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ABSTRACT
The confluence of several developments has created an op-
portune moment for energy system modernization. In the
past decade, smart grids have attracted many research ac-
tivities in different domains. To realize the next generation
of smart grids, we must have a comprehensive understanding
of interdependent networks and processes. Next-generation
energy systems networks cannot be effectively designed, an-
alyzed, and controlled in isolation from the social, economic,
sensing, and control contexts in which they operate. In this
paper, we develop coordinated clustering techniques to work
with network models of urban environments to aid in place-
ment of charging stations for an electrical vehicle deploy-
ment scenario. We demonstrate the multiple factors that
can be simultaneously leveraged in our framework in order
to achieve practical urban deployment. Our ultimate goal
is to help realize sustainable energy system management in
urban electrical infrastructure by modeling and analyzing
networks of interactions between electric systems and urban
populations.

Categories and Subject Descriptors
H.2.8 [Database Management]: [Database Applications
- Data mining - Spatial databases and GIS]; I.5.3 [Pattern
Recognition]: [Clustering]; I.2.6 [Artificial Intelligence]:
[Learning]

General Terms
Experimentation, Algorithms, Design, Measurement

Keywords
Data mining, clustering, coordinated clustering, smart grids,
electric vehicles, synthetic populations.

1. INTRODUCTION
The impending decline of fossil fuels is rapidly usher-

ing an emphasis from traditional methods of energy pro-
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duction, distribution, and consumption to sustainable ap-
proaches [11]. The advent of electric vehicles (EVs) is one
such promising shift but to prepare for a world laden with
EVs we must revisit smart grid design and operation.

One of the key issues in ushering in EVs is the design and
placement of charging infrastructure to support their opera-
tion. Issues to be taken into account include [11]: (i) predic-
tion of EV charging needs based on their owners’ activities;
(ii) prediction of EV charging demands at different locations
in the city, and available charge of EV batteries; (iii) design
of distributed mechanisms that manage the movements of
EVs to different charging stations; and (iv) optimizing the
charging cycles of EVs to satisfy users’ requirements, while
maximizing vehicle-to-grid profits.

In this paper, we address the charging infrastructure de-
sign problem by adopting an urban computing approach.
Urban computing, [8], is an emerging area which aims to
foster human life in urban environments through the meth-
ods of computational science. It is focused on understanding
the concepts behind events and phenomena spanning urban
areas using available data sources, such as people movements
and traffic flows.

Organizing relevant data sources to solve compelling ur-
ban computing scenarios is itself an important research is-
sue. Here, we use network datasets organized from syn-
thetic population studies, originally designed for epidemio-
logical scenarios, to explore the EV charging station place-
ment problem. The dataset was organized for the SIAM
Data Mining 2006 Workshop on Pandemic Preparedness [3]
and models activities of an urban population in the city
of Portland, Oregon. The supplied dataset [1] tracks a set
of synthetic individuals in Portland and, for each of them,
provides a small number of demographic attributes (age, in-
come, work status, household structure) and daily activi-
ties representing a normative day (including places visited
and times). The city itself is modeled as a set of aggre-
gated activity locations, two per roadway link. A collec-
tion of interoperable simulations—modeling urban infras-
tructure, people activities, route plans, traffic, and popu-
lation dynamics—mimic the time-dependent interactions of
every individual in a regional area. This form of ‘individ-
ual modeling’ provides a bottom-up approach mirroring the
contact structure of individuals and is naturally suited for
formulating and studying the effect of intervention policies
and considering ‘what-if’ scenarios.

In more detail, we characterize this dataset with a view
toward understanding the behavior of EV owners and to
determine which locations are most appropriate to install
charging stations. We develop a coordinated clustering for-
mulation to identify a set of locations that can be considered
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Figure 1: Overview of our methodology.

as the best candidates for charging stations.

2. RELATED WORK
We survey related work in two categories: mining GPS

datasets and smart grid analytics. GPS datasets have emerged
as a popular source for modeling and mining in urban com-
puting contexts. They have been used to extract information
about roads, traffic, buildings, and people behaviors [20],
[21], [9]. The range of applications is quite varied as well,
from anomaly detection [9] to taxi recommender systems
[21] that aim to maximize taxi-driver profits and minimize
passengers’ waiting times. The notion of location-aware rec-
ommender systems is a key topic enabled by the increasing
availability of GPS data, e.g., recommending points of inter-
est to tourists [22]. We survey these works in greater detail
next.
In [20] Yuan et al. proposed a framework to discover re-

