
Supervisory control for software runtime exception avoidanceSupervisory control for software runtime exception avoidance

Benoit Gaudin, Paddy Nixon

Publication datePublication date

01-01-2012

Published inPublished in

C3S2E '12 Proceedings of the Fifth International C* Conference on Computer Science and Software
Engineering;pp. 109-112

LicenceLicence

This work is made available under the CC BY-NC-SA 1.0 licence and should only be used in accordance with
that licence. For more information on the specific terms, consult the repository record for this item.

Document VersionDocument Version
1

Citation for this work (HarvardUL)Citation for this work (HarvardUL)

Gaudin, B. and Nixon, P. (2012) ‘Supervisory control for software runtime exception avoidance’, available:
https://hdl.handle.net/10344/2689 [accessed 25 Jul 2022].

This work was downloaded from the University of Limerick research repository.

For more information on this work, the University of Limerick research repository or to report an issue, you can
contact the repository administrators at ir@ul.ie. If you feel that this work breaches copyright, please provide
details and we will remove access to the work immediately while we investigate your claim.

https://creativecommons.org/licenses/by-nc-sa/1.0/
mailto:ir@ul.ie

Supervisory Control for Software Runtime Exception
Avoidance

Benoit Gaudin
Lero - The Irish Software Engineering Research

Center
University of Limerick, Ireland.

benoit.gaudin@lero.ie

Paddy Nixon
University of Tasmania

Hobart, Australia
Paddy.Nixon@utas.edu.au

ABSTRACT
The Supervisory Control Theory (SCT) introduced by Ra-
madge and Wonham offers a framework for the control of
Discrete Event Systems. In this paper, we formalize some
concepts about corrective software maintenance within this
framework. More specifically, we consider SCT as a way
to control software systems behaviors and avoid occurrences
of runtime exceptions. This approach is attractive as algo-
rithms for controllers synthesis offer a means to automate
part of the corrective maintenance process. In this paper,
we introduce problems related to removing observed soft-
ware failures by control, as well as solutions.

Keywords
Formal Method, Self-Adaptation, Control, Monitoring

1. INTRODUCTION
This work deals with software self-adaptation in order to

automatically modify the system behaviors when facing run-
time faults. More specifically, we consider legacy systems
and automatically provide them with self-adaptation capa-
bilities that allow for handling of runtime exceptions. We
assume that the systems under consideration went through
the different software life cycle phases (design, implementa-
tion, testing, deployment). Typically, possible faults such as
IO and NullPointer exceptions are not all detected during
the testing phase, and remain in the system. These faults
are usually reported by the user whenever their correspond-
ing symptoms are observed at runtime. This work extends
previous work reported in [Gaudin et al. 2011] by formalizing
conditions under which adaptation of the system behavior
can be performed autamatically, leading to a correct and
suitable solution.

Self-adaptation is a property that is encountered in Auto-
nomic Computing [Kephart and Chess 2003]. As explained
in [Dobson et al. 2010] control theory principles are suitable
to implement the autonomic feedback loop. Therefore in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
C3S2E-12 2012, June 27-29, Montreal [QC, CANADA]
Editors: B. C. Desai, S. Mudur, E. Vassev
Copyright 2012 ACM 978-1-4503-1084-0/12/06 $15.00.

this work we consider adaptation through the use of con-
trol theory, and more specifically the Supervisory Control
Theory on Discrete Event Systems developped described in
(see e.g. [Wonham 2003]). We aim to automate part of the
corrective maintenance process by formalizing some correc-
tive software maintenance problems and providing solutions
based on the SCT framework. SCT on DES offers a frame-
work and results for automatically synthesizing a model of
a controller from a model of the system behaviors and a
property to be ensured (control objective).

In this work, we consider the case where a model encod-
ing all the possible system behaviors is not available. Sys-
tem adaptation is performed according to the discovery of
behaviors that were not modeled and are undesired. To our
knowledge, no work on SCT so far has considered problems
where no model representing all possible system behaviors
is available. In this paper, we consider that:

1. A partial model of the program is available and is rep-
resented with a Finite State Machine (FSM).

2. This model does not encode all the behaviors of the
system that are observable at runtime.

3. Failures correspond to the occurrence of runtime

exceptions.

