
An Optimal Clock Period Selection
Method Based on Slack Minimization
Criteria

EN-SHOU CHANG and DANIEL D. GAJSKI
University of California at Irvine
SANJIV NARAYAN
Viewlogic Systems, Inc.

An important decision in synthesizing a hardware implementation from a behavioral descrip-
tion is selecting the clock period to schedule the datapath operations into control steps. Prior
to scheduling, most existing behavioral synthesis systems either require the designer to
specify the clock period explicitly or require that the delays of the operators used in the design
be specified in multiples of the clock period. An unfavorable choice of clock period could result
in operations being idle for a large portion of the clock period and, consequently, affect the
performance of the synthesized design. In this article, we demonstrate the effect of clock slack
on the performance of designs and present an algorithm to find a slack-minimal clock period.
We prove the optimality of our method and apply it to several examples to demonstrate its
effectiveness in maximizing design performance.

Categories and Subject Descriptors: B.5.2 [Hardware]: Register-Transfer-Level Implementa-
tion

General Terms: Design, Measurement, Performance

Additional Key Words and Phrases: Clock period, clock slack, performance estimation,
scheduling

1. INTRODUCTION

In recent years, logic synthesis has come to be recognized as an integral
part of the design process, and this recognition has led to an evolutionary
change in design methodology into a describe-and-synthesize [Gajski et al.
1994, 1991] approach. The advantage of this new methodology is that it
allows us to specify a design in a purely behavioral form, devoid of any
implementation details. For example, we can describe a design using

Authors’ addresses: E. S. Chang and D. J. Gajski, University of California at Irvine,
Department of Information and Computer Science, Irvine, CA 92717; S. Narayan, Viewlogic
Systems, Inc., 293 Boston Post Rd. West, Marlboro, MA 01752.
Permission to make digital /hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1996 ACM 1084-4309/96/0700–0352 $03.50

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996, Pages 352–370.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F234860.234864&domain=pdf&date_stamp=1996-07-01

Boolean equations, finite-state, and the like. An implementation for the
design can be generated by automatic synthesis tools, instead of manual
design, which is usually tedious.
Behavioral synthesis involves the transformation of a design specifica-

tion into a set of interconnected RT-components [Gajski et al. 1991] that
satisfy the behavior and some specified constraints, such as the number of
functional units, performance, and so on. Three major synthesis tasks are
applied during the transformation [Gajski et al. 1991]: allocation, schedul-
ing, and binding. The purpose of allocation is to determine the number of
resources, such as registers, buses, and functional units, that will be used
in the implementation. The task of scheduling is intended to partition the
behavioral description into time intervals, called control steps. During each
control step, which is usually one clock-cycle long, data will be fetched from
a register, transformed by a functional unit, and written back to a register.
All register transfers in any given control step will be executed concur-
rently. The binding task assigns variables to storage units and operations
to functional units, as well as insures that there is a distinct communica-
tion path or bus assigned for each transfer of data between the storage and
functional units.
Another major task in behavioral synthesis is the selection of the clock

period that will be used for implementing the design. Selecting the clock
period before performing synthesis tasks is important because the choice of
clock period can affect the execution time and the resources required to
implement the design. For example, consider using three different clock
periods (380 ns, 150 ns, and 80 ns) for implementing the dataflow graph in
Figure 1. In Figure 1(a), clock period 380 ns allows the fastest possible
execution time but requires two multipliers and four adders to implement
the design (the multiplier and adder have a delay of 150 ns and 80 ns,
respectively). On the other hand, a clock period of 150 ns in Figure 1(b)

Fig. 1. Effect of clock period on execution time and resources required.

Optimal Clock Period Selection Method • 353

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

requires only one adder and one multiplier, but results in a total execution
time of 600 ns. The most efficient implementation, in terms of performance
per resource, is obtained with an 80 ns clock period, as shown in Figure
1(c). Its execution time is comparable to that of the first implementation,
and it requires the same minimal number of resources required by the
second implementation.
In most synthesis tools [Balakrishnan and Marwedel 1989; Paulin et al.