gions of different functionalities based on people movements.
They adapt algorithms from the topic modeling literature,
by mapping a region as a document and a function as a topic
so that human movements become ‘words’ in this model.
The focus of [21] and [19] is different: here, GPS data is
used to mine the fastest driving routes for taxi drivers. In
[21], Yuan et al. mined smart driving direction from GPS
trajectory of taxis, and in [19] they consider driver behavior
using other metrics such as driving strategies and weather
conditions.
Clusters of moving objects in a noisy stadium environ-

ment are detected using the DBSCAN algorithm [5] in [12].
This task supports monitoring a stadium for groups of indi-
viduals that exhibit concerted behavior. In [14], the authors
estimate distributions of travel-time from GPS data for use
in routing and route-recommendation.

Our work here is different from the above works in that
we use a synthetic population dataset and routes are based
on people’s travel habits that are mapped using geograph-
ical coordinates and road infrastructures. We are also not
per se interested in mining the routes but to use the route
information to better support charging infrastructure place-
ment.

Smart grid analytics has emerged as a promising approach
to usher in the promise of smart grid benefits. Researchers
have begun to explore the problems concomitant with EV
penetration in urban areas, especially unacceptable increases
in electricity consumption [11]. A promising way to ap-
proach this problem is to understand the interactions be-
tween grid infrastructure and urban populations. While
smart grids and EVs have been studied previously from tech-
nical and AI point of views, there is a limited number of re-
search on smart grids from an urban computing perspective.

In this space, agent-based systems have been proposed to
simulate city behavior in terms of agents with a view to-
ward designing decentralized systems and maximizing grid
profits as well as individuals’ profit [11]. In [2] information
from smart meters is used for forecasting energy consump-
tion patterns in a university campus micro-grid, whose re-



sults can be used for future energy planning. In our work,
we directly study the problem of charging station placement
using coordinated clustering algorithms.

3. METHODOLOGY
Our overall methodology is given in Figure 1. We de-

scribe each of the steps in our approach next. At a basic
level, we integrate two basic types of data to formulate our
data mining scenario. The first data, as described earlier, is
a synthetic population of people and activities representing
the city of Portland and the second data set is electricity
consumption profile of each location. Notice that the pro-
posed methodology is a generic approach and can be applied
to real-world data and the fact that we use synthetic data
here is only due to our lack of access to real-world data to
test our proposed methodology.
The synthetic dataset contains 243,423 locations of which

1,779 are selected as belonging to the downtown area and
of further interest for our purposes. Each location is repre-
sented by geographical [x,y] coordinate adopting the univer-
sal transverse mercator coordinate system (UTM) [1]. There
are a total of 1,615,860 people in the entire city. Information
about them is organized into households, and for each house-
hold we have the details of number of people in the house-
hold, and the ages, genders, and incomes of each household
member. Each person has a unique ID.
We have some information about each person including

age, gender, income, and his/her house ID. The typical
movement patterns of people in a typical day (27 hour pe-
riod) are also available. A total of 8,922,359 movements are
provided. In addition to starting and ending locations for
people’s movements, this dataset also provides the purpose of
the movement, categorized into nine types: {Home, Work,
Shop, Visit, Social/Recreational, Serve Passenger, School,
College, and Other}. A given person moves from one lo-
cation to another location at a specific time for a specific
purpose (from the nine mentioned above) and stays in that
location for a specified period of time. These movement
types can thus be utilized for further detailed studies. We
also have the ability to map the locations using Google Maps
and calculate distances of traveling between locations.
To this dataset, we augment information about electricity

consumption of each location and simulate the effects of EVs
on its electricity demand profile. Since actual electricity
consumption data for each location is not available until all
the consumers have smart meters installed and in operation
for some time, we approximate electricity load profile using
the existing data (organized by NEC Labs, America).
It is clear that the electricity load of each location greatly

depends on the functionality of that location and hence our
first approach is to utilize an information bottleneck type ap-
proach [17] to characterize locations. Our aim is to cluster
locations based on geographical proximity but such that the
resulting clusters are highly informative of location function.
This is thus our first application of a coordinated clustering
formulation, and falls in the scope of clustering with side
information. Next, we integrate the electricity load infor-
mation to characterize usage patterns across clusters with a
view toward helping identifying locations to place charging
infrastructure.
Our next step is to more accurately characterize usage

patterns of likely EV owners. A specific set of clusters from
the previous pipeline is used and characterized using high-
income attributes as the likely owners of EVs. We then
bring in additional factors of locations that influence EV
charger placement, e.g., residentiality ratio, load on the lo-

