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ABSTRACT 
Location-based services allow users to perform geo-spatial check-
in actions, which facilitates the mining of the moving activities of 
human beings. This paper proposes to recommend time-sensitive 
trip routes, consisting of a sequence of locations with associated 
time stamps, based on knowledge extracted from large-scale 
check-in data. Given a query location with the starting time, our 
goal is to recommend a time-sensitive route. We argue a good 
route should consider (a) the popularity of places, (b) the visiting 
order of places, (c) the proper visiting time of each place, and (d) 
the proper transit time from one place to another. By devising a 
statistical model, we integrate these four factors into a goodness 
function which aims to measure the quality of a route. Equipped 
with the goodness measure, we propose a greedy method to 
construct the time-sensitive route for the query. Experiments on 
Gowalla datasets demonstrate the effectiveness of our model on 
detecting real routes and cloze test of routes, comparing with 
other baseline methods. We also develop a system TripRouter as a 
real-time demo platform. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
mining. 

General Terms 
Algorithms, Management, Performance. 

Keywords 
Time-sensitive query, trip recommendation, check-in data. 

1. INTRODUCTION 
Location-based Services (LBS), such as Foursquare 1  and 
Gowalla2, allow users to perform check-in actions that pin the 
geographical information of current location and time stamp onto 
their personal pages. The rapid accumulation of user check-in 
records can not only collectively represent the real-world human 
activities, but also serve as a great resource for location-based 
recommendation systems. Since the user-moving records 
implicitly reveal how people travel around an area with rich 

                                                                 
1 Fouresquare: https://foursquare.com/ 
2 Gowalla: http://gowalla.com/ 

spatial and temporal information, including longitude, latitude, 
and check-in timestamp, one reasonable application leveraging 
such user-generated check-in data is to recommend the travel 
routes. Indeed, much existing work recommends routes using GPS 
trajectories [2][14] or geo-tagged photos [1][4][18].  

In this paper, instead of purely relying on past moving trajectories 
to recommend traveling paths, we propose a novel time-sensitive 
trip route recommendation framework that takes advantage of the 
user-check-in data. We argue that a proper route recommendation 
system should consider the following factors when designing a 
route: 

 The popularity of a place. Popular landmarks by definition 
should attract more visitors.  

 The proper time to visit a place. In general, the pleasure of 
visiting a place can be significantly diminished if arriving at 
the wrong time. Some places have a wider range of visiting 
time while others are constrained to certain particular time 
slots. For example, most people do not want to visit a beach 
during boiling hot noon, but rather arrive in the late afternoon 
to enjoy the sunset scene. Or certain ball game events usually 
take place at particular time period (e.g. in the evening). As 
shown in Figure 1, as derived from the Gowalla check-in data 
described in Section 5,  visitors visit some places with higher 
probability during certain time slots. For example, people 
usually visit the Empire State Building from about 12:00 to 
the mid night (note that this place is famous for its excellent 
night view), (b) people tend to visit the Madison Square 
Garden in the early evening for a basketball game, (c) the 
proper time to visit the Central Park is during daytime, and (d) 
Time Square is preferred from afternoon to midnight. 

 The amount of time required to transit from one place to 
another. The transit time between places is highly correlated 
to visiting the next places at proper time. To find the next 
place with the proper visiting time, we should consider the 
amount of time spent on traveling from the current location to 
the next. For example, one has bought tickets to a football 
game at a stadium 2 hours away. He will logically choose to 
start traveling toward the stadium 2 hours ahead of the official 
kick off time instead of going to a nearby museum 30 minutes 
away.  

 The visiting order of places.  The visiting order of places is 
important as it depends on the nature of places and human 
preference. For example, going to the gym first then going to 
nearby restaurant for dinner is a better plan than the other way 
around since it is unhealthy to exercise right after a meal. 

While some places are extremely sensitive to the visiting time, the 
others (e.g. movie theaters) might not possess such strict 
constraint. An intelligent route recommendation system should 
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consider such diversity and be able to create a route that has 
higher chance of satisfying users’ needs. This paper argues that by 
exploring the check-in data, it is possible to design a statistical 
model to achieve such goal.  

  
(a)                                                  (b) 

  
(c)                                                  (d) 

Figure 1: The distribution of the visiting probability at each 
time unit (hour) for (a) Empire State Building, (b) Madison 
Square Garden, (c) Central Park, and (d) Time Square. These 
distributions are derived from the Gowalla check-in data. 