1986; Paulin and Knight 1989; Walker and Camposano 1991; McFarland
and Kowalski 1990], the clock period must be specified by the designer
before synthesis—either the clock period is specified explicitly or the delays
of components are expressed in multiples of the clock period. A designer-
specified clock period is applicable when the design is developed as part of
a larger system. In this case, the clock period used for some of the standard
components in the system is known and can be used for the remainder of
the design. In some other cases, where the clock period is not specified,
clock period selection assumes great importance. It is evident from Figure 1
that the choice of a particular clock period has a strong impact on the
quality of the design both in terms of hardware size and its performance.
Thus it is essential that clock period selection become an integral part of
synthesis tools, which should provide the designer with feedback as to how
various clock periods could possibly affect the design quality.
Some synthesis tools [Parker et al. 1986; Park and Parker 1985; Jain et

al. 1988] equate the clock period with the delay of the slowest functional
unit in the design. However, this scheme leads to underutilization of the
faster functional units. The reason for low utilization of faster units is that
in the presence of a slower functional unit such as a multiplier, which has a
large delay, the clock period will be at least as long as the multiplier delay,
and faster functional units implementing other operations (such as an
addition) will be idle for a significant portion of the clock cycle. Hence
longer execution times can be expected for a design using the maximum-
operator-delay clock.
In order to improve the performance of the design, we need to minimize

the time that operations are idle (i.e., slack time) in any given control step.
In this article we present a method to compute the clock period for
implementing a given behavioral description with a view to eliminating or
minimizing the idle time associated with datapath operations.
An overview of existing approaches for estimating the clock period is

presented in Section 2. We explain our design model in Section 3. Section 4
presents a formulation of the clock estimation problem. We formally prove
some properties of the zero-slack clock period in relation to the delays of
the functional units that are used in the design in Section 5. In cases where
it is not possible to entirely eliminate the slack associated with design
operations, we present an algorithm to determine a slack-minimal clock
period. Idle time of the functional units is discussed in Section 6. Experi-
mental results on several benchmarks are shown in Section 7, and we
present our conclusions in Section 8.

354 • E.-S. Chang et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

2. PREVIOUS WORK

A few synthesis tools [Parker et al. 1986; Park and Parker 1985; Jain et al.
1988] have incorporated clock estimation techniques that are used to either
examine area-time tradeoff in the design or to guide synthesis tasks such as
scheduling.
In MAHA [Parker et al. 1986], the critical path in the dataflow graph is

determined first. The maximum delay of any operator in the critical path is
chosen as the clock period.
The clocking scheme proposed in Park and Parker [1985] computes a lower

bound for the clock period of a multistage system to be the longest stage time.
Because the longest stage time is at least as long as the longest operator delay,
this scheme computes a clock period greater than or equal to the longest
operator delay.
A model for area-time estimation is presented in Jain et al. [1988]. The

dataflow graph is divided into a number of time steps. The critical path
delay and the number of time steps are used to compute the lower bound on
the clock as given in the following equation.

CLK5MAXFCritical Path Delay/Time Steps,
MAX@Operator Delay# G. (1)

Each of the preceding approaches assumes that each operation must be
executed within one clock cycle. Multicycle operations, where an operation
could be scheduled in two or more control steps, are not permitted. Conse-
quently, they are similar to each other in one respect—the clock period
calculated by each of the preceding methods is at least as long as the largest
operator delay. We refer to these clock estimation methods as the maximum-
operator-delay methods. The advantage of these methods is that they are
simple to implement and their algorithmic complexity is linear with respect to
the number of different operation types that are used to implement the design.
Let the clock period computed by these methods be denoted by CLKMOD.

Let Delay(operi) denote the delay of operation type operi. From the preced-
ing analysis of maximum-operator-delay methods,

CLKMOD$MAX@Delay(operi!], for all operator types ti . (2)

However, using the maximum-operator-delay clock period will lead to
underutilization of the functional units in cases where the delays differ
widely. Consequently, the performance of the design (start to finish execu-
tion time) is slower than cases where the idle time is somehow minimized.
Incorporating the effect of clock period on the idle times of operations,
during clock selection, forms the main motivation of the slack minimization
method presented in this article.

