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ABSTRACT

Search queries have evolved beyond keyword queries. Many
complex queries such as verbose queries, natural language
question queries and document-based queries are widely used
in a variety of applications. Processing these complex queries
usually requires a series of query operations, which results in
multiple sequences of reformulated queries. However, previ-
ous query representations, either the “bag of words”method
or the recently proposed “query distribution” method, can-
not effectively model these query sequences, since they ig-
nore the relationships between two queries. In this paper, a
reformulation tree framework is proposed to organize mul-
tiple sequences of reformulated queries as a tree structure,
where each path of the tree corresponds to a sequence of
reformulated queries. Specifically, a two-level reformulation
tree is implemented for verbose queries. This tree effectively
combines two query operations, i.e., subset selection and
query substitution, within the same framework. Further-
more, a weight estimation approach is proposed to assign
weights to each node of the reformulation tree by considering
the relationships between different nodes and directly opti-
mizing retrieval performance. Experiments on TREC collec-
tions show that this reformulation tree based representation
significantly outperforms the state-of-the-art techniques.
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H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval
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1. INTRODUCTION
Although short keyword queries are still very common in

web search, the increasing diversity of search applications
and information needs has led to increasing complexity in
queries. For example, verbose (or long) queries have become
more and more popular in web search. In community-based
Q&A, users pose natural language questions as queries. In
patent retrieval, the whole document (patent application) is
considered as the query. These complex queries help users
express their information need naturally and save the ef-
fort of picking keywords. However, processing these queries
poses a significant challenge for search systems.

Dealing with complex queries usually requires a series of
query operations. For example, a typical process of deal-
ing with a verbose query can be described as follows. The
system first selects a subset of query words from the orig-
inal query to remove noisy information. Then, the gener-
ated subset query is further modified to handle vocabulary
mismatch. Finally, weights are assigned to queries gener-
ated at each step. Depending on the application, the above
process could become more complicated. For example, in
cross-lingual retrieval, the original verbose query needs to
be translated into a foreign language query before applying
any further operation. The above process will generate mul-
tiple sequences of reformulated queries, where each sequence
records a way of modifying the original query using several
query operations. These reformulation sequences capture
the relationships between the reformulated queries. Fig.
1 displays some examples of the reformulation sequences,
where the subset query is selected from the original query
at the first step of the sequence and the second step further
substitutes the subset query.

However, previous query representations cannot model
these reformulation sequences well. The “bag of words” rep-
resentation is widely used in information retrieval. Using
this representation, the original query is transformed into
a set of weighted words. Some extensions to this repre-
sentation introduce phrases [20] and latent words [15][21].

Reformulation Sequence
Q→reductions iraqs foreign debt→reduce iraqs foreign debt
Q→iraqs foreign debt→iraqs foreign debts
Q→iraqs foreign debt→iraqs external debt

Figure 1: The reformulation sequences generated
for the verbose query Q “any efforts proposed or
undertaken by world governments to seek reduction
of iraqs foreign debt”



This representation does not explicitly model a reformu-
lated query, which serves as the basis of the reformulation
sequences. An example of the “bag of words” representation
is shown in Fig. 2 a). Recently, the “query distribution”
representation [27] was proposed to transform the original
query into a set of reformulated queries. For example, Xue et
al [29] represents a verbose query as a set of subset queries.
This representation indeed considers a reformulated query
as the basic unit, but it fails to capture the relationships
between the reformulated queries. Therefore, the sequences
of reformulated queries still cannot be modeled using this
representation. An example of the “query distribution” rep-
resentation is shown in Fig. 2 b).

In this paper, a novel query representation is proposed to
transform a complex query into a reformulation tree, where
the nodes at each level of this tree correspond to the refor-
mulated queries generated using a specific query operation.
Using this representation, a reformulation sequence is natu-
rally modeled as a path from the root node to the leaf node.
The construction of the reformulation tree simulates the pro-
cess of applying a series of query operations to the complex
query. Furthermore, weight is assigned to each node of the
reformulation tree, which indicates the importance of the
corresponding reformulated query. The estimation of the
weight for a node considers not only the characteristics of
this node itself, but also its relationships with other nodes.
Different with previous reformulation models that treat re-
trieval models as independent steps, we estimate the weights
on the reformulation tree by directly optimizing the perfor-
mance of retrieval models, which considers the reformulation
model and the retrieval model in a joint view.

Verbose queries, as a typical example of complex queries,
have attracted much attention recently. Previous research
on verbose queries either weights the query words in the
original query [17, 16, 4] or selects the best subset of query
words from the original query [13]. Relatively little research
considers combining multiple query operations together for
improving verbose queries. Therefore, as an implementation
of the reformulation tree framework, a two-level tree struc-
ture is constructed for verbose queries, where the first level
corresponds to the subset query selection operation and the
second level corresponds to the query substitution operation.
A weight estimation method is also described, which in-
corporates the relationships between different reformulated
queries and directly optimizes the retrieval performance.

Fig. 2 c) shows an example reformulation tree. The first
level of this tree consists of two subset queries extracted from
the original query, i.e., “reductions iraqs foreign debt” and
“iraqs foreign debt”. At the second level, each subset query is
further modified to generate query substitutions. For exam-
ple, “iraqs foreign debt”has been modified to “iraqs external
debt”. Furthermore, weight is assigned to each node of this
tree, which measures the importance of each reformulated
query. Compared with other representations, the reformu-
lation sequences as shown in Fig. 1 are captured using the
reformulation tree.