 
Figure 2: An illustration of recommending a trip route for a 
query located at the star position with the time stamp 10:00 
AM, in Manhattan area, New York City. The goal is to find a 
trip route connecting some check-in locations with the 
consideration of the mentioned four requirements. 

The online check-in data provide plenty of explicit or implicit 
information that allows us to fulfill the abovementioned 
requirements for the sake of planning a proper trip route. First, we 
can derive from the check-in data the number of people who have 
visited a certain place, and thus derive the popularity of places. 
Second, users in LBS tend to perform check-in actions to keep 
track of their trips in traveling days. As a result, we can obtain and 
consider the visiting order of places. Third, the check-in records 
contain the visiting time stamps of locations. Users in LBS are 
able to collectively reveal the proper visiting time of places. 
Fourth, followed by the check-in time stamps from existing routes, 
we are able to have the transit time between places. Equipped with 
such elements, we utilize the check-in data to recommend the trip 
routes. Let us use Figure 2 as an example to elaborate the major 
idea of our time-sensitive trip route recommendation. Assuming a 

certain user starts to travel from his New York City hotel, marked 
with a star in Figure 2, at 10:00 AM. There are several popular 
attractions he/she can visit in a day, including the four famous 
places mentioned in Figure 1. If the user wants to visit all four 
places, a possible trip route consists of going to Central Park first, 
followed by Empire State Building, Madison Square Garden, and 
finally Time Square. 

Formally, the goal of this paper is to construct a time-sensitive 
route from the check-in data. Given a starting location with a time 
stamp as the time-sensitive location query, we propose to find a 
sequence of check-in locations as the trip route, in which each 
location can be visited at the proper time with the proper transit 
time from one place to another in the route. The benefit of such 
time-sensitive trip route is three-fold. First, the user can maximize 
the capability/price value on visiting each place. Second, with the 
suggested transit time, users are able to control their schedule 
more accurately and manage their time effectively. Third, the trip 
planner can recommend users one or more attractions along the 
way. 

We propose a statistical approach with a greedy search algorithm 
to construct the time-sensitive routes with respect to the query. 
The method consists of two phases. In phase one, we measure the 
quality of a route by devising a goodness function, which 
integrates the abovementioned four requirements. In phase two, 
with the query location and time, we greedily find next visiting 
places by optimizing the goodness function. 

We summarize the contributions of this paper in the following. 

 We propose a novel time-sensitive trip route recommendation 
problem using the check-in data in location-based services. 
We fulfill the idea by developing a TripRouter system based 
on the real-world Gowalla check-in data. 

 Conceptually, we argue that a good route should consider four 
elements: (a) the popularity of a place, (b) the visiting order of 
places, (c) the proper visiting time of a place, and (d) the 
proper transit time between places.  

 Technically, we devise a goodness function to measure the 
quality of a route. By exploiting some statistical methods, we 
model the four requirements of a good route into the design of 
the goodness function. In addition, for the given time-
sensitive location query, we develop a greedy algorithm to 
search for the route by optimizing the goodness function. 

This paper is organized as follows. We describe the related work 
in Section 2. Section 3 devises the goodness of a route and 
elaborates the greedy route search algorithm. We evaluate the 
proposed method in Section 4 and demonstrate the TripRouter 
system in Section 5. Section 6 concludes this work. 

2. RELATED WORK 
Route Planning by GPS Trajectory Data. There is lots of 
related work about route planning using the GPS trajectories. J. 
Juan et al. [14] [15] find the fastest routes to a destination. Z. 
Chen et al. [2] and L.-Y. Wei et al. [11] search for popular and 
attractive trajectories for recommendation. Z. Chen et al. [3] find 
the top-k trajectories connecting some user-given locations. H. 
Yoon et al. [13] and Y. Zheng et al. [17] propose the itinerary 
recommendation by considering user preference based on mined 
trajectory attributes. Y. Zheng et al. [16] [17] aim to discover 
interesting and classical travel sequences. L.-A. Tang et al. [10] 
finds the top-k nearest neighboring trajectories with the minimum 
aggregated distance to some query locations. L.-Y. Wei et al. [12] 



construct the top-k routes which sequentially pass through the 
query locations within the specified time span. Though there are 
many successful proposals to solve different kinds of route 
planning problems, the issues of proper visiting time of places and 
proper transit time between places are never tackled. To achieve 
such goal, this work proposes to generate the time-sensitive trip 
routes using check-in data. 