cation, charging needs, and typical duration of stay in the
location. Some of these factors (such as distance traveled)
are in turn determined by mapping the home-to-work and
work-to-home trajectories of EV owners and their stop loca-
tions. We use a coordinated clustering formulation to simul-
taneously cluster three datasets in a relational setting. Our
coordinated clustering framework builds upon our previous
work [7] which generalizes relational clustering between two
non-homogeneous datasets. This problem is a bit non-trivial
since one of the relations is a many-to-many relation and an-
other is a one-to-one relation. The final set of coordinated
clusters are then used as interpretation and as a guide to
charger placement.

After locating the homes of EV owners, we can determine
their trajectories and their stop locations. Then, based on
this data, we can estimate their travel distances. This helps
us to estimate charging requirements of EVs, during a day.
With the help of the distribution of electricity load in the
city and charging needs of EVs, we determine proper loca-
tions for installing charging stations in city with respect to
specific parameters.

4. ALGORITHMS
As described above, our methodology comprises the fol-

lowing four major steps to determine candidate locations for
charging stations: (i) discovering locations’ functionalities
using an information bottleneck method; (ii) electricity load
estimation and integrating with results of (i); (iii) studying
the behavior of EV owners and calculating specific param-
eters relevant to their usage patterns; and (iv) candidate
selection for charging stations using coordinated clustering
techniques. Each of these steps are detailed next.

4.1 Discovering Location Functionalities
We use information bottleneck methods to characterize

locations with a view toward defining the specific purpose
of the location. The idea of information bottleneck methods
is to cluster data points in a space (here, geography) such
that the resulting clusters are highly informative of another
random variable (here, function). We focus on 1779 loca-
tions in the downtown Portland area whose geographies are
defined by (x,y) coordinates and whose functions are given
by a 9-length profile vector P = [p1, p2, ..., p9], where pi is
the number of travels incident on that location for the ith

purpose (recall the different purposes introduced in the pre-
vious section).

Figure 2 (a) describes the results of a clustering based on
euclidean metrics between locations whose results are ag-
gregated in Figure 2 (b) into a revised clustering that also
preserves information about activities of people at these lo-
cations. The population distribution of these clusters over
time is shown in Figure 2 (c) which reveals characteristic
changes of crowds around peak hours and lunch times. One
final analysis that will be useful is to evaluate each of the
discovered clusters with respect to what we term as the res-
identiality ratio. The residentiality ratio for a location is
the percentage of people who use that location as a home
w.r.t. all people who visit that location (in downtown Port-
land, many locations have combined home-work profiles, and
hence the calculation of residentiality ratio becomes rele-
vant). Figure 2 (d) reveals one cluster with relatively high
residentiality ratio among three others.

4.2 Electricity Load Estimation
In order to uncover patterns in electricity load distribu-

tions, we now characterize each of the discovered clusters us-
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Figure 2: (a) Clustering downtown locations based on geographic coordinates. (b) Clustering over the
previous clustering with people’s activities as side-information. (c) Dynamic population of the four discovered
clusters over a typical day. (d) Computed residentiality ratio revealing one primary residential cluster.
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Figure 3: (a) Electricity usage in residential areas. (b) Electricity usage in small office areas. (c) Electricity
usage in large office areas. (d) Electricity usage in college areas.

ing typical profiles gathered from public data sources such as
the California End User Survey (CEUS) and other sources of
usage information. Figure 3 presents daily electricity con-
sumption profile across large offices, small offices, residential
buildings, and colleges for one year. By clustering this data
across the year, we can discern important patterns associ-
ated with different types of consumption during the year.
For instance, in the college setting, we can discern three
types of consumption patterns: holiday breaks (including
summer), weekdays, and weekends.
Our next step is to compute the electricity load leveraging

the above patterns but w.r.t. our network model of the ur-
ban environment. Recall that our network model is based on
population dynamics but typical electricity load sources are
based on square footage calculations. We map these factors
using well-accepted measures, i.e., by considering the aver-
age square footage occupied by one person in a residential
area as 600sft [4], small office as 200sft [18], large office as
200sft [18], college as 50sft [15], retail area as 50sft [15], and
other classes as 200. Further, the minimum population for
an office to be considered as a large office is set to 300.
Based on some exploratory data analysis, we selected a

weekday in the past year (specifically, 18th March, 2011)
and used the electricity load data of this day to map to the
network model. Consider that in a specific hour, N people
go to location l in which ni of them come for the purpose
of pi while