The contributions of this paper can be summarized as four
folds. First, a tree based query representation is proposed
to deal with complex queries, which models a series of query
operations and captures the relationships between the re-
formulated queries. Second, a specific implementation, i.e.,
the two-level reformulation tree, is introduced for verbose
queries, which combines two important operations, subset

a) Bag of Words 

{0.09 reduction,  0.09 iraqs,  0.09 foreign,  0.09 debt, …} 

    b) Query Distribution 

{0.55 seek reduction iraqs,    0.23 seek reduction iraqs debt,  

  0.05 undertaken iraqs debt,  0.03 efforts seek reduction iraqs … } 

     c) Reformulation Tree 

Original Query 

0.36 

reductions iraqs foreign debt 

0.20 

iraqs foreign debt 

0.12 

reduce iraqs foreign debt 

0.20 

iraqs foreign debts 

0.08 

iraqs external debt 

0.04 

Subset Selection: 

Query Substitution: 

Figure 2: Different query representations for the
verbose query “identify any efforts proposed or un-
dertaken by world governments to seek reduction of
iraqs foreign debt”

query selection and query substitution. Third, a weight es-
timation method is designed by incorporating the relation-
ships between different reformulated queries and directly
optimizing retrieval performance. Fourth, detailed experi-
ments are conducted to show that the tree-based represen-
tation outperforms other query representations for verbose
queries.

2. RELATED WORK
In this section, we first describe previous work on complex

queries, especially on verbose queries and then we review
previous query representation approaches.

2.1 Complex Query
As described in the introduction, complex queries have

been widely used in different applications. Some examples
include the verbose query, the natural language question
query and the document-based query.

Kumaran and Allan [12] studied shortening a verbose query
through human interaction. Bendersky and Croft [2] discov-
ered key concepts from a verbose query. These key concepts
were combined with the original query to improve the re-
trieval performance. Kumaran and Carvalho [13] learned to
automatically select subset queries using several query qual-
ity predictors. Balasubramanian et al [1] extent [13] for web
long queries.

Lease et al [17] developed a regression model to assign
weights to each query word in the verbose query by using
the secondary features. Lease [16] further combined their
regression model with the Sequential Dependence Model,
which achieved significant performance improvement. Ben-
dersky et al [4] proposed a unified framework to measure the
weights of words, phrases and proximity features underlying
a verbose query.

A natural language question query is widely used in a
community-based Question and Answer service such as Ya-
hoo! Answers and Quora. Previous work [9, 10, 24] stud-
ied effectively finding previously answered questions that are
relevant to the new question asked by the user. Different re-
trieval models have been proposed to calculate the similarity



between questions. For example, the translation model [9]
was introduced to deal with the vocabulary mismatch be-
tween the semantically related questions.

A document-based query allows users to directly submit
a document as the query. A typical example is in patent re-
trieval [14], where the whole patent application is submitted
to the search system in order to find the relevant patents.
Many features are extracted from a patent application and
these features are the basis of retrieving relevant patents.

In this paper, a tree-based representation is proposed to
improve the complex query. A specific implementation for
verbose queries is described. This implementation combines
subset selection and query modification within the same
framework, which has not been explored in previous work.

2.2 Query Representation
In this section, we review two types of query representa-

tions, “bag of words” and “query distribution”.
The “bag of words” representation transforms the origi-

nal query into a set of terms, either weighted or not. These
terms include the words and phrases from the original query
and the latent words and phrases extracted from the cor-
pus. For example, the relevance model approach [15] adds
latent words to the original query, the sequential dependency
model [20] detects the phrase structure, and the latent con-
cept expansion model [21] uses query word proximity fea-
tures and latent words. This type of representation does
not consider how to use words and phrases to form actual
reformulated queries. In other words, a reformulated query
is not explicitly modeled in this representation.

The “query distribution” representation transforms the
original query into a set of reformulated queries, where each
query is assigned a probability. This probability helps mea-
sure the importance of the query. For example, Xue et al
[29] represented a verbose query as a distribution of sub-
set queries and a modified Conditional Random Field is
proposed to estimate the probability for each subset query.
This type of representation indeed considers the reformu-
lated query as the basic unit, but it assumes independence
between the reformulated queries. When multiple query op-
erations are applied, this independence assumption usually
does not hold.

In this paper, the proposed “reformulation tree” repre-
sentation extends the “query distribution” representation by
modeling the relationships between reformulated queries us-
ing the tree structure.

Some previous work also considers the relationships be-
tween queries. Boldi et al [5] proposed to build a query-flow
graph that modeled web users’ search behaviors. Specifi-
cally, the directed edges between two queries indicated that
they were likely to belong to the same search mission. Both
the time and the textual information was used for the graph
construction. The query-flow graph has demonstrated its
promise when applied to tasks such as session detection and
query suggestion. Mei et al [18] presented a general frame-
work to model search sequences, where a search sequence is
represented as a nested sequence of search objects. Var-
ious search sequence analysis tasks were modeled within
this framework and the features were reused across differ-
ent tasks. The above work focuses on short keyword queries
and uses query logs to capture the relationships between the
queries submitted within the same search session. In con-
trast, in this paper, we study complex queries and model

the relationships between the reformulated queries gener-
ated by using different query operations. Furthermore, the
construction of the reformulation tree proposed in this pa-
per is closely related to the final retrieval performance, while
previous work studies the query graph or sequence indepen-
dently from the retrieval model.

Guo et al [7] proposed a CRF-based model for query re-
finement, which combines several tasks like spelling correc-
tion, stemming and phrase detection. This model focuses on
morphological changes of keyword queries such as spelling
correction and stemming, but does not consider complex
queries.

3. BACKGROUND
In this section, we summarize several basic concepts used

in this paper.
A complex query (q) is more complicated than a short key-

word query. Examples of complex queries include verbose
queries, natural language question queries and document-
based queries. In this paper, we will focus on verbose queries.

A query operation (r) indicates a query processing tech-
nique. In this paper, we focus on two query operations, i.e.
subset query selection and query substitution. Subset query
selection [12, 13, 1, 29] selects a subset of query words from
the original query. Query substitution [11, 26, 28] replaces
the original query word with a new word. Other examples of
query operations include query translation, query segmen-
tation and so on.

A reformulated query (qr) is the output of applying a query
operation. A reformulation sequence is a sequence of refor-
mulated queries by applying a series of query operations.

A reformulation tree (T ) is a tree structure that organizes
the reformulated queries generated by different query op-
erations. Each path of T corresponds to a reformulation
sequence.