We use Table 1 to summarize the differences between our work 
and other relevant studies. Here we list some important issues 
about route planning, including: whether it allows the Query of 
certain Locations (QL), and whether it considers the following 
ideas: Popularity (PO), Visiting Order (VO), Visiting Time (VT), 
Transit Time (TT), User Preference (UP), Distance (DI), Travel 
Duration (TD), and Top-k retrieval (TK). 

Table 1: Summarization of differences between this paper and 
other related work. 

 QL PO VO VT TT UP DI TD TK
[14][15]  ∎ ∎   ∎ ∎ ∎  
[2] ∎ ∎ ∎       
[11]  ∎ ∎      ∎
[3] ∎  ∎      ∎
[13] ∎ ∎ ∎  ∎ ∎  ∎ ∎
[16][17] ∎ ∎ ∎   ∎   ∎
[10] ∎      ∎  ∎
[12] ∎ ∎      ∎ ∎
This work ∎ ∎ ∎ ∎ ∎   ∎  

 
Route Recommendation Using Social Media. The rapid rise of 
social media applications generates huge-volume geo-spatial data 
of human activities, such as geo-tagged photos in Flickr and 
check-in records in Foursquare. Both geo-tagged photos and 
check-in data can reveal how people sequentially visit places in an 
area. Using geo-tagged photos, Y. Arase et al. [1] mine frequent 
route patterns for recommendation. A.-J. Cheng et al. [4] propose 
personalized travel recommendation based on personal profiles 
and visual attributes of geo-tagged photos. X. Lu et al. [7] and T. 
Kurashima et al. [6] construct routes based on user preference of 
must-go destinations, visiting time, and travel duration. Z. Yin et 
al. [18] mine and rank trajectory patterns from geo-tagged photos 
and diversify the ranking results. L.-Y. Wei et al. [12] infer the 
top-k routes traveling a given location sequence within a specified 
travel time from uncertain check-in data. Different from these 
work, we aim to perform knowledge discovery to construct the 
time-sensitive routes. 

3. METHODOLOGY 
3.1 Basic Definitions 
Definition 1: Location. A location li is a tuple, li = (xi, yi), where 
xi is the longitude, yi is the latitude. 

Definition 2: Route of Check-in Locations. A route is a 
sequence of locations with the corresponding time stamps, 
denoted by s, s=<(l1,t1), (l2,t2), ..., (ln,tn)>, where n is the number 
of locations. Throughout this paper, we focus on recommending 
single-day route, which implies tn-t1 is no more than 24 hours. 

Definition 3: Time-sensitive Query. We define the Time-
sensitive Query as Q = (lq, tq), where lq is the initial location of a 
user, and tq is the starting time for this trip. 

Definition 4: Time-sensitive Route. Given a time-sensitive query, 
we define the output Time-sensitive Route as a sequence of check-
in locations sr = <(l1,t1), (l2,t2), ..., (lk,tk)>, where l1 = lq, t1 = tq, and 
k is the number of locations in the route, which can be either 

specified  by  users or determined  using existing time constraint 
of the trip.  

In the following we will describe how to measure the quality of a 
time-sensitive trip route. Based on the proposed goodness 
definition, we are able to search and recommend better time-
sensitive routes given an initial time-sensitive query. 

3.2 Measuring the Quality of a Trip Route 
In order to construct a high-quality route for recommendation, we 
need to first design a proper metric to measure the quality of any 
given route.  We propose that a good trip route should consider 
the following four factors: (a) the popularity of a place, (b) the 
proper visiting time of a location, (c) the proper transit time 
traveling from one location to another, and (d) the visiting order 
of places in the route. We attempt to model these factors into the 
goodness function, and utilize such function to greedily selecting 
locations for the construction of the final trip route. 

3.2.1 Route Popularity 
A popular place, by definition, should be somewhere that attracts 
more visitors in general. If a route contains more popular places, it 
has higher potential to satisfy a user. The popularity of a place can 
be represented by the number of check-in actions performed at 
that place. In our goodness measure of a route, we first consider 
the popularity of places in the route. We define the relative 
popularity of a location li as: ݌݋݌(݈௜) = ܰ(݈௜)ܰ௠௔௫ 

where N(li) is the number of check-in of the location li, and Nmax is 
the maximum number of check-in among all the locations in the 
check-in data. Given a route s=<(l1,t1), (l2,t2), ..., (ln,tn)>, we 
define the popularity-based goodness function fpop(s) as: 

௣݂௢௣(ݏ) = ൭ෑ ௡(௜݈)݌݋݌
௜ୀଵ ൱ଵ௡

 

3.2.2 Proper Visiting Time 
The check-in data reveals that while some locations (e.g. park and 
movie theater) are popular regardless of the visiting time in a 
given day, other locations (e.g. stadium and beach) are more 
attractive during certain time period of the day. We propose to 
learn such time-dependent popularity of each location from the 
check-in data. We begin from defining the Temporal Visiting 
Distribution as the following.  