∑9
i=1 ni = N . Then the electricity load for that

location is computed as

El =

9∑
i=1

niApiEpi

1000
, (1)

where A is the average square footage per person and Ep

is electricity consumption of building type p. Observe that
a single location can serve multiple purposes and the above
equation marginalizes across all uses. For example, if there
are 360 people in one location, and 10 of them are in the
building for the purpose of home and 350 are for the purpose
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Figure 4: Electricity loads for four characterized lo-
cation clusters.

of office, the total electricity consumption of building would
be calculated as (10 × 600 × Ephome/1000) + (350 × 200 ×
Epoffice/1000) where 600 and 200 are average square footage
per person for the different categories, as mentioned earlier.
The above methodology enables us to characterize electricity
loads in terms of the four location clusters characterized in
the previous step (see Figure 4).

4.3 Characterizing EV users
Currently only a small percentage of people use EVs, and

this figure is correlated with high income. Based on [10]
and [13], only 6 percent of people in the US have income
more than 170,000 USD. In our synthetic dataset, 329,218
people make an income greater than 60,000 USD. To explore
a hypothetical scenario, we posed the question:

What if 6.31% of 329,218 people from Portland
bought EVs? What charging infrastructure is
necessary to support this scenario?

Based on our modeling of these people’s movements and
patterns, we aim to identify the best locations for charging
stations.



Figure 5 (a) gives the distribution of EV users in our
potential scenario. We can notice several clusters around
high-income neighborhoods. With the aid of Google Maps,
we can estimate the amount of time an EV owner drives and
how far he/she travels on a regular week day. Figure 5 (b)
gives the distribution of distances traveled by these users.
Assuming EV owners charge their cars at their respective

homes, our goal is now to identify candidate charging lo-
cations during other times. Let us assume that the EV of
a person P consumes EC

P KWh energy per 100 Km. Also,
assume that the battery of this vehicle can save ES

P KWh.
Then the estimated total distance that P can travel with his
vehicle before he needs to charge its battery is

∆P =
100ES

P

EC
P

, (2)

As an example, for the Chevrolet Volt [6], with ES
P = 16

KWh and EC
P = 22.4 KWh per 100 Km, the EV can travel

71.43 Km before it needs to be recharged.
If the total traveling distance of P in a day is DP then

the number of times that P needs to charge his vehicle is
NP and is determined as follows:

NP =

⌊
DP

∆P

⌋
, (3)

As an example, if we assume that an EV’s battery can save
16 KWh energy [6], an electric car can go for 71.43 Km
before it needs to be charged [16].
Due to the long duration of charging process, we have a

constraint to install charging stations only in destinations
that people visit. Assume that VL is the set of EV owners
who visited location L during the day. Then |VL| is the total
number of EV owners who have visited location L. However,
there is a greater chance for a location to be a charging
station if people with higher charge needs visit that location.
Hence, the charge needs of location L is determined based
on equation 4.

WL =
∑

P∈VL

NP , (4)

Figure 5 (c) depicts the histogram of how many times an EV
needs to be charged. Also, Figure 5 (d) depicts the charge
needs of downtown locations.
On the other hand, each person visit a location for a spe-

cific period of time which here we call it duration of stay.
In order to put a charging station in one location, we force
people to stay for a specific period of time because charging
an electric car will take couple of hours. Hence, in locations
where people stay longer such as working locations have po-
tential to be charging stations compared to those locations
that people stay in them for example half an hour. We use
average duration of stay of people in each location as a fea-
ture for that location.
It should be noted that the right choice of EV charging

stations depends on regular electricity load of each area, the
amount of time that each person spends on this location,
and number of times that EV owners need to charge their
vehicles. Hence, based on EV owners traveling route dur-
ing peak and off-peak hours, we can come up with a set of
candidate regions for charging stations.

4.4 Charging Station Placement using Coor-
dinated Clustering

Since charging EVs is not an instantaneous process, it is
helpful to place charging stations at those locations where

people visit for an extended period of time. The average
duration of stay of people in each location is an important
feature in this regard. The right choice of EV charging sta-
tions thus depends on the regular electricity load of the area,
the amount of time that people spend in the location, and
the number of times that EV owners need to charge their ve-
hicles. Hence, based on EV owners’ traveling routes during
peak and off-peak hours, we can arrive at a set of candidate
regions for charging stations.