4. REFORMULATION TREE
In this section, we first describe the framework for gener-

ating the reformulation tree T . Then, we compare this tree-
based representation with previous query representations.
Finally, the principle of the weight estimation is described.

4.1 Framework
Suppose that n query operations {r1, r2, ..., rn} are re-

quired to process a complex query q. Then, q is transformed
into a n-level tree T . Each node of T represents a reformu-
lated query qr. From now on, if not explicitly indicated, we
use qr to represent both a node of T and the correspond-
ing reformulated query. The root node of T represents the
original query q, which can be considered as a special refor-
mulated query. The ith level of T are generated by applying
the ith operation ri to the nodes at the (i− 1)th level. An
arc is added between the nodes at the (i−1)th level and the
nodes at the ith level if the latter is the output of applying
ri to the former. Therefore, each path of T corresponds to
a reformulation sequence. Furthermore, weight w(qr) is as-
signed to each node of T , which measures the importance of
the corresponding reformulated query qr.

When T is used for retrieval, the retrieval score of a doc-
ument D is calculated using Eq. 1.

sc(T,D) =
∑

qr∈T

w(qr)sc(qr, D) (1)



where w(qr) is the weight assigned to the node corresponding
to the reformulated query qr and sc(qr, D) is the retrieval
score from using qr to retrieve D. In general, sc(T,D) is
calculated by combining the retrieval score from using each
reformulated query qr in T , where w(qr) is used as the com-
bination weight. The calculation of sc(qr, D) depends on
implementation.

4.2 Comparisons of Query Representations
In this subsection, we compare different query representa-

tions using the example in the introduction. Fig. 2 displays
the “bag of words” representation, the “query distribution”
representation and the “reformulation tree” representation.

In the “bag of words” representation, the basic unit is
words or phrases. This representation may tell you that
the important words in the original query are “reduction”,
“iraqs”and“debt”, but how these words can be used together
to form a new query is not clear.

The “query distribution” representation extends the “bag
of words” representation by explicitly modeling the refor-
mulated query. For example, this representation lists the
top ranked subset queries such as “seek reduction iraqs” and
“seek reduction iraqs debt”. However, the relationships be-
tween the reformulated queries are not captured using this
representation.

When a series of query operations are applied, we need
a representation that models the reformulation sequences
generated using these operations. The “reformulation tree”
representation is designed to solve this problem. For exam-
ple, in Fig. 2, the subset queries and the query substitutions
are organized into a tree structure. This structure indicates
that we need to first select subset queries and then conduct
query substitution. It captures the relationships between
“iraqs foreign debt” and “iraqs external debt”, since the lat-
ter is the output of applying the query subsitution operation
to the former.

4.3 Weight Estimation
The weight assigned to each node in the tree indicates the

importance of the corresponding reformulated query. This
weight should characterize both the features of this node
itself and the relationships with other nodes. Therefore, the
weight of qr, i.e., w(qr), is calculated in Eq. 2.

w(qr) = w(par(qr))
∑

k

λkfk(qr) (2)

where par(qr) denotes the parent node of qr. fk is the query
feature extracted from qr and λk is the parameter. Eq. 2
shows that the weight of qr is not only decided by its own
query features {fk} but also by the weight of its parent node
par(qr). In this way, the relationships between reformulated
queries are incorporated into the weight estimation.

Note that Eq. 2 provides the principle of weight estima-
tion. How to calculate w(qr) will depend on the implemen-
tation.

5. REFORMULATION TREE FOR VERBOSE

QUERIES
In this section, we describe a two-level reformulation tree

for verbose queries. We first describe the query operations
used to construct the reformulation tree, i.e. subset query se-
lection and query substitution. Then, we introduce a stage-

based weight estimation method to assign weight to each
node. Finally, the retrieval model is described.

5.1 Building Tree Structure
The construction of the reformulation tree for verbose

queries consists of two steps: first, subset queries are se-
lected from the original query; second, the subset queries
generated in the previous step are further modified to gen-
erate query substitutions.

We follow Kumaran and Carvalho [13]’s method to gener-
ate subset queries. All query words from the original verbose
query are considered. If the length of the verbose query is
bigger than ten, we first rank all query words by their idf

values and then pick the top ten words for the subset query
generation. Then, all subset queries with length between
three and six words are generated.

The passage analysis technique [28] is used to generate
query substitutions. Specifically, in order to replace one
word from the original query, all the passages containing
the rest of the query words are first extracted. Then, three
methods are used to generate candidates for query substi-
tution from these passages. Morph considers the morpho-
logically similar words as candidates. Pattern considers
the words matching the patterns extracted from the original
query as candidates. Wiki considers the Wikipedia redi-
rect pairs as the candidates. More details can be found in
[28]. Finally, the top ranked candidates are used as query
substitutions.

Given the above two query operations, the reformulation
tree for the verbose query can be generated in this way.
First, all subset queries with length between three to six
are extracted from the original query. Each subset query
is assigned a weight. How to estimate the weight will be
described in the next subsection. According to this weight,
we will pick the top ranked subset queries to construct the
first level of the reformulation tree. SubNum is a parame-
ter that controls the number of top ranked subset queries
used for the first level construction. Second, among these
SubNum subset queries, we further modify the top ModNum

queries to generate query substitutions, which constructs the
second level of the reformulation tree. ModNum is another
parameter that controls the number of the top ranked subset
queries used for query substitution. ModNum is no bigger
than SubNum.

For example, the reformulation tree used in the introduc-
tion (Fig. 2) can be constructed in two steps. This process
is illustrated in Fig. 3. First, we pick the top two sub-
set queries “reductions iraqs foreign debt” and “iraqs foreign
debt” to construct the first level of the reformulation tree.
Second, we modify these two subset queries respectively. For
the first subset query, “reduce iraqs foreign debt” is gener-
ated by replacing “reduction”with “reduce”. For the second
subset query, two query substitutions, i.e. “iraqs foreign
debt” and “iraqs external debt” are generated.