Definition 5: Temporal Visiting Distribution (TVD) of a 
Location. We define a Temporal Visiting Distribution for a 
location l, TVDl (ti), as the probability distribution of a randomly 
picked check-in record of l occurs at time ti. For example, in a 24-
hour span, TVD can be a legal probability distribution shown in 
Figure 3. TVD can easily be learned from check-in data, 
representing how popular a place is at a given time. 

Using TVD, we can determine whether it is proper to visit a place 
at a given time. For example, assuming we want to know how 
well a decision is to visit a place at 8:00AM, given the location’s 
TVD is represented as the green dotted line in Figure 3. To do that, 
we propose to first generate a thin Gaussian distribution ݐ)ܩ; ,ߤ  ଶ (e.g. standard deviation is 1). And then we can transform theߪ is 8 with a very small variance ߤ ଶ) whose mean valueߪ
original task into measuring the difference between the Gaussian 
distribution with the learnt TVD of such location. Here we use the 



symmetric Kullback-Leibler (KL) Divergence between ݐ)ܩ; ,ߤ  (ଶߪ
and ܸܶܦ௟(ݐ) to represent the fitness of the assignment. The formal 
mathematical definition of a fitness score between a place l and a 
time t can be defined as  ܦ௄௅(ݐ)ܩ; ,ߤ = ((ݐ)௟ܦܸܶ||(ଶߪ ෍ ;ݔ)ܩ ,ߤ ଶ)௫ߪ ݃݋݈ ;ݔ)ܩ ,ߤ (ݔ)௟ܦܸܶ(ଶߪ + ෍ ௫(ݔ)௟ܦܸܶ ݃݋݈ ;ݔ)ܩ(ݔ)௟ܦܸܶ ,ߤ  (ଶߪ

Conceivably, a smaller KL value indicates better match between 
the assignment and the distribution learned from data. 

Consequently, we formally define the temporal visiting goodness 
function fvisit(s) of a route s=<(l1,t1), (l2,t2), ..., (ln,tn)>, as a 
combination of the popularity of places together with the fitness 
of each location over time, in the following equation. 

௩݂௜௦௜௧(ݏ) = ൭ෑ ;ݐ)ܩ௄௅൫ܦ ,௜ݐ ൯(ݐ)௟೔ܦܸܶ||(ଶߪ × ௡(௜݈)݌݋݌1
௜ୀଵ ൱ିଵ௡

 

If the places in a route s are visited during the proper time period, 
the ௩݂௜௦௜௧(ݏ) value would become higher. 

 
Figure 3: Examples of the temporal visiting distribution (TVD) 
(the green dotted curve) for a certain location li, and the 
duration distribution (DD) (the blue dashed curve) between 
location li and lj. The black solid curve represents a normal 
distribution of a particular time assignment to measure the 
fitness values. 

3.2.3 Proper Transit Time Duration 
To schedule a good trip route, another key element to be 
considered is the visiting time of each place as well as the transit 
time from one place to another. Although the check-in data cannot 
explicitly tell us the above two kinds of information, we can 
simply treat the duration between two checked-in places as the 
summation of the visiting time of the first place plus the 
transportation time from the first to the second place. Such 
duration can further be utilized to evaluate the quality of a trip. 
Here we propose the Duration Distribution, as defined in the 
following, to model such ‘visiting plus transit time’ between 
places. 

Definition 6: Duration Distribution (DD) between Two 
Locations. We define the Duration Distribution (DD) between 
locations li and lj as the probability distribution over time duration 
t, ܦܦ௟೔௟ೕ(ݐ), which can be obtained from the following random 

experiment: randomly pick two consecutive check-in records (li, 
ti), (lj,tj) of a person, and calculate the probability that tj-ti=t.  

Again, we consider only one-day trip, and therefore treat the 
outcome space of DD between hours 0 through 24. For example, 
any legal probability distribution between hours 0 through 24 can 
be a DD (e.g. the blue dashed line in Figure 3).  