Let X be the income dataset and Y be the locations
datasets. X = {xs}, s = 1, . . . , nx is the set of vectors
in dataset X , where each vector is of dimension lx, i.e.,
xs ∈ Rlx . Currently, our income dataset contains only
one dimension. Similarly, locations dataset Y = {yt}, t =
1, . . . , ny,yt ∈ Rly . Locations are denoted by two dimen-
sions (latitude and longitude) in our current database. The
many-to-many relationships between X and Y are repre-
sented by a nx × ny binary matrix B, where B(s, t) = 1 if
xs is related to yt, else B(s, t) = 0. Let C(x) and C(y) be
the cluster indices, i.e., indicator random variables, corre-
sponding to the income dataset X and location dataset Y
and let kx and ky be the corresponding number of clusters.
Thus, C(x) takes values in {1, . . . , kx} and C(y) takes values
in {1, . . . , ky}.

Let mi,X be the prototype vector for cluster i in income
dataset X (similarly mj,Y ). These are the variables we wish

to estimate/optimize for. Let v
(xs)
i (likewise v

(yt)
j ) be the

cluster membership indicator variables, i.e., the probability
that income data sample xs is assigned to cluster i in the

income dataset X (resp). Thus,
∑rx

i=1 v
(xs)
i =

∑ry

j=1 v
(yt)
j =

1. The traditional k-means hard assignment is given by:

v
(xs)
i =

{
1 if ||xs −mi,X || ≤ ||xs −mi′,X ||, i′ = 1 . . . kx,
0 otherwise.

(Likewise for v
(yt)
j .) Ideally, we would like a continuous

function that tracks these hard assignments to a high degree
of accuracy. Such a continuous function for the the cluster
membership can be defined as follows.

v
(xs)
i =

exp(− ρ
D
||xs −mi,X ||2)∑kx

i′=1 exp(−
ρ
D
||xs −mi′,X ||2)

, (5)

where ρ is a user-settable parameter and D is the pointset
diameter which depends on the data.

An analogous equation holds for v
(yt)
j .

We prepare a kx×ky contingency table to capture the re-
lationships between entries in clusters across income dataset
X and locations dataset Y. To construct this contingency
table, we simply iterate over every combination of data enti-
ties from X and Y, determine whether they have a relation-
ship, and suitably increment the appropriate entry in the
contingency table:

wij =

nx∑
s=1

ny∑
t=1

B(s, t)v
(xs)
i v

(yt)
j . (6)

We also define

wi. =

ky∑
j=1

wij , w.j =

kx∑
i=1

wij ,

where wi. and w.j are the row-wise (income cluster-wise)
and column-wise (locations cluster-wise) counts of the cells
of the contingency table respectively.

We also define the row-wise random variables αi, i = 1, . . . , kx
and column-wise random variables βj , j = 1, . . . , ky with
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Figure 5: (a) EV household locations. (b) Distribution of distances people travel in their EVs. (c) Charging
needs for EVs. (d) Number of charging needs (more than zero) per location.

Figure 6: Coordinated clustering schema.

probability distributions as follows

p(αi = j) = p(C(y) = j|C(x) = i) =
wij

wi.
. (7)

p(βj = i) = p(C(x) = i|C(y) = j) =
wij

w.j
. (8)

The row-wise distributions represent the conditional distri-
butions of the clusters in dataset in X given the clusters in
Y; the column-wise distributions are also interpreted analo-
gously.
After we construct the contingency table, we must evalu-

ate it to see if it reflects a coordinated clustering. In coordi-
nated clustering, we expect that the contingency table will
be nonuniform. We can expect that the contingency table
will be an identity matrix when kx = ky. To keep the formu-
lation and the implementation generic for different number
of clusters in two dataset, we need to optimize the variables
(cluster prototypes) in such a way that the contingency table
is far from its uniform case. For this purpose, we compare
the income cluster (row-wise) and locations cluster (column-
wise) distributions from the contingency table entries to the
uniform distribution.
We use KL-divergences to define our unified objective

function:

F =
1

kx

kx∑
i=1

DKL

(
αi||U

(
1

ky

))
+

1

ky

ky∑
j=1

DKL

(
βj ||U

(
1

kx

))
,

(9)

where DKL is the KL-divergence between two distributions
and U indicates the uniform distribution over a row or a
column.
Note that the row-wise distributions take values over the

columns 1, . . . , ky and the column-wise distributions take
values over the rows 1, . . . , kx. Hence the reference distribu-
tion for row-wise variables is over the columns, and vice

versa. Also, observe that the row-wise and column-wise
KL-divergences are averaged to form F . This is to miti-
gate the effect of lopsided contingency tables (kx ≫ ky or
ky ≫ kx) wherein it is possible to optimize F by focusing
on the “longer” dimension without really ensuring that the
other dimension’s projections are close to uniform.