5.2 Weight Estimation
Eq. 2 indicates that the weight of a node in the refor-

mulation tree depends on both its intrinsic features and the
weight of its parent nodes. However, how to estimate the
weight is still unclear. In this part, we describe a stage-based
weight estimation method.

In the initial stage, the root node (the original query q) is
assigned the weight 1, i.e. w(q) = 1.
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reductions iraqs foreign debt  

  

iraqs foreign debt  

  

reduce iraqs foreign debt 
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iraqs foreign debt  

  

Step 1 

Step 2 

Figure 3: The process of constructing a reformula-
tion tree

In Stage I, after the subset queries qsub are generated,
we calculate the weight of qsub using Eq. 3.

w(qsub) = w(q)
∑

k

λ
sub
k f

sub
k (qsub)

=
∑

k

λ
sub
k f

sub
k (qsub) (3)

Eq. 3 instantiates Eq. 2 by focusing on the subset queries.
fsub
k is the query feature extracted from qsub and λsub

k is the
corresponding parameter. Since the root node is the parent
of every subset query, its weight w(q) = 1, is used in Eq. 3.

In order to estimate {λsub
k } by directly optimizing the re-

trieval performance, we transform each query feature fsub
k

into the corresponding retrieval feature F sub
k , where F sub

k is
calculated in Eq. 4.

F
sub
k ({qsub}, D) =

∑

qsub

f
sub
k (qsub)sc(qsub, D) (4)

where sc(qsub, D) is the retrieval score of using qsub to re-
trieve D. The calculation of sc(qsub, D) depends on the
retrieval model. The retrieval feature F sub

k combines the
retrieval score of each subset query qsub using their corre-
sponding query feature fsub

k (qsub) as the combination weight.
In general, F sub

k indicates how well documents are ranked if
fsub
k is used as the weight to combine subset queries.
Now, we obtain a set of retrieval features {F sub

k }. The
problem of estimating {λsub

k } to combine the query features
{fsub

k } is transformed into the problem of combining the
corresponding retrieval features {F sub

k } to achieve the best
retrieval performance. The latter problem is typically solved
using learning to rank techniques. In this paper, the ListNet
method [6] is adopted to learn {λsub

k } on the training set.
After obtaining {λsub

k }, we can assign the weight for each
subset query according to Eq. 3.

In Stage II, we assign weights to the substituted queries.
The weight of a substituted query qmod is calculated using

Eq. 5.

w(qmod) = w(qsub)
∑

k

λ
mod
k f

mod
k (qmod) (5)

where qsub is the parent node of qmod. Compared with Eq.
3, the weights of the subset queries w(qsub) generated in
Stage I are incorporated in Eq. 5.

Similarly, in order to estimate {λmod
k }, we transform fmod

k

to the corresponding retrieval feature Fmod
k using Eq. 6.

F
mod
k ({qmod}, D) =

∑

qmod

w(qsub)f
mod
k (qmod)sc(qmod, D)

(6)
where qsub is the parent node of qmod. In general, Fmod

k

tells how well the documents are ranked if fmod
k is used as

the weight to combine the substituted queries. Thus, the
parameters {λmod

k } are learned by combining these retrieval
features {Fmod

k } using ListNet.
Finally, we normalize the weights of every nodes in the

reformulation tree to make them sum to one.

5.3 Features
In this part, we describe the query features used to char-

acterize the subset queries and the substituted queries.
The features used to characterize the subset queries are

mainly query quality predictors. These types of features
have been widely used in previous research [13][29]. Exam-
ples of query quality predictors include Mutual Information
[12], Query Scope [8] and Query Clarity [25]. In addition,
passage information is considered. The number of passages
that contain a subset query provides strong evidence for the
quality of a subset query. Bendersky et al [3] automatically
detected the key concepts from the verbose query. Whether
a subset query contains such key concepts is also considered
as a feature.

The features used to characterize the substituted queries
include the type of methods for generating substituted queries.
As described in Section 5.1, “Morph” indicates using the
morphologically similar words as candidates, “Pattern” indi-
cates using the pattern based method and “Wiki” indicates
using the Wikipedia redirect page. The passage information
is also considered as one feature. Furthermore, the number
of possible segmentations of a substituted query is used as
another feature. This feature can be directly obtained using
the passage analysis technique.

The details of features are summarized in Table 1.

5.4 Retrieval Model
The retrieval score of using a reformulation tree T can

be calculated using Eq. 1. For example, given the refor-
mulation tree shown in Fig. 2, the retrieval score can be
calculated as follows:

sc(T,D) = 0.36× sc(Original Query, D)

= +0.2× sc(“reductions iraqs foreign debt”, D)

= +0.12× sc(“iraqs foreign debt”, D)

= +0.2× sc(“reduce iraqs foreign debt”, D)

= +0.08× sc(“iraqs foreign debts”, D)

= +0.04× sc(“iraqs external debt”, D)

In this paper, the sequential dependency model (SDM)
[20] is used to calculate sc(qr, D). SDM has been widely



Table 1: Summary of features
Features for Subset Queries fsub

k (qsub)
MI[12] mutual information
SQLen[13] sub-query length
QS[8] query scope
QC[25] query clarity score
SOQ[13] similarity to original query
psg count of passages containing qsub
KeyCpt[3] whether contains the key concept

Features for Substituted Queries fmod
k (qmod)

Morph generated using Morph
Pattern generated using Pattern
Wiki generated using Wiki
psg count of passage containing qmod

seg-type the number of possible segmentations

Figure 4: Example of Indri query.
qr : iraqs foreign debt
SDM: #weight(

0.85 #combine(iraqs foreign debt)
0.10 #combine(#1(iraqs foreign) #1(foreign debt))
0.05 #combine(#uw8(iraqs foreign) #uw8(foreign debt))
)

used in previous work [3, 29] as a state-of-the-art technique.
Using SDM, the score of a document can be calculated as
follows:

sc(qr, D) = λT

∑

t∈T (qr)

log(P (t|D)) + λO

∑

o∈O(qr)

log(P (o|D))

+ λU

∑

u∈U(qr)

log(P (u|D)) (7)

where T (qr) denotes a set of query terms of qr, O(qr) de-
notes a set of ordered bigrams extracted from qr and U(qr)
denotes a set of unordered bigrams extracted from qr. λT ,
λO and λU are parameters controlling the weights of dif-
ferent parts and are usually set as 0.85, 0.1 and 0.05 [20].
P (t|D), P (o|D) and P (u|D) are calculated using the lan-
guage modeling approach [22, 30].