Similar to what we do to TVD, given a pair of locations li and lj 
together with an assignment of a given duration ∆ among them, 
we can model ∆ as a thin Gaussian distribution and compare it 
with ܦܦ௟೔௟ೕ(∆) using symmetric KL divergence. Consequently, for 
a route s=<(l1,t1), (l2,t2), ..., (ln,tn)>, it is possible to know how 
good the route is based on the durations between places by 
defining a goodness function of duration: 

ௗ݂௨௥௔௧௜௢௡(ݏ) = ൭ෑ ;ݐ)௄௅൫݃ܦ ∆௜,௜ାଵ; ,௜݈)ܦܶܮ||(ଶߪ ௝݈)൯௡ିଵ
௜ୀଵ ൱ ିଵ௡ିଵ

 

A route s with higher value of fduration(s) indicates such route can 
be visited with proper “transit+staying” time between places. 

Here we use Figure 4 as an illustration to summarize our idea of 
utilizing TVD and DD to measure the goodness of a trip route. 
Given a route s=<(l1,t1), (l2,t2), ..., (ln,tn)>. We use symmetric KL 
divergence to measure the visiting fitness of each location li by 
calculating a DKL(li) value between TVDli and a narrow Gaussian 
distribution. We also use KL divergence to measure the fitness of 
each transition li→lj and derive a DKL(Δij) between ܦܦ௟೔௟ೕ  and a 
thin Gaussian distribution. Eventually we compute the geometric 
mean of such DKL values to be the time-related route goodness. 

 
Figure 4: For a route s=<(l1,t1), (l2,t2), ..., (lk,tk)>, we compute 
2k-1 values of KL-divergence and then take the geometric 
mean of such values as the time-dependent goodness of a route. 

3.2.4 Proper Visiting Order 
Due to the characteristic of each place, there might be certain 
latent patterns about the order of the places to be visited. With the 
check-in data, we are able to learn such orders and exploit them to 
evaluate the quality of a route. For example, going to restaurant 
for dinner and then going back to hotel is better than the other 
way around. In this section, we propose to exploit the idea of the 
n-gram language model to measure the quality of the order of 
visits in a trip route. Using the check-in corpus, we can first 
generate the n-gram probabilities of locations. Then, given a route 
s=<(l1,t1), (l2,t2), ..., (ln,tn)>, we can compute its n-gram 



probability. We consider such n-gram probability as the goodness 
of visiting order. Technically, we use the average value of the 
probabilities of uni-gram, bi-gram, and tri-gram to estimate the 
goodness of orders. Note that the uni-gram probability is 
corresponding to the popularity-based route goodness. We can 
formally write the probabilities as follows. 

௨ܲ௡௜(ݏ) = ௣݂௢௣(ݏ) 

௕ܲ௜(ݏ) = (ܲ(݈ଵ)ܲ(݈ଶ|݈ଵ)ܲ(݈ଷ|݈ଶ) ⋯ ܲ(݈௡|݈௡ିଵ))ଵ௡ 

௧ܲ௥௜(ݏ) = (ܲ(݈ଵ)ܲ(݈ଶ|݈ଵ)ܲ(݈ଷ|݈ଵ݈ଶ) ⋯ ܲ(݈௡|݈௡ିଶ݈௡ିଵ))ଵ௡ 

Therefore, the goodness of visiting order of a route can be defined: 

௢݂௥ௗ௘௥(ݏ) = ൫ ௨ܲ௡௜(ݏ) + ௕ܲ௜(ݏ) + ௧ܲ௥௜(ݏ)൯3  

Higher forder(s) value represents better quality of route. Note that 
we utilize the add-one technique for smoothing. 

3.2.5 Final Goodness Function 
Here we integrate the goodness measures of the proper visiting 
time, the proper transit time duration, and the proper visiting order 
into the final goodness function f(s). The final goodness function 
contains two parts. The first part is the average value of the 
temporal visiting goodness fvisit(s) and the location transition 
goodness fduration(s). The second part is the visiting order goodness 
forder(s). We use a parameter α ∈ [0,1]  to devise a linear 
combination of such two parts. The final goodness function f(s) is 
defined in the following. ݂(ݏ) = α × ቆ ௩݂௜௦௜௧(ݏ) + ௗ݂௨௥௔௧௜௢௡(ݏ)2 ቇ + (1 − α) × ௢݂௥ௗ௘௥(ݏ) 

A route s with higher value of f(s) will be considered as a better 
route. Experiments in Section 5.3 suggest α ≈ 0.9  being more 
effective on measuring route quality. Such result exhibits the 
usefulness of the proposed time-sensitive route recommendation. 