Maximizing F leads to rows (income clusters) and columns
(locations clusters) in the contingency table that are far from
the uniform distribution as required by the coordinated clus-
ters. It is equivalent to minimizing −F .

The coordinated clustering formulation presented thus far
can have some degenerate solutions where large number of
data points in both datasets are assigned to the same cluster
leading to a huge overlap of relationships. To mitigate this,
we add two more terms with the objective function.

FR = −F +DKL

(
p (α) ||U

(
1

kx

))
+DKL

(
p (β) ||U

(
1

ky

))
.

(10)

It should be noted that function FR is expected to be
minimized. This is the reason why −F is used in the formula
for FR.

Finally, we describe how to integrate three datasets: in-
come, location, and station properties. Let X , Y, and Z be
these three datasets, respectively. There are two sets of re-
lationships, existing between X , Y, and Y, Z. The objective
function for these three datasets and two sets of relationships
is defined as follows.

FXYZ = FR (X ,Y) + FR (Y,Z) . (11)

Here FR (X ,Y) refers to the objective function described in
Eq. 10 with the income dataset X , and locations dataset Y.
FR (Y,Z) refers to the same objective function but input
datasets are locations Y, and station property Z. In all
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Figure 7: Results of coordinated clustering (3 clusters) when viewed through the attributes of each domain.
(a) Clusters based on income. (b) Clusters based on geographical location. (c) Clusters based on EV charging
station attributes.
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Figure 8: Profiles of clusters obtained from coordinated clustering w.r.t. each of the three domains. (a)
Income attributes. (b) Location attributes. (c) EV charging station attributions.
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Figure 9: Detailed inspection of clusters for their suitability for locating EV charging stations. (a) Distribution
of electricity loads. (b) Distribution of charging needs. (c) Distribution of duration of stay. An ideal cluster
should have (low, high, high) values respectively, suggesting that cluster 2 is best suited.

our experiments, we minimize FXYZ to apply coordinated
clustering between income, locations, and station property
datasets.

5. RESULTS
Figure 6 describes the coordinated clustering scenario in-

volving: yearly income, a location’s geographical coordi-
nates, and the location’s features.
We begin with some preliminary observations about our

data. Figure 10 depicts the distribution of people based on
their income, indicating that a significant number of people
have high income, leading to a large number of EV users. We
experimented with coordinated clustering settings involving

many settings. Figure 7 depicts three clusters of locations
based on each of the attribute sets in our schema. Note
that because the clusters are mapped onto (x,y) geographical
locations, locality is apparent only in Figure 7 (b).

Profiles of these clusters are described in detail in Fig-
ure 8. Of particular interest to us is the view from the
perspective of EV attributes, i.e., Figure 8 (c). Details
of these clusters are explored in greater detail in Table. 1.
Ideal locations for charging stations for EVs must have a
relatively low current electricity load (to accommodate the
installation of charging infrastructure), high charging needs
(population profiles), and high staying duration. As can be
seen from Table. 1 cluster 2 fits these requirements. Greater
insights into the three clusters from the viewpoint of these
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Table 1: Characteristics of Clusters in Third Table
(Location’s Features)

Cluster Elec. Load Charging Need Stay Duration
1 High Low Low
2 Low High High
3 Low Low Low

three attributes is shown in Figure 9 supporting the choice
of locations in cluster 2 as the right candidates for locating
charging stations.

6. DISCUSSION
Electrical vehicles are only going to become more popular

in the near future. We have demonstrated a systematic data
mining methodology that can be used to identify locations
for placing charging infrastructure as EV needs grow. The
results presented here can be generalized to a temporal sce-
nario where we accommodate a growing EV population and
to design charging infrastructure to accommodate additional
scenarios of smart grid usage and design.
The methodology presented in this paper only incorpo-

rates demand data from the electricity infrastructure and fu-
ture work would incorporate information from the electricity
supply side too. Information such loading level of electric-
ity feeders and remaining excess capacity of feeders for EV
charging stations can be integrated in presented method-
ology to improve the placement of EV charging stations.
Moreover, this methodology can be used to identify loca-
tions of interest for deployment of stationary energy storages
to more efficiently utilize existing electricity infrastructure
rather than building new expensive transmission capacity to
meet the demand of EV charging stations.
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