length, which is highly-skew and heavily-
tailed. Figure 5 also shows that people usually do not prefer
visiting too many locations in a day, but with some exceptions.
Figure 6 shows the distribution of the time duration between two
places. It indicates that people consider places closer to where
they are when they are planning the next destination.

Figure 5: Distribution of route length in RouteDB.

Figure 6: Distributions of time duration in RouteDB.

Table 2: The statistics of RouteDB and the three subsets.

 Total Number
of Check-ins

Avg. Route
Length

Variance of
Route Length

Distinct Check-
in Locations

RouteDB 6,442,890 4.09 48.04 1,280,969
New York 103,174 4.46 71.24 14,941
San Francisco 187,568 4.09 58.36 15,406
Paris 14,224 4.45 75.73 3,472

1

10

100

1000

10000

100000

1000000

10000000

1 11 21 31 41 51 61 71 81 91

N
um

be
r o

f R
ou

te
s

Route Length

1

10

100

1000

10000

100000

1000000

10000000

1 3 5 7 9 11 13 15 17 19 21 23

N
um

be
r o

f R
ec

or
ds

Time Duration (hours)

From RouteDB, we extract three subsets of the check-in data,
which corresponds to cities of New York, San Francisco, and
Paris. Some statistics are reported in Table 2. We can find the
average route lengths and their variance in New York and Paris
are significantly longer than average. Figure 7 shows the
distribution of route length in the three subsets of check-in data
while Figure 8 shows the distribution of the time duration.

Figure 7: Distribution of route length for three cities (hour).

Figure 8: Distribution of time duration for three cities (hour).

4.2 Evaluation Plan
In this section, we introduce two evaluation plans for verifying the
performance of our proposed method using the data in these three
cites, and compare the results with several baseline methods.

Experiment 1: Pair-wise Time-sensitive Route Detection. In
this experiment, we would like to verify whether our goodness
model can rank the existing routes higher than the non-existing
ones. We first randomly choose one thousand real routes from the
check-in data. Note that the time stamp is associated with each
location l. For each route, we replace a portion of the locations
with other locations in the city to generate a pseudo route. To
make the task non-trivial, we adopt a replacing strategy to replace
a location with a ‘plausible’ one instead of a randomly selected
one. That is, to replace a location at position i of a route, we only
choose from candidate locations that once appear right after the
location at position i-1 (e.g. the bigram probability of them is non-
zero) instead of simply picking a random location. Furthermore,
after the replacement, we want to make sure the generated pseudo
routes do not exist in the database. That is, there is no such route
in the database of the same location sequences together with the
same associated time stamps. As can be seen in Figure 11 to 13,
the amount of replaced locations varies from 10% to 50% of the
total number in a route. We then use our fitness model to examine
each pair of the existing route and its pseudo route, and record
how frequently our method ranks the correct one higher. Finally,
we report the accuracy of our method and compare it with the
baseline results. The accuracy is calculated as the number of

successfully detected routes divided by the number of pair
instances.

Similarly, we can generate another kind of pseudo route by
perturbing the time stamps of certain locations in an existing route.
For example, given an existing route s=<(l1,t1), (l2,t2),… (li-1, ti-1),
(li,ti), (li+1,ti+1),..., (ln,tn)>, we change ti to a different time tj, where
ti-1 < tj < ti+1. We expect a proper fitness function to assign lower
score to such pseudo routes.

Experiment 2: Time-sensitive Cloze Test of Locations in
Routes. Given some real trip routes with time stamp in each
location, by removing some middle locations, the goal is to test
whether a method can successfully identify the removed location.
Higher hit rate indicates better quality of recommendation.

Baseline Approaches. To evaluate the effectiveness of our
method, we design the following four baseline methods for both
experiment 1 and experiment 2.

 Distance-based Approach. This method chooses the closest
location to the current spot as the next spot to move to. It rates
a route using the goodness function ௗ݂(ݏ) = (∏ ଵ஽(௟೔,௟೔షభ)௡௜ୀଵ)భ౤,
where ܦ(݈௜, ݈௜ିଵ) is the geographical distance between two
consecutive locations.

 Popular-based Approach. This method chooses the most
popular spot of a given time in that city as the next spot to
move to. It rates the path using the goodness function ௣݂௢௣(ݏ)
as have been defined previously in Section 3.2.1.

 Forward Heuristic Approach. The forward heuristic chooses
a location li that possesses the largest bi-gram probability with
the previous location ܲ(݈௜|݈௜ିଵ) as the next location to move
to. Its goodness function is ௙݂௢௥௪(ݏ) = ௕ܲ௜(ݏ) , as defined
previously in section 3.2.4.

 Backward Heuristic Approach. The backward heuristic
chooses a location li that possesses the largest bi-gram
probability with the next location ܲ(݈௜|݈௜ାଵ) as the next
location to move to. The fitness function can be described as ௕݂௔௖௞௪(ݏ) = (ܲ(݈ଵ|݈ଶ)ܲ(݈ଶ|݈ଷ) ⋯ ܲ(݈௡ିଵ|݈௡))భ೙.