These assumptions apply to the general context of soft-
ware maintenance. In our approach, Point 1 is tackled fol-
lowing [Corbett et al. 2002, Gaudin et al. 2011], where a par-
tial model of the program is extracted from its source code.
Point 2 represents the fact that, as runtime exceptions may
not be captured in the program source code, they are not
encoded in the model of the system. For modern program-
ing languages such as Java or C♯, the program is executed
within a runtime environment. Runtime errors such as ex-
ceptions can occur and be observed1. Point 3 states that
these exceptions are not desired. This implies that the sys-
tem execution is faulty whenever such an exception is raised.
Therefore some correction must be performed on the system
so that this behavior can no more occur. In classical cor-
rective maintenance, such modification is performed on the
source code which is then recompiled and redeployed onto
the user environment. This work aims to apply supervisory
control concepts in order to automate this modification. The
contribution of this paper is twofold:

91E.g. [Gaudin et al. 2011] describes how the Javassist library
makes it possible to catch and observe runtime exceptions ([Javas-
sist]).

• It maps some aspects of corrective software mainte-
nance with concepts from the supervisory control the-
ory.

• It provides results on the existence and synthesis of a
maximal supervisor, automating part of the software
maintenance process. The computation of such a su-
pervisor depends on extrapolation functions and under
some conditions, optimal extrapolation functions can
be determined.

This paper follows the following structure. Section 2 intro-
duces some background on software maintenance and Super-
visory Control Theory as well as a mapping between between
these fields. Section 3 presents specific control problems and
proposes solutions for them.

2. BACKGROUND AND MAPPING
Background on Discrete Event Systems (DES) and Super-

visory Control Theory (SCT) are presented in Section 2.1.
Section 2.2 briefly presents generalities about classical soft-
ware engineering processes, with an emphasis on corrective
maintenance.

2.1 DES and Supervisory Control
In this work, a system model corresponds to a model of its

possible behaviors. Such a model is described by a language
L over an alphabet A. The set of languages over alphabet
A is denoted L(A).

Given s, s′ ∈ A∗, ss’ (or s.s’) denotes the concatenation
of s and s′. Symbol ǫ denotes the empty string and is such
that s.ǫ = ǫ.s = s. Moreover, we say that s′ ≤ s whenever
s′ is a prefix of s (i.e. it exists s′′ ∈ A∗ s.t. s = s′s′′).
We denote L the prefix-closure of a language L ⊆ A∗ (i.e.
L = {s ∈ A∗ | ∃s′ ∈ L, s ≤ s′}).

The Supervisory Control Theory (SCT) on Discrete Event
Systems (DES) introduced by Ramadge and Wonham is de-
scribed in [Wonham 2003] and [Cassandras and Lafortune
1999]. In this theory, DES behaviors are modeled with lan-
guages over finite alphabets A where each element of A rep-
resents an event that can occur in the system. According to
Ramadge and Wonham’s theory, events of a system are ei-
ther uncontrollable (Au), i.e. the occurrence of these events
cannot be prevented by a supervisor, or controllable (Ac).
Therefore A = Au ∪Ac and Au ∩Ac = ∅.

Formally a supervisor S for a system G is given by a func-
tion S : L(G) → {γ ⊆ A| Au ⊆ γ}, delivering the set of
actions that are allowed in G under control of supervisor S
after a trajectory s ∈ L(G). We denote S/G the closed-loop
system consisting of the initial system G controlled by the
supervisor S. A model of S can be easily derived from a
model of S/G and vice-versa.

Because some events are uncontrollable, not any language
can represent the set of behaviors of a controlled system. For
this reason, the notion of controllable language was intro-
duce: if L and K are two languages over the same alphabet
A such that K ⊆ L and A = Au ∪ Ac then K is control-
lable with respect to Au and L if and only if KAu ∩L ⊆ K.
Finally, one can note that the empty language is always con-
trollable.
Basic Supervisory Control Problem - BSCP ([Won-
ham 2003]) Given a system G and a control objective K ⊆
L(G), the Basic Supervisory Control Problem consists of

computing the model of a supervisor S such that L(S/G) ⊆
K is controllable and maximal, i.e. if any other supervisor
S′ is such that L(S′/G) ⊆ K and L(S′/G) is controllable
then L(S′/G) ⊆ L(S/G).

As a model of S can be easily derived from S/G, S/G is
usually considered as a solution of the BSCP, rather than S
itself. Moreover whenever a solution to the BSCP exists, it
corresponds to the maximal sub-language of K that is con-
trollable w.r.t. Au and L(G) (see [Wonham 2003]). This
language is denoted SupC(Au,K, L(G)) and an algorithm
computing it is described in [Wonham 2003]. The complex-
ity of this algorithm is linear in the number of states of the
Finite State Machine representing the control objective K
and the system G.

2.2 Corrective Maintenance Process
Figure 1 describes the classical software development and

maintenance process. Initially the system and its desired
features are designed and implemented. These features are
then tested until a high enough level of quality is reached,
in order for the application to be deployed onto the users
environment.

Despite going through a test phase, most software systems
are deployed with some remaining bugs, generally unknown
from the development team. Some of these bugs manifest
themselves when the system is under usage and are reported
by the users to the maintenance team. From there, this team
aims to analyse and correct this bug in order to release as
quickly as possible a new version of the system with in-
creased quality. This increased quality is assessed with the
testing of the modified application.

Implementation Testing Deployment

AnalysisCorrection

Runtime
Traces

Error
Observation

L'L

S g s

L(G)

Figure 1: The software development and mainte-
nance process.

In this paper, we consider errors that correspond to ex-
ceptions being raised at runtime and that are not handled in
the application source code. When a trace leading to such
an error is observed at runtime, the goal of the corrective
maintenance is to modify the application behaviors in order
to avoid future occurrences of this runtime exception.

The behaviors of the system correspond to software traces
thatcan be observed through runtime monitoring and con-
tain occurrences of method calls as well as exceptions. In [Gaudin
et al. 2011], the authors describe how such monitoring can
be automatically achieved for Java programs.

2.3 Mapping of Concepts
Figure 1 summarizes the mapping between concepts re-

lated to corrective maintenance and SCT.
[Application Model: L]. First, we consider that the

behaviors of the system correspond a prefix-closed language
L(G) representing possible traces generated at runtime. The
alphabet A of this language consists of method calls and

occurrences of exceptions. A language L included in L(G)
can be automatically extracted from the source code in order
to model the behaviors of the system (see e.g. [Gaudin et al.
2011, Corbett et al. 2002]). However this model is only
partial as it does not take into account exceptions that are
not handled in the source code.

[Testing Phase: L’]. Considering the testing phase of
Figure 1, traces generated by running successful test cases
are also modeled as a language L′ over A. We assume here
that the system is deployed after all the issues exhibited by
test cases were resolved. This implies that L′ corresponds to
a set of desired behaviors of the system with L′ ⊆ L. Bugs
that lead to runtime exceptions being raised may however
remain in the system. This corresponds to the case where
bugs are not detected during the testing phase.

[Analysis: g]. Considering Figure 1 again, analysis is
first required before correcting a system for which an error
has occurred at runtime. This step aims for the maintenance
team to understand why this error has occurred. This ac-
tivity relates to the fields of diagnostics and program com-
prehension (see e.g. [Cornelissen et al. 2009]) and is outside
the scope of this work. We restrict here the analysis phase
to the determination of the set of possible system behaviors
that can lead to a runtime exceptions. Given the observa-
tion of one faulty trace, we extrapolate this observation to
a set of sequences.

Ideally only the relevant information to the system failure
should be extracted from the observed sequence and taken
into account for control. In order to answer this concern, we
introduce the concept of extrapolation functions.

Definition 1. An extrapolation function over an alpha-
bet A is a function g : A∗ → L(A) such that ∀s ∈ A∗, s ∈
g(s).

Given a sequence of events s over an alphabet A, an ex-
trapolation of s, denoted g(s), represents a set of sequences
(i.e. a language) of which s is an instance. Extrapolation
functions can for instance encode the set of sequences that
possess the same projection as s for a given projection func-
tion PA′ with A′ ⊆ A, i.e. g(s) = P−1

A′ (PA′(s)) ∈ A′∗.
Such a set is used in the SC Theory for partial observation

problems (see e.g. [Cassandras and Lafortune 1999]). An-
other possible example of extrapolation corresponds to the
set of sequences that “finish like” s. For n ∈ N , k ≤ n and
s = σ0.σ1 . . . σn,

gk(s) = A∗.(σn−k . . . σn) (1)

represents all the sequences whose last k + 1 events are
the last k + 1 events of s. For instance, if a sequence s can
be completed in L(G) by an event σ representing a runtime
exception, then gσk (s).{σ} represents sequences that end by
σn−k . . . σnσ in L(G).

The case of extrapolation functions such as gk is relevant
to software systems. As stated in [Pan et al. 2009], software
faults often occur relatively close to their observable symp-
toms, which themselves represent the ending of a sequence.

[Correction: Supervisor Synthesis]. the correction
phase of Figure 1 is about modifying the system behav-
iors. Our approach consists of achieving this by controlling
the system. This can be done by embedding a supervisor
into the application, that will monitor the system execution
and prevent the occurrence of some events when necessary2.