The SDMmodel can be easily implemented using the Indri
toolkit [19]. Fig. 4 shows an example of Indri query for SDM
model.

6. EXPERIMENTS
Four TREC collections, Gov2, Robust04, ClueWeb (Cat-

egory B) and Wt10g are used for experiments. Robust04 is
the newswire collection, while the rest are web collections.
The statistics of each collection are reported in Table 2. The
Indri toolkit [19] is used to build the index. For each col-
lection, two indexes are built, one not stemmed and the
other stemmed with the Porter Stemmer[23]. Since stem-
ming can be considered as a form of query substitution, the
non-stemmed index is built to remove the effect of stem-
ming. No stopword removal is done during indexing. For
each topic, the description part is used as the query. A
short list of 35 stopwords and some frequent stop patterns
(e.g., “find information”) are removed from the description
query in order to improve the retrieval performance of the
baseline methods following Bendersky et al [4]’s work.

The query set is split into a training set and a test set. On

Table 2: TREC collections used in experiments
Name Docs Topics
Gov2 25,205,179 701-850
Robust04 528,155 301-450,601-700
Wt10g 1,692,096 451-550
ClueWeb 50,220,423 1-100

the training set, the parameters λk are learned. On the test
set, the learned parameters λk are used to assign weight to
each node of the reformulation tree generated for each test
query. Ten-fold cross validation is used in this paper.

Several baselines are compared. QL denotes the query
likelihood language model [22, 30]. SDM denotes the se-
quential dependence model [20]. KC denotes the key con-
cept method proposed by Bendersky et al [3]. Note that
we do not report KC on ClueWeb, since the key concept
queries are not provided by [3] on ClueWeb. CRF-QL and
CRF-SDM [29] are the subset query distribution methods,
where CRF-QL uses QL as the underlying retrieval model
and CRF-SDM uses SDM as the underlying retrieval model.
SDM, KC, CRF-QL and CRF-SDM are the state-of-the-art
techniques for verbose queries. SDM and KC can be clas-
sified as the “bag of words” representation, while CRF-QL
and CRF-SDM can be considered as the“query distribution”
representation. Therefore, the comparisons with these base-
lines help show the advantages of the “reformulation tree”
representation.

The proposed reformulation tree approach is denoted as
RTree, which uses SDM as the underlying retrieval model.
Two parameters are used during the tree construction, Sub-
Num and ModNum, where SubNum denotes how many sub-
set queries are used in the reformulation tree and ModNum

denotes how many subset queries are further modified to
generate query substitutions. In this paper, SubNum takes
all subset queries generated and ModNum is set as 10. The
effect of these parameters will be explored in the following
part of this paper.

The standard performance measures, mean average pre-
cision (MAP), precision at 10 (P10) and the normalized
discounted cumulative gain at 10 (NDCG10), are used to
measure retrieval performance. The two-tailed t-test is con-
ducted for significance.

6.1 Example
In Table 3, we show some examples of the generated re-

formulation trees. As mentioned previously, some stopwords
and stop patterns are removed from the original query. Those
words are kept to improve readability. Note that they are
not used for retrieval and subset query generation.

Table 3 shows that the subset queries and the substituted
queries are effectively combined within the same framework.
For example, given the original query“what allegations have
been made about enrons culpability in the california energy
crisis”, the reformulation tree first generates high quality
subset queries “enrons culpability california energy crisis”
and “california energy crisis” and then further modifies “cal-
ifornia energy crisis” as two substituted queries “california
gas prices” and “california electricity crisis”.

6.2 Retrieval Performance
The first experiment is conducted to compare the retrieval

performance of the proposed RTree method with the base-



Table 4: Comparisons of retrieval performance. ⋆ denotes significantly different from the baseline.
Gov2 Robust04 Wt10g ClueWeb

MAP P10 NDCG10 MAP P10 NDCG10 MAP P10 NDCG10 MAP P10 NDCG10

Non-stemmed Index
QL 22.46 49.13 35.94 22.40 39.12 39.63 16.43 28.97 27.86 10.96 21.63 14.10
SDM 23.98 51.01 38.81 23.30 40.04 40.60 16.76 31.65 29.82 11.52 22.76 15.04
KC 24.88 50.87 37.72 23.87 40.76 40.75 17.46 30.82 29.55 n/a n/a n/a
CRF-QL 23.36 50.81 37.96 22.85 39.28 39.98 16.81 29.79 28.48 11.00 21.84 14.16
CRF-SDM 24.82 53.36 40.55 23.65 40.32 41.15 18.25 31.13 30.71 11.53 21.94 14.85
RTree 26.70 53.96 40.78 25.07 42.33 42.64 19.44 34.02 32.80 12.94 26.43 18.05
vs. QL 18.9%⋆ 9.8%⋆ 13.5%⋆ 11.9%⋆ 8.2%⋆ 7.6%⋆ 18.3%⋆ 17.4%⋆ 17.7%⋆ 18.1%⋆ 22.2%⋆ 28.0%⋆

vs. SDM 11.3%⋆ 5.8%⋆ 5.1%⋆ 7.6%⋆ 5.7%⋆ 5.0%⋆ 16.0%⋆ 7.5%⋆ 10.0%⋆ 12.3%⋆ 16.1%⋆ 20.0%⋆

vs. KC 7.3%⋆ 6.1%⋆ 8.1%⋆ 5.0%⋆ 3.9%⋆ 4.6%⋆ 11.3%⋆ 10.4%⋆ 11.0%⋆ n/a n/a n/a
vs. CRF-QL 14.3%⋆ 6.2%⋆ 7.4%⋆ 9.7%⋆ 7.8%⋆ 6.7%⋆ 15.6%⋆ 14.2%⋆ 15.2%⋆ 17.6%⋆ 21.0%⋆ 27.5%⋆

vs. CRF-SDM 7.6%⋆ 1.1% 0.6% 6.0%⋆ 5.0%⋆ 3.6%⋆ 6.5% 9.3%⋆ 6.8% 12.2%⋆ 20.5%⋆ 21.5%⋆