4.3 Experimental Results
Section 4.3.1 shows the results of Experiment 1 and Section 4.3.2
illustrates the outcome of Experiment 2. For both experiments, we
implement four baseline methods to compare with our proposed
TimeRoute method.

4.3.1 Pairwise Time-Sensitive Route Detection
In experiment 1, we first vary the number of replaced locations
from 10% to 50% and report the accuracy of different methods.
Figure 9 contains the results for New York City. Our fitness
model can achieve around 97% accuracy in distinguishing the real
routes from replaced ones. The accuracy scores of the forward and
backward heuristics vary from 89% to 93%. The popular-based
and distance-based methods do not do a good job here. Similar
trend happens in Paris (Figure 11), but for San Francisco (Figure
10), our method shows much higher accuracy comparing with
others. The results are not surprising because our method does
consider the location preference over time and location order.

Figure 12 shows the results of creating pseudo paths by shifting
time stamp for some locations. Again we vary the ratio of change
from 10% to 50%. The results show that our model can almost
perfectly detect such change, better than the popularity-based

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

N
um

be
r o

f R
ou

te
s

Route Length

New York
San Francisco
Paris

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 101112131415161718192021222324

N
um

be
r o

f R
ec

or
ds

Time Duration (hours)

New York
San Francisco
Paris

method (around 15% accuracy). The other competitors do not
have the capability to distinguish such pairs because they do not
consider time information during route generation, and therefore
the fitness scores are identical for such pair of routes.

Figure 9: Accuracy by varying the number of replaced
locations in New York.

Figure 10: Accuracy by varying the number of replaced
locations in San Francisco.

Figure 11: Accuracy by varying the number of replaced
locations in Paris.

Figure 12: Accuracy by varying the number of replaced time
stamp for our method in the three cities.

4.3.2 Time-Sensitive Cloze Test in Routes
In cloze experiment of locations in routes, we calculate hit rate by
varying the position of missing location. Generally speaking, the
preceding position of missing location obtains lower hit rate than
latter one because the system can generally do better when more
information is revealed.
As reported in Figure 13-15, the hit rates of the four baseline
models are often lower than 10% in these three cities, while we
can achieve 15%~40% hit rate.

Figure 13: Accuracy by varying the position of missing
location in New York.

Figure 14: Accuracy by varying the position of missing
location in San Francisco.

Figure 15: Accuracy by varying the position of missing
location in Paris.

Figure 16: The impact of α on the time-sensitive cloze test for
the three cities.

0%

20%

40%

60%

80%

100%

10% 20% 30% 40% 50%

Ac
cu

ra
cy

Number of replaced locations (%)

TimeRoute

Distance-
based method
Popular-based
method
forward
heuristic
backward
heuristic

0%

20%

40%

60%

80%

100%

10% 20% 30% 40% 50%

Ac
cu

ra
cy

Number of replaced locations (%)

TimeRoute

Distance-
based method
Popular-based
method
forward
heuristic
backward
heuristic

0%

20%

40%

60%

80%

100%

10% 20% 30% 40% 50%

Ac
cu

ra
cy

Number of replaced locations (%)

TimeRoute

Distance-based
method
Popular-based
method
forward
heuristic
backward
heuristic

0.955
0.96

0.965
0.97

0.975
0.98

0.985
0.99

0.995
1

1.005

10% 20% 30% 40% 50%

Ac
cu

ra
cy

Number of replaced time stamp (%)

New York
San Francisco
Paris

0%

5%

10%

15%

20%

25%

30%

2 3 4 5 6

Hi
t r

at
e

Position

TimeRoute

Distance-
based method
Popular-based
method
forward
heuristic
backward
heuristic

0%

5%

10%

15%

20%

25%

2 3 4 5 6

Hi
t r

at
e

Position

TimeRoute

Distance-based
method
Popular-based
method
forward
heuristic
backward
heuristic

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

2 3 4 5 6

Hi
t r

at
e

Position

TimeRoute

Distance-based
method
Popular-based
method
forward
heuristic

backward
heuristic

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

0 0.1 0.3 0.5 0.7 0.9 1

Hi
t r

at
e

α value

New York
San Francisco
Paris

Impact of α: Next, we examine how sensitive our model is to the
parameter α, ranging from 0 to 1. We use the hit rate of cloze test
and the results are shown in Figure 16. In New York and Paris,
the best α value is around 0.9. That is, much more weight is
assigned to time-sensitive models than the visiting order on cloze
test task. In San Francisco City, α performs well while varying
from 0.5 to 0.9.