92The reader can refer to [Gaudin et al. 2011, Gaudin and Bag-

This approach is attractive as SCT offers means to auto-
matically synthesize supervisors from a system model and
a control objective, hence making possible to automate the
corrective phase of software maintenance.

3. SC AND MAINTENANCE FOR RUNTIME
EXCEPTION AVOIDANCE

In the following of this paper, we present problems related
to the automation of software correction, as control prob-
lems. We provide results about the existence of a solution
to these problems.

In our setting, L(G) represents the actual system behav-
iors and L only a partial model, which can be completed
with the occurrence of runtime exceptions. Moreover, L it-
self represents a control objective as described in the BSCP
of Section 2.1, i.e. the set of behaviors the system should be
performing, without occurrence of runtime exceptions.

3.1 Corrective Problem (CorrectP)
CorrectP: Given an incomplete model L of a controlled
system G, an observed system behavior of the form sσ ∈
L.Au that is not included in this model (i.e. sσ /∈ L) and an
extrapolation function gσ, compute a maximal supervisor S
on L that avoids the occurrence of sequences s′σ of L(G)\L
where s′ ∈ gσ(s).

Intuitively CorrectP deals with the case where a sequence
sσ is observed during the execution of a controlled system
and s is part of the system model L but sσ is not. When
an undesired sequence sσ occurs with s ∈ L but sσ /∈ L,
it is extrapolated by sequences of the form (L ∩ gσ(s)).{σ}.
This set encodes that sequences of L that are similar to s
are expected to be completed by σ and is then added to
the model of the system L resulting into a new model of the
system that takes into account newly observed behaviors, i.e.
L ∪ (L ∩ gσ(s)).{σ}. However, behaviors of the form (L ∩
gσ(s)).{σ} are undesired. Preventing their futur occurrences
is obtained by synthesizing a supervisor that only considers
L as a control objective. We now introduce Proposition 1,
which provides a solution to the CorrectP.

Proposition 1. Let Au, A be two alphabets such that Au ⊆
A. We also consider a prefix-closed language L over alphabet
A, a sequence sσ ∈ (A∗.Au) and an extrapolation function
gσ. A solution to the CorrectP exists if SupC(Au, L, L∪(L∩
gσ(s)).{σ}) is not empty. If it is the case, then

SupC(Au, L, L ∪ (L ∩ gσ(s)).{σ})

is a solution to CorrectP.

Finally CorrectP rely on the definition of an extrapolation
function g. However, a relevant extrapolation function may
be difficult to determine with certainty. Therefore Subsec-
tion 3.2 considers the case where a range of extrapolation
functions is available. For this case, Section 3.2 provides a
result for the determination of the most appropriate extrap-
olation function.

3.2 Extrapolation Determination Problem (Ex-
trapP)

nato 2011] for more details on how this can be achieved for Java
programs.

In this subsection, we consider a similar problem to Cor-
rectP: the model L of the system is incomplete and an unde-
sired sequence sσ is observed and can be extrapolated with
extrapolation functions. However unlike for CorrectP, we
consider a range of extrapolation functions {gσi }1≤i≤n in-
stead of a unique one as well as a set traces L′ generated
from successful test cases. The problem under considera-
tion in this subsection is to determine which gσi is the most
appropriate extrapolation function in order to avoid the oc-
currence of extrapolated traces as well as ensuring a minimal
set of behaviors given by s.
ExtrapP: Given an incomplete model L of a system G,
i.e. L ⊆ L(G), an observed system behavior of the form
sσ ∈ L.Au that is not included in this model (i.e. sσ /∈
L), a set of extrapolation functions {gσi }1≤i≤n and a set of
minimal behaviors L′, determine gi and compute a maximal
supervisor S on L that allows sequences of L′ and avoids the
occurrence of sequences s′σ of L(G) \ L where s′ ∈ gσ(s). ⋄

Solving ExtrapP corresponds to determining the index i
for which the solution to CorrectP w.r.t. L, sσ, gσi con-
tains L′ and is maximal. In other words, whenever it ex-
ists, a solution to ExtrapP is given by max{SupCi|L

′ ⊆
SupCi}, where SupCi = SupC(Au, L, L ∪ (L ∩ gσi (s)).{σ}).
Therefore a solution to the ExtrapP exists if it exists i ∈
{1, . . . , n} s.t. L′ ⊆ SupCi and SupCi 6= ∅. Moreover if
there is such a maximal SupCi, then it is a solution to Ex-
trapP. Theorem 1 provides a condition under which there is
such a maximal SupCi.