Porter-stemmed Index
QL 25.43 52.21 38.42 25.49 43.13 42.89 19.61 32.68 31.31 12.64 23.57 15.46
SDM 27.85 54.03 40.14 26.83 44.94 44.78 20.87 35.77 33.21 13.01 24.90 15.87
KC 27.52 53.83 39.10 25.97 41.65 42.29 21.01 34.02 32.29 n/a n/a n/a
CRF-QL 26.19 53.36 39.51 25.81 43.01 43.23 20.11 32.06 30.93 12.94 25.00 16.37
CRF-SDM 28.49 55.91 41.95 26.99 44.86 44.94 21.98 35.05 33.45 13.29 24.08 15.58
RTree 29.85 56.38 41.84 28.00 45.10 45.30 23.80 37.42 35.84 13.69 25.82 18.09
vs. QL 17.4%⋆ 8.0%⋆ 8.9%⋆ 9.8%⋆ 4.6%⋆ 5.6%⋆ 21.4%⋆ 14.5%⋆ 14.5%⋆ 8.3% 9.5% 17.0%
vs. SDM 7.2%⋆ 4.3%⋆ 4.2%⋆ 4.4%⋆ 0.4% 1.2% 14.0%⋆ 4.6% 7.9%⋆ 5.2%⋆ 3.7% 14.0%⋆

vs. KC 8.5%⋆ 4.7% 7.0%⋆ 7.8%⋆ 8.3%⋆ 7.1%⋆ 13.3%⋆ 10.0%⋆ 11.0%⋆ n/a n/a n/a
vs. CRF-QL 14.0%⋆ 5.7%⋆ 5.9%⋆ 8.5%⋆ 4.9%⋆ 4.8%⋆ 18.3%⋆ 16.7%⋆ 15.9%⋆ 5.8% 3.3% 10.5%
vs. CRF-SDM 4.8%⋆ 0.8% -0.3% 3.7%⋆ 0.5% 0.8% 8.3% 6.8%⋆ 7.1%⋆ 3.0% 7.2% 16.1%⋆

Table 3: Examples of the reformulation tree. The
top ranked nodes are displayed. In the original
query Q, the stopwords and stop structures are ital-
icized.

Q: what allegations have been made about enrons
culpability in the california energy crisis
0.194 Q

0.133 enrons culpability california energy crisis
0.047 california energy crisis

0.009 california gas prices
0.008 california electricity crisis

Q: give information on steps to manage control
or protect squirrels
0.148 Q

0.060 control protect squirrels
0.048 control squirrels

0.013 control of ground squirrels
0.012 control squirrel

Q: what is the state of maryland doing to clean up
the chesapeake bay
0.089 Q

0.063 maryland chesapeake bay
0.015 md chesapeake bay
0.009 maryland chesapeake bay watershed

0.034 chesapeake bay
0.007 chesapeake bay watershed
0.006 chesapeake bay river

lines. The baseline methods include QL, SDM, KC, CRF-QL
and CRF-SDM. The results are shown in Table 4. The best
performance is bolded.

Table 4 shows that RTree significantly outperforms all
the baseline methods. Specifically, RTree performs better
than the“bag of word” representations, SDM and KC. Using
the non-stemmed index, RTree significantly improves SDM
and KC on all four collections with respect to all three per-
formance measures. For example, on ClueWeb, RTree im-
proves SDM by 12.3% and 20.0% with respect to MAP and
NDCG10, respectively. On Wt10g, RTree improves KC by
11.3% and 11.0% with respect to MAP and NDCG10, re-
spectively. On the Porter-stemmed index, similar results
are also observed. These results show that the “reformula-
tion tree” representation is more effective than the “bag of
words” representation on modeling verbose queries, since the
former explicitly models the reformulated query, while the
latter only considers words and phrases.

Furthermore, RTree also outperforms the “query distribu-
tion” representations, CRF-QL and CRF-SDM. Using the
non-stemmed index, RTree outperforms CRF-QL and CRF-
SDM on all four collections with respect to all three mea-
sures. Most of the improvements are significant. For ex-
ample, on ClueWeb, RTree improves CRF-QL by 17.6%
and 27.5% with respect to MAP and NDCG10, respectively.
Also, RTree improves CRF-SDM by 12.2% and 21.5% with
respect to MAP and NDCG10, respectively. The results
using the Porter-stemmed index are similar. These obser-
vations indicate that the “reformulation tree” representation
is better than the “query distribution” representation, since
the former effectively models the relationships between the
reformulated queries.
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Figure 5: Analysis of relative increases/decreases of
MAP over QL using the non-stemmed index.

It is not surprising that RTree brings more improvements
over the baselines using the non-stemmed index than using
the Porter-stemmed index, since some effect of query substi-
tutions, especially those generated using the morphologically
similar words, is provided by the Porter stemmer.

6.3 Further Analysis
Table 4 shows that RTree significantly outperforms the

baseline methods. In this part, we make detailed compar-
isons between RTree and the baseline approaches.

First, we compare RTree with SDM and KC. Specifically,
we analyze the number of queries each approach increases
or decreases over QL. Fig 5 demonstrates the histograms of
SDM, KC and RTree based on the relative increases/decreases
of MAP over QL. The non-stemmed index is used in Fig. 5.
Similar results are observed using the Porter-stemmed in-
dex.