Algorithm 1. TimeRoute algorithm 
Input: (a) ܴܤܦ݁ݐݑ݋: routes extracted from the check-in data; 
(b) ܳ = (݈௤,  ;௤): the time-sensitive location queryݐ
(c) ݇: the number of locations in the final route. 
Output: a time-sensitive route ݏ௥ = 〈(݈ଵ, ,(ଵݐ (݈ଶ, ,(ଶݐ … (݈௞, .〈(௞ݐ
௥ݏ :1 = 〈(݈ଵ = ݈௤, ଵݐ =  .〈(௤ݐ
2: for ݅ = 2 to ݇ do: 
௜ܥ     :3 = ሼ݈௖|݈௜ିଵ → ݈௖ in ܴܤܦ݁ݐݑ݋ሽ. 
4:     ௠݂௔௫ = 0. 
3:     for each ݈௖ ∈  :௜ doܥ
௧௠௣ݏ         :4 = ௥ݏ + 〈(݈௖,  .〈(௖ݐ
5:         Compute the goodness ݂(ݏ௧௠௣). 
6:         if ݂(ݏ௧௠௣) > ௠݂௔௫ do: 
௥ݏ             :7 =  .௧௠௣ݏ
8:             ௠݂௔௫ =  .(௧௠௣ݏ)݂
9: Return: ݏ௥. 

 
3.3 Greedy Algorithm TimeRoute 
In this section, we formally describe the problem of time-sensitive 
trip route recommendation based on the proposed goodness 
measure. And then we propose a greedy algorithm, TimeRoute, to 
construct the time-sensitive routes for a given query. 

Problem Definition. Given (a) the routes extracted in the check-
in data, (b) the time-sensitive location query Q = (lq, tq), and (c) 

the number k of locations in the final route, the goal is to construct 
a route sr=<(l1=lq,t1=tq), (l2,t2), ..., (lk,tk)> to optimize f(sr). 

To solve this problem, we devise a greedy algorithm, TimeRoute, 
to achieve the local-optimal solution. The basic idea is to select 
next place based on the goodness function f(s). Starting from the 
query location (line 1 in Algorithm 1), when selecting next 
location li (i >2), we first identify a set of candidate locations Ci 
by collecting locations which have been ever followed by li (line 
3). Then for each location in the candidate set ܥ௜, we select the 
candidate lc with the maximum goodness value given the existing 
route, and append it to the final route sr. (line 4-8). Such 
procedure will terminate when k spots are identified in the route. 

4. EXPERIMENTS 
4.1 Dataset and Data Analysis 
We utilize the Gowalla dataset [5] which has been exploited for 
location-based analysis in several places, such as [8] and [9]. The 
Gowalla dataset contains 6,442,890 check-in records from Feb. 
2009 to Oct. 2010. The total number of check-in locations is 
1,280,969. Considering a route as a sequence of check-in 
locations of a user within a day, we construct the route database 
RouteDB containing 2,605,867 routes, among them 1,469,130 has 
only length one and are not used. The average route length is 4.09, 
without considering length-1 routes. Figure 5 shows the 
distribution of the route length, which is highly-skew and heavily-
tailed. Figure 5 also shows that people usually do not prefer 
visiting too many locations in a day, but with some exceptions. 
Figure 6 shows the distribution of the time duration between two 
places. It indicates that people consider places closer to where 
they are when they are planning the next destination. 

 
Figure 5: Distribution of route length in RouteDB. 

 
Figure 6: Distributions of time duration in RouteDB. 

Table 2: The statistics of RouteDB and the three subsets. 

 Total Number 
of Check-ins

Avg. Route  
Length 

Variance of 
Route Length

Distinct Check-
in Locations

RouteDB 6,442,890 4.09 48.04 1,280,969 
New York  103,174 4.46 71.24 14,941 
San Francisco 187,568 4.09 58.36 15,406 
Paris  14,224 4.45 75.73 3,472 
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From RouteDB, we extract three subsets of the check-in data, 
which corresponds to cities of New York, San Francisco, and 
Paris. Some statistics are reported in Table 2. We can find the 
average route lengths and their variance in New York and Paris 
are significantly longer than average. Figure 7 shows the 
distribution of route length in the three subsets of check-in data 
while Figure 8 shows the distribution of the time duration.  