5. SYSTEM DEMONSTRATION
Using our model, we develop an online time-sensitive trip route
recommendation system, called TripRouter. The system snapshot
is shown in Figure 17. Users first determine the city they want to
travel, and then select one location as their starting location,
together with the starting time. TripRouter also allows users to
specify their estimated travel time duration and the desired
number of locations of such trip. We list the three major functions
of TripRouter as below: (a) time-sensitive route recommendation,
(b) displaying diverse information of locations and routes such as
location attributes, route statistics, and some geo-tagged photos
obtained from Flickr, and (c) recommending the transportation
mode by querying Google Map API according to mined transit
time duration.

Below we show three recommended routes querying from Central
Park at different starting time, where the route length k is set as 4.

 Central Park at 9PM: Central Park (9AM) → New York
City Center (11AM) → 5th Ave (5PM) → FAO Schwarz
restaurant (7PM).

 Central Park at 2PM: Central Park (2PM) → The Museum
of Modern Art (3PM) → Bergdorf Goodman (4PM) → Lee's
art shop (7PM).

 Central Park at 5PM: Central Park (5PM) → 5th Ave (6PM)
→ Pulitzer Fountain (7PM) → Four season hotel (8PM).

The above examples tell us that our TripRouter system is able to
recommend the best route based on the specified time and location.

Figure 17: The system interface of TripRouter.

6. CONCLUSION
This paper tries to address an important research question: how
much the check-in data can provide in terms of designing a
suitable trip route. The solution provided by us seems to be very
encouraging as it shows that one can indeed squeeze a lot of
knowledge from check-in data to design a time-sensitive trip route
that has higher potential of satisfying the users. Note that our
approach is mostly data-driven, which assures diverse results can
be learned from different cities in which visiting patterns may

vary with different culture and characteristics of the city. Ongoing
work focuses on two directions: using maximum likelihood
estimator to accurately model the visiting time duration of a place
and transportation time between places, and further exploit the
collaborative filtering approaches to take advantage of the user
and location similarities.

7. REFERENCES
[1] Y. Arase, X, Xie, T. Hara, and S. Nishio. Mining People’s

Trips from Large Scale Geo-tagged Photos. In ACM MM
2010.

[2] Z. Chen, H. T. Shen, and X. Zhou. Discovering Popular
Routes from Trajectories. In IEEE ICDE 2011.

[3] Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie.
Searching Trajectories by Locations: An Efficiency Study. In
ACM SIGMOD 2010.

[4] A.-J. Cheng, Y.-Y. Chen, Y.-T. Huang, W. H. Hsu, and H.-Y.
M. Liao. Personalized Travel Recommendation by Mining
People Attributes from Community-Contributed Photos. In
ACM MM 2011.

[5] E. Cho, S. A. Myers, and J. Leskovec. Friendship and
Mobility: User Movement in Location-based Social
Networks. In ACM KDD 2011.

[6] T. Kurashima, T. Iwata, G. Irie, and K. Fujimura. Travel
Route Recommendation Using Geotags in Photo Sharing
Sites. In ACM CIKM 2010.

[7] X. Lu, C. Wang, J.-M. Yang, Y. Pang, and L. Zang.
Photo2trip: Generating Travel Routes from Geo-tagged
Photos for Trip Planning. In ACM MM 2010.

[8] S. Scellato, A. Noulas, R. Lambiotte, and C. Mascolo. Socio-
spatial Properties of Online Location-based Social Networks.
In ICWSM 2010.

[9] S. Scellato, A. Noulas, C. Mascolo. Exploiting Place
Features in Link Prediction on Location-based Social
Networks. In ACM KDD 2011.

[10] L.-A. Tang, Y. Zheng, X. Xie, J. Yuan, X. Yu, and Jiawei
Han. Retrieving k-Nearest Neighboring Trajectories by a Set
of Point Locations. In SSTD 2011.

[11] L.-Y. Wei, W.-C. Peng, B.-C. Chen, and W.-C. Peng. PATS:
A Framework of Pattern-Aware Trajectory Search. In MDM
2010.

[12] L.-Y. Wei, Y. Zheng, and W.-C. Peng, Constructing Popular
Routes from Uncertain Trajectories. In ACM KDD 2012.

[13] H. Yoon, Y. Zheng, X. Xie., and W. Woo. Social Itinerary
Recommendation from User-generated Digital Trails, In
Personal and Ubiquitous Computing, 2011

[14] J. Yuan, Y. Zheng, X. Xie, and G. Sun. Driving with
Knowledge from the Physical World. In ACM KDD 2011.

[15] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y.
Huang. T-Drive: Driving Directions Based on Taxi
Trajectories. In ACM SIGSPATIAL GIS 2010.

[16] Y. Zheng., L. Zhang, X. Xie, and W.-Y. Ma. Mining
Interesting Locations and Travel Sequences from GPS
Trajectories. In WWW 2009.

[17] Y. Zheng and X. Xie. Learning Travel Recommendations
from User-generated GPS Traces. In ACM TIST 2011.

[18] Z. Yin, L. Gao, J. Han, J. Luo, and T. Huang. Diversified
Trajectory Pattern Ranking in Geo-tagged Social Media. In
SDM 2011.