Fig. 5 shows that RTree improves more queries than SDM

Table 5: Comparisons with CRF-QL and CRF-
SDM. “+”, “=” and “-” denote that RTree performs
better, equal or worse than CRF-QL and CRF-SDM
with respect to MAP using the non-stemmed index.
RTree vs. CRF-QL vs. CRF-SDM

+ = - + = -
Gov2 71.81% 0.67% 27.52% 63.09% 0.67% 36.24%
Robust04 68.27% 0.00% 31.73% 63.05% 0.00% 36.95%
Wt10g 62.89% 2.06% 35.05% 62.89% 1.03% 36.08%
ClueWeb 65.31% 2.04% 32.65% 70.41% 2.04% 27.55%

Table 6: The effect of subset query selection and
query substitution with respect to MAP

MAP Gov2 Robust04 Wt10g ClueWeb
SDM 23.98 23.30 16.76 11.52
KC 24.88 23.87 17.46 n/a
CRF-QL 23.36 22.85 16.81 11.00
CRF-SDM 24.82 23.65 18.25 11.53
RTree-Subset 25.80 24.76 18.11 11.73
RTree 26.70 25.07 19.44 12.94

and KC. For example, on Gov2, RTree improves 110 queries
out of the total 150 queries, while SDM and KC improve
89 and 91, respectively. On Robust04, RTree improves 174
queries out of the total 250 queries, while SDM and KC
improve 129 and 153 queries, respectively. At the same
time, RTree also hurts less queries than SDM and KC. These
observations indicate that RTree is more robust than both
SDM and KC.

Furthermore, we compare RTree with CRF-QL and CRF-
SDM. CRF-QL and CRF-SDM only consider subset query
selection, while RTree combines both subset query selection
and query substitution. The comparisons between them in-
dicate whether RTree effectively combines two query oper-
ations to improve verbose queries. Specifically, we analyze
the percent of queries where RTree performs better than
CRF-QL and CRF-SDM, respectively. The results using
the non-stemmed index are reported in Table 5.

Table 5 shows that RTree consistently outperforms CRF-
QL and CRF-SDM for 60%-70% queries on all four collec-
tions. These results indicate that RTree provides an effec-
tive way to combine different query operations, which signifi-
cantly improves the retrieval performance of verbose queries.

6.4 Subset Selection vs. Query Substitution
RTree combines subset query selection and query substi-

tution together using a two-level reformulation tree. Previ-
ous experiments have demonstrated the general effect of this
approach. In this part, we split the effect of subset query
selection and query substitution. Specifically, we propose
a one-level reformulation tree, which only consists of sub-
set queries. This one-level reformulation tree is denoted as
RTree-Subset. The comparisons between RTree-Subset and
other approaches using the non-stemmed index are shown
in Table 6.

In Table 6, RTree-Subset outperforms the baseline meth-
ods, which indicates the effect of subset queries in the re-
formulation tree. When query substitutions are introduced,
RTree further improves RTree-Subset. Thus, both subset se-
lection and query substitution account for the performance
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Figure 6: The effect of the parameter SubNum. x-axis
denotes SubNum and y-axis denotes MAP.

of RTree. In addition, RTree-Subset also performs better
than other subset query selection methods such as CRF-QL
and CRF-SDM. The advantages of RTree-Subset come from
the weight estimation method proposed in Section 5.2 and
the features used 5.3.

6.5 Parameter Analysis
As described in Section 5.1, there are two parameters used

during the process of constructing the reformulation tree,
SubNum and ModNum. SubNum denotes the number of
subset queries used in the reformulation tree and ModNum

denotes the number of subset queries that are modified to
generate query substitutions. In this subsection, we explore
the effect of these two parameters. Fig. 6 shows the effect
of the parameter SubNum, where SubNum takes the values
5, 10, 20, 30 and “all”, where ModNum is fixed as 10. Here,
“all” indicates using all subset queries generated.

Fig. 6 shows that the best number of subset queries used
in the reformulation tree is inconsistent. On Gov2, the
performance becomes stable after using the top 20 subset

Table 7: The effect of the parameter ModNum with
respect to MAP

ModNum Gov2 Robust04 Wt10g ClueWeb
3 29.52 27.08 22.61 13.77
5 29.63 27.11 22.72 13.75
10 29.66 27.16 22.75 13.71

queries. On Robust04 and Wt10g, the performance keeps
increasing when more subset queries are considered. On
ClueWeb, the performance drops when more than the top
20 queries are used. One possible explanation for these ob-
servations is provided. Robust04 and Wt10g are relatively
small collections, thus using more subset queries is likely to
retrieve more relevant documents. However, when the size of
the collection becomes very large such as Gov2, using more
subset queries does not help much retrieval all relevant doc-
uments. If the collection is not only big but also contains
much noise such as ClueWeb, using more subset queries even
hurts the performance.

Table 7 shows the retrieval performance when ModNum

takes three different values, i.e. 3, 5 and 10, where SubNum

is set as 10.
Table 7 shows that there is not much performance change

when ModNum is bigger than 3, which indicates that mod-
ifying the top three subset queries is enough to achieve most
of the performance of RTree.

7. EFFICIENCY
In this part, we discuss the efficiency of using the refor-

mulation tree model for retrieval. Eq. 1 shows that we
first calculate the retrieval score for each reformulated query
(sc(qr, D)) and then combine these scores together using the
weights assigned to the reformulated queries (w(qr)). At
first glance, Eq. 1 is inefficient, since we need to run multiple
queries. However, it can be easily optimized. Eq. 7 shows
that sc(qr, D) consists of the scores of the words and bigrams
in qr. Since all the reformulated queries in the reformula-
tion tree are generated from the same original query, they
share a lot of words and bigrams. Thus, the scores of these
words and bigrams can be reused by different reformulated
queries. For example, the words and bigrams in the subset
queries all come from the original query. Therefore, we only
need to calculate the scores for every word and bigram in
the original query and then reuse these scores for each subset
query. Furthermore, query substitutions may introduce new
words and bigrams, but the number of these new words and
bigrams are limited. Table 7 shows that query substitutions
generated from the top three subset queries are enough to
achieve good retrieval performance. In general, the proposed
reformulation tree model can be efficiently implemented for
retrieval.