 
Figure 7: Distribution of route length for three cities (hour). 

 
Figure 8: Distribution of time duration for three cities (hour). 

4.2 Evaluation Plan 
In this section, we introduce two evaluation plans for verifying the 
performance of our proposed method using the data in these three 
cites, and compare the results with several baseline methods. 

Experiment 1: Pair-wise Time-sensitive Route Detection. In 
this experiment, we would like to verify whether our goodness 
model can rank the existing routes higher than the non-existing 
ones. We first randomly choose one thousand real routes from the 
check-in data. Note that the time stamp is associated with each 
location l. For each route, we replace a portion of the locations 
with other locations in the city to generate a pseudo route. To 
make the task non-trivial, we adopt a replacing strategy to replace 
a location with a ‘plausible’ one instead of a randomly selected 
one. That is, to replace a location at position i of a route, we only 
choose from candidate locations that once appear right after the 
location at position i-1 (e.g. the bigram probability of them is non-
zero) instead of simply picking a random location. Furthermore, 
after the replacement, we want to make sure the generated pseudo 
routes do not exist in the database. That is, there is no such route 
in the database of the same location sequences together with the 
same associated time stamps. As can be seen in Figure 11 to 13, 
the amount of replaced locations varies from 10% to 50% of the 
total number in a route. We then use our fitness model to examine 
each pair of the existing route and its pseudo route, and record 
how frequently our method ranks the correct one higher. Finally, 
we report the accuracy of our method and compare it with the 
baseline results. The accuracy is calculated as the number of 

successfully detected routes divided by the number of pair 
instances. 

Similarly, we can generate another kind of pseudo route by 
perturbing the time stamps of certain locations in an existing route. 
For example, given an existing route s=<(l1,t1), (l2,t2),… (li-1, ti-1), 
(li,ti), (li+1,ti+1),..., (ln,tn)>, we change ti to a different time tj, where 
ti-1 < tj < ti+1. We expect a proper fitness function to assign lower 
score to such pseudo routes.  

Experiment 2: Time-sensitive Cloze Test of Locations in 
Routes. Given some real trip routes with time stamp in each 
location, by removing some middle locations, the goal is to test 
whether a method can successfully identify the removed location. 
Higher hit rate indicates better quality of recommendation. 

Baseline Approaches. To evaluate the effectiveness of our 
method, we design the following four baseline methods for both 
experiment 1 and experiment 2. 

 Distance-based Approach. This method chooses the closest 
location to the current spot as the next spot to move to. It rates 
a route using the goodness function ௗ݂(ݏ) = (∏ ଵ஽(௟೔,௟೔షభ)௡௜ୀଵ )భ౤, 
where ܦ(݈௜, ݈௜ିଵ)  is the geographical distance between two 
consecutive locations. 

 Popular-based Approach. This method chooses the most 
popular spot of a given time in that city as the next spot to 
move to.  It rates the path using the goodness function ௣݂௢௣(ݏ) 
as have been defined previously in Section 3.2.1. 

 Forward Heuristic Approach. The forward heuristic chooses 
a location li that possesses the largest bi-gram probability with 
the previous location ܲ(݈௜|݈௜ିଵ) as the next location to move 
to. Its goodness function is ௙݂௢௥௪(ݏ) = ௕ܲ௜(ݏ) , as defined 
previously in section 3.2.4. 

 Backward Heuristic Approach. The backward heuristic 
chooses a location li that possesses the largest bi-gram 
probability with the next location ܲ(݈௜|݈௜ାଵ)  as the next 
location to move to. The fitness function can be described as ௕݂௔௖௞௪(ݏ) = (ܲ(݈ଵ|݈ଶ)ܲ(݈ଶ|݈ଷ) ⋯ ܲ(݈௡ିଵ|݈௡))భ೙. 

4.3 Experimental Results 
Section 4.3.1 shows the results of Experiment 1 and Section 4.3.2 
illustrates the outcome of Experiment 2. For both experiments, we 
implement four baseline methods to compare with our proposed 
TimeRoute method. 

4.3.1 Pairwise Time-Sensitive Route Detection  
In experiment 1, we first vary the number of replaced locations 
from 10% to 50% and report the accuracy of different methods. 
Figure 9 contains the results for New York City. Our fitness 
model can achieve around 97% accuracy in distinguishing the real 
routes from replaced ones. The accuracy scores of the forward and 
backward heuristics vary from 89% to 93%. The popular-based 
and distance-based methods do not do a good job here. Similar 
trend happens in Paris (Figure 11), but for San Francisco (Figure 
10), our method shows much higher accuracy comparing with 
others. The results are not surprising because our method does 
consider the location preference over time and location order.  

Figure 12 shows the results of creating pseudo paths by shifting 
time stamp for some locations. Again we vary the ratio of change 
from 10% to 50%. The results show that our model can almost 
perfectly detect such change, better than the popularity-based 
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method (around 15% accuracy). The other competitors do not 
have the capability to distinguish such pairs because they do not 
consider time information during route generation, and therefore 
the fitness scores are identical for such pair of routes. 

 
Figure 9: Accuracy by varying the number of replaced 
locations in New York. 

 
Figure 10: Accuracy by varying the number of replaced 
locations in San Francisco. 

 
Figure 11: Accuracy by varying the number of replaced 
locations in Paris. 

 
Figure 12: Accuracy by varying the number of replaced time 
stamp for our method in the three cities. 

4.3.2 Time-Sensitive Cloze Test in Routes 
In cloze experiment of locations in routes, we calculate hit rate by 
varying the position of missing location. Generally speaking, the 
preceding position of missing location obtains lower hit rate than 
latter one because the system can generally do better when more 
information is revealed.  
As reported in Figure 13-15, the hit rates of the four baseline 
models  are often lower than 10% in these three cities, while we 
can achieve 15%~40% hit rate. 

 
Figure 13: Accuracy by varying the position of missing 
location in New York. 

 
Figure 14: Accuracy by varying the position of missing 
location in San Francisco. 

 
Figure 15: Accuracy by varying the position of missing 
location in Paris.  

 
Figure 16: The impact of α on the time-sensitive cloze test for 
the three cities. 
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Impact of α: Next, we examine how sensitive our model is to the 
parameter α, ranging from 0 to 1. We use the hit rate of cloze test 
and the results are shown in Figure 16. In New York and Paris, 
the best α value is around 0.9. That is, much more weight is 
assigned to time-sensitive models than the visiting order on cloze 
test task. In San Francisco City, α performs well while varying 
from 0.5 to 0.9.  

5. SYSTEM DEMONSTRATION 
Using our model, we develop an online time-sensitive trip route 
recommendation system, called TripRouter. The system snapshot 
is shown in Figure 17. Users first determine the city they want to 
travel, and then select one location as their starting location, 
together with the starting time. TripRouter also allows users to 
specify their estimated travel time duration and the desired 
number of locations of such trip. We list the three major functions 
of TripRouter as below: (a) time-sensitive route recommendation, 
(b) displaying diverse information of locations and routes such as 
location attributes, route statistics, and some geo-tagged photos 
obtained from Flickr, and (c) recommending the transportation 
mode by querying Google Map API according to mined transit 
time duration. 

Below we show three recommended routes querying from Central 
Park at different starting time, where the route length k is set as 4.  

 Central Park at 9PM: Central Park (9AM) → New York 
City Center (11AM) → 5th Ave (5PM) → FAO Schwarz 
restaurant (7PM). 

 Central Park at 2PM: Central Park (2PM) → The Museum 
of Modern Art (3PM) → Bergdorf Goodman (4PM) → Lee's 
art shop (7PM). 

 Central Park at 5PM: Central Park (5PM) → 5th Ave (6PM) 
→ Pulitzer Fountain (7PM)  → Four season hotel (8PM). 

The above examples tell us that our TripRouter system is able to 
recommend the best route based on the specified time and location. 

 
Figure 17: The system interface of TripRouter. 

6. CONCLUSION 
This paper tries to address an important research question: how 
much the check-in data can provide in terms of designing a 
suitable trip route. The solution provided by us seems to be very 
encouraging as it shows that one can indeed squeeze a lot of 
knowledge from check-in data to design a time-sensitive trip route 
that has higher potential of satisfying the users. Note that our 
approach is mostly data-driven, which assures diverse results can 
be learned from different cities in which visiting patterns may 

vary with different culture and characteristics of the city. Ongoing 
work focuses on two directions: using maximum likelihood 
estimator to accurately model the visiting time duration of a place 
and transportation time between places, and further exploit the 
collaborative filtering approaches to take advantage of the user 
and location similarities. 
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