Theorem 1. Let Au, A be two alphabets such that Au ⊆
A. We also consider a language L over alphabet A, a se-
quence sσ ∈ L.Au and a set {gσi }1≤i≤n of extrapolation
functions such that i ≤ j ⇒ gσi (s) ⊆ gσj (s). We denote

SupCi = SupC(Au, L, L ∪ (L ∩ gσi (s)).{σ})

If it exists i ∈ {1, . . . , n} such that SupCi 6= ∅ and I
denotes max{i ∈ {1, . . . , n}|L′ ⊆ SupCi}, then SupCI is
a solution to ExtrapP.

Theorem 1 provides a condition under which a solution to
ExtrapP exists, which corresponds to the case of ordered ex-
trapolation functions gσi . When the extrapolation functions
under consideration can be ranked according to their gener-
alizing power, then a solution to ExtrapP exists if it allows
for successful tests and can be computed. This offers a max-
imal solution to the problem of reducing software behaviors
in order to avoid the occurrence of a previously observed
issue. Moreover, this solution is validated with respect to
test cases.

4. CONCLUSION
This paper considers automatic adaptation of software be-

haviors in presence of a runtime exception. Our approach
relies on the Supervisory Control Theory on Discrete Event
Systems. Our work maps the corrective software mainte-
nance process to supervisory control concepts. Automatic
supervisor synthesis helps automate the software correction
phase. This relies on observation of sequences violating
the system model. This model is automatically extracted
from source code. Unlike for traditional Supervisory Con-
trol problems, this model is only partial as it does not take
into account runtime exceptions that are not handled in the

source code. Our approach introduces the notion of extrap-
olation functions which encode sequences that follow a sim-
ilar pattern as the faulty traces observed at runtime. Given
an extrapolation function, we provide a solution to auto-
matic supervisor computation. Moreover we consider the
case of extrapolation functions with nested generalization
power. We show that under this condition and in presence
of traces generated by successful test cases, an optimal solu-
tion can be computed whenever it exists. As future works,
we will investigate on other relevant extrapolation functions
that capture interesting patterns for software traces. Re-
sults on this topic will provide our approach with different
patching strategies, making it applicable to a wider range of
software symptoms.

5. ACKNOWLEDGEMENT
The research leading to these results has received funding

from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under the grant agreement FP7-
258109. This work was also supported, in part, by Science
Foundation Ireland grant 03/CE2/I303 1.

6. REFERENCES
[Cassandras and Lafortune 1999] Cassandras, C. and

Lafortune, S. 1999. Introduction to Discrete Event
Systems. Kluwer Academic Publishers.

[Corbett et al. 2002] Corbett, J., Dwyer, M.,
Hatcliff, J., Laubach, S., Pasareanu, C., and
Zheng, H. 2002. Bandera: Extracting finite-state
models from Java source code. In Software Engineering,
2000. Proceedings of the 2000 International Conference
on. IEEE, 439–448.

[Cornelissen et al. 2009] Cornelissen, B., Zaidman, A.,
van Deursen, A., Moonen, L., and Koschke, R.

2009. A systematic survey of program comprehension
through dynamic analysis. Software Engineering, IEEE
Transactions on 35, 5, 684–702.

[Dobson et al. 2010] Dobson, S., Sterritt, R., Nixon,

P., and Hinchey, M. 2010. Fulfilling the vision of
autonomic computing. Computer 43, 35–41.

[Gaudin and Bagnato 2011] Gaudin, B. and Bagnato,

A. 2011. Software maintenance through supervisory
control. In 34th annual IEEE Software Engineering
Workshop.

[Gaudin et al. 2011] Gaudin, B., Vassev, E., Hinchey,

M., and Nixon, P. 2011. A control theory based
approach for self-healing of un-handled runtime
exceptions. In International Conference on Autonomic
Computing (ICAC2011). Karlshruhe (Germany).

[Javassist] Javassist.
http://www.csg.is.titech.ac.jp/ chiba/javassist/.

[Kephart and Chess 2003] Kephart, J. O. and Chess,

D. M. 2003. The vision of autonomic computing.
Computer 36, 41–50.

[Pan et al. 2009] Pan, K., Kim, S., and Whitehead, Jr.,

E. J. 2009. Toward an understanding of bug fix
patterns. Empirical Softw. Engg. 14, 3, 286–315.

[Wonham 2003] Wonham, W. M. 2003. Notes on control
of discrete-event systems. Tech. Rep. ECE 1636F/1637S,
Department of Electrical and Computer
EngineeringUnivertsity of Toronto. July.

	Supervisory control for software runtime exception avoidance