3. DESIGN MODEL

The design model on which the clock calculation is based is the Finite-State
Machine with Datapath (FSMD) [Gajski et al. 1991]. Figure 2(a) shows the

Optimal Clock Period Selection Method • 355

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

design model. Thin dash lines in the figure indicate part of the control
lines. Some of them are omitted for simplicity.
A FSMD is comprised of a controller and a datapath. The controller is a

finite-state machine that contains a State Register, a Control Pipeline
Register, and two combinatorial logic blocks, namely, the Next-State Logic

Fig. 2. (a) Design model for clock calculation; (b) graphic symbol and function table for a
register; (c) master-slave flip-flop.

356 • E.-S. Chang et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

and the Control (Output) Logic. The Control Logic drives the control lines
for the datapath components, for example, functional units, registers,
MUXes, and the like. The Next-State Logic computes the next state that
will be stored in the State Register. The State Register and the Control
Pipeline Register are master-slave type flip-flops [Gajski 1996; VLSI Tech-
nologies Inc. 1992], as illustrated in Figure 2(c). Thus the State Register
can retain current state for the combinatorial logic blocks and the Control
Pipeline Register can retain control signals for the datapath components
through the entire clock.
The datapath is comprised of registers; functional units (FU), such as

adders, subtracters, and multipliers; and interconnections, such as selec-
tors or buses. A register in the datapath has a load-enable control, as
shown in Figure 2(b). In Figure 2(a), the load-enable control for each
register is individually controlled by the controller. Only a one-phase clock
is required in the design model. Each register is not only controlled by the
clock signal but also controlled by the load-enable signal. Thus the register
is controlled by the controller to store the data present on a demanded clock
and will retain the data until it is controlled to store the data present on
another clock. It is not necessary to store data present on every clock.
For example, if the left FU is going to output the result to register R1 and

the right FU is going to output the result to register R3, in addition to
properly switching those MUXes in front of the registers, the controller will
switch on load-enable controls for register R1 and register R3 and keep off
load-enable controls for other registers. Thus register R1 and register R3
will input their new data, and the data stored in other registers will not be
changed.
The bold solid lines in Figure 2(a) show the dataflow for a typical

operation. A typical operation reads the operands from the registers,
computes the result in the functional units, and finally writes the result
into the destination register. Therefore the delay delay(operi) associated
with operation type operi is the following,

delay~operi! 5 Treg1OpDelay~operi! 1 Tinterconnection , (3)

where Treg is the delay for reading data from a register and writing data to
a register, OpDelay(operi) is the delay for the functional unit of type operi,
and Tinterconnection is the delay for the interconnection. For a MUX-based
design, the Tinterconnection includes delay for two selectors; for a bus-based
design, the Tinterconnection includes the total delay for two tristate drivers
and two selectors.
Operations can be executed over several clock cycles. For example, when

an operation with delay of 90 ns is executed and the clock period is 50 ns,
the correspondent source registers will continue to output the data stored
for two clock cycles to meet the time requirement for the operation, namely,
to allow sufficient time for computing the result and storing the result in
the destination register. Thus it would take two clock cycles to execute the
operation.

Optimal Clock Period Selection Method • 357

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

4. THE SLACK MINIMIZATION CRITERIA

In this section, we present a new approach to guiding clock period selection
based on slack minimization criteria. We first define a few terms that are
used frequently throughout this article.

DFG completion time. It represents the execution time of a DFG (Data
Flow Graph). If the DFG is scheduled into C control steps with a clock
period clk, then the completion time of the DFG, TDFG, is defined as:

TDFG 5 C 3 clk. (4)

Operator occurrences. This represents the number of occurrences of an
operation type operi in a given behavioral description or its corresponding
DFG, and is denoted by occur(operi).