8. CONCLUSION
Complex queries pose a new challenge to search systems.

In order to combine different query operations and model the
relationships between the reformulated queries, a new query
representation is proposed in this paper, where the original
query is transformed into a reformulation tree. A specific
implementation is described for verbose queries, which com-
bines subset query selection and query substitution within
a principled framework. A weight estimation method is also



proposed to assign the weight to each reformulated query by
directly optimizing the retrieval performance.

In the future, this query representation will be applied
to other search tasks involving complex queries such as the
cross-lingual retrieval and diversifying the search results.

Acknowledgments

This work was supported in part by the Center for Intel-
ligent Information Retrieval and in part by ARRA NSF
IIS-9014442. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the
authors and do not necessarily reflect those of the sponsor.

9. REFERENCES

[1] N. Balasubramanian, G. Kumaran, and V. Carvalho.
Exploring reductions for long web queries. In
Proceeding of the 33rd international ACM SIGIR

conference on Research and development in

information retrieval, pages 571–578. ACM, 2010.

[2] M. Bendersky and W. B. Croft. Discovering key
concepts in verbose queries. In SIGIR08, pages
491–498, Singapore, 2008.

[3] M. Bendersky and W. B. Croft. Discovering key
concepts in verbose queries. In SIGIR08, pages
491–498, Singapore, 2008.

[4] M. Bendersky, D. Metzler, and W. B. Croft. Learning
concept importance using a weighted dependence
model. In WSDM10, New York City,NY, 2010.

[5] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis,
and S. Vigna. The query-flow graph: model and
applications. In CIKM08, pages 609–618, 2008.

[6] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li.
Learning to rank: from pairwise approach to listwise
approach. In ICML07, pages 129–136, New York, NY,
USA, 2007. ACM.

[7] J. Guo, G. Xu, H. Li, and X. Cheng. A unified and
discriminative model for query refinement. In
SIGIR08, pages 379–386, Singapore, 2008.

[8] B. He and I. Ounis. Inferring query performance using
pre-retrieval predictors. In SPIRE04, pages 43–54,
2004.

[9] J. Jeon, W. B. Croft, and J. H. Lee. Finding similar
questions in large question and answer archives. In
Proceedings of the 14th ACM Conference on

Information and Knowledge Management, pages
84–90, 2005.

[10] V. Jijkoun and M. de Rijke. Retrieving answers from
frequently asked questions pages on the web. In
Proceedings of the 14th ACM Conference on

Information and Knowledge Management, pages
76–83, 2005.

[11] R. Jones, B. Rey, O. Madani, and W. Greiner.
Generating query substitutions. In WWW06, pages
387–396, Ediburgh, Scotland, 2006.

[12] G. Kumaran and J. Allan. A case for shorter queries,
and helping users creat them. In ACL07, pages
220–227, Rochester,New York, 2007.

[13] G. Kumaran and V. R. Carvalho. Reducing long
queries using query quality predictors. In SIGIR09,
pages 564–571, Boston, MA, 2009.

[14] L. Larkey. A patent search and classification system.
In Proceedings of the 4th ACM Conference on Digtal

Libary, pages 179–187, Berkeley, CA, 1999.

[15] V. Lavrenko and W. B. Croft. Relevance based
language models. In SIGIR01, pages 120–127, New
Orleans, LA, 2001.

[16] M. Lease. An improved Markov random field model
for supporting verbose queries. In SIGIR09, pages
476–483, Boston,MA, 2009.

[17] M. Lease, J. Allan, and W. B. Croft. Regression rank:
learning to meet the oppotunity of descriptive queries.
In SIGIR05, pages 472–479, Salvador,Brazil, 2005.

[18] Q. Mei, K. Klinkner, R. Kumar, and A. Tomkins. An
analysis framework for search sequences. In CIKM

’09: Proceeding of the 18th ACM conference on

Information and knowledge management, pages
1991–1994. ACM, 2009.

[19] D. Metzler and W. B. Croft. Combining the language
model and inference network approaches to retrieval.
Information Processing and Management,
40(5):735–750, 2004.

[20] D. Metzler and W. B. Croft. A Markov random field
model for term dependencies. In SIGIR05, pages
472–479, Salvador,Brazil, 2005.

[21] D. Metzler and W. B. Croft. Latent concept expansion
using markov random fields. In SIGIR07, pages
311–318, Amsterdam, the Netherlands, 2007.

[22] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In SIGIR98, pages
275–281, Melbourne, Australia, 1998.

[23] M. F. Porter. An algorithm for suffix stripping.
Program, 14(3):130–137, 1980.

[24] S. Riezler, A. Vasserman, I. Tsochantaridis, V. Mittal,
and Y. Liu. Statistical machine translation for query
expansion in answer retrieval. In Proceedings of the

45th Annual Meeting of the Association of

Computational Linguistics, pages 464–471, Prague,
Czech Republic, June 2007. Association for
Computational Linguistics.

[25] Y. Z. S. Cronen-Townsend and W. B. Croft.
Predicting query performance. In SIGIR02, pages
299–306, New York, NY, 2002.

[26] X. Wang and C. Zhai. Mining term association
patterns from search logs for effective query
reformulation. In CIKM08, pages 479–488, Napa
Valley, CA, 2008.

[27] X. Xue and W. B. Croft. Representing queries as
distributions. In SIGIR10 Workshop on Query

Representation and Understanding, pages 9–12,
Geneva, Switzerland, 2010.

[28] X. Xue, W. B. Croft, and D. A. Smith. Modeling
reformulation using passage analysis. In Proceedings of

the 19th ACM international conference on

Information and knowledge management, CIKM ’10,
pages 1497–1500, 2010.

[29] X. Xue, S. Huston, and W. B. Croft. Improving
verbose queries using subset distribution. In
Proceedings of the 19th ACM international conference

on Information and knowledge management, CIKM
’10, pages 1059–1068, New York, NY, USA, 2010.

[30] C. Zhai and J. Lafferty. A study of smoothing



methods for language models applied to ad hoc
information retrieval. In SIGIR01, pages 334–342,
New Orleans, LA, 2001.