Clock slack [Gajski et al. 1994]. For a given clock period, the clock slack
associated with an operation (or its corresponding functional unit) is
defined as the difference between the operation delay and the next higher
multiple of the clock cycle. In other words, the clock slack is equivalent to
the time that the functional unit would be idle if it were scheduled into a
control step. For a given clock period clk and operation type operi, the
clock slack, denoted by slack(clk, operi), is computed using the following
equation,

slack~clk, operi! 5 ~delay~operi! 4 clk 3 clk! 2 delay~operi!. (5)

Figure 3 shows the clock slack associated with three types of operations.
In this example, the clock period is determined by the maximum-operator-
delay method. The lightly shaded regions represent the delays of three
operation types. The clock slacks are represented by the dark regions.

Average slack. For a given clock period clk, the average slack, denoted
by ave slack(clk), is defined as the average clock slack of each operation in

Fig. 3. Functional unit clock slack with clock period 163 ns.

358 • E.-S. Chang et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

the design. Let occur(operi) represent the number of occurrences of opera-
tion type operi in the design, then the average slack is defined as:

ave slack(clk) 5
Oi$occur(operi! 3 slack~clk, operi!}

Oi occur~operi!
. (6)

Let us consider the example shown in Figure 4, which graphically depicts

Fig. 4. Clock slack and average slack for HAL differential equation with clock period 65 ns:
(a) dataflow graph; (b) occurrences and delays of each operation type; (c) clock slack; (d)
average slack.

Optimal Clock Period Selection Method • 359

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

the clock slack associated with the different operations in HAL [Paulin et
al. 1986], a second-order differential equation example. The components
used are from the VDP100 datapath library [VLSI Technologies Inc. 1988].
Figure 4(a) shows the dataflow graph for this design. Figure 4(b) shows the
occurrences and the delays of each operation type. In Figure 4(c), the delay
of each operation type is shown graphically as the length of the lightly
shaded regions along the X-axis. The number of occurrences of the opera-
tions in the behavior is the height of the shaded region along the Y-axis.
The dark shaded regions represent the clock slack for each operation type.
The average slack for a design of clock period 65 ns is 24.4 ns, graphically
shown in Figure 4(d).
We now formulate the Slack Minimization problem. The main objective of

the slack minimization problem is to minimize the clock slack in each clock
cycle with the assumption that a smaller clock slack on the average will
decrease the execution time of the given behavior. The clock period that
produces minimum average slack, within a certain clock range, is selected
as the slack-minimal clock period. Thus the problem is defined as follows.

Find clk $ clkmin that
Minimizes ave slack(clk),

(7)

where clkmin is the lower bound of the clock period. The designer or
physical restrictions determine clkmin. For example, a component library
usually specifies the shortest clock period at which the clock input of a
bistate circuit may be driven with stable transitions of logic levels.

5. COMPUTING A ZERO-SLACK CLOCK

Obviously, “zero slack” is a lower bound of the clock slack. In this section,
we introduce two extended definitions of common divisor and greatest
common divisor (GCD) and then demonstrate how a clock period is selected
to obtain zero slack.

Definition 5.1. A common divisor in the domain of real numbers is
defined as:

A real number r is a common divisor of a set of real numbers {t1, t2,
. . . , tn}
[positive integer ki] rki 5 ti, i.

Definition 5.2. A greatest common divisor (GCD) in the domain of real
numbers is defined as:

GCD: set of R 3 R
GCD{ t1, t2, . . . , tn} [

the largest common divisor associated with {t1, t2, . . . , tn}.

Whenever we select a common divisor for the delays of all the operation
types used in the design to be the system clock period, it is directly induced

360 • E.-S. Chang et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

from Definition 5.1 that all the operations can be executed completely in
one or more clock cycles without any clock slack. We prove this property
formally in the following.

THEOREM 5.1. A given clock period causes no clock slacks for a given set
of operations {oper1 , oper2 , . . . , opern} if and only if the clock period is a
common divisor of the delay time {t1, t2, . . . , tn} of those operations.

PROOF. First, we prove the necessity. Let the delays of the operation
types be {t1, t2, . . . , tn} and the given clock period be a common divisor r
of them. According to Definition 5.1, there are corresponding positive
integers {k1, k2, . . . , ki} such that rki 5 ti for all i; that is, an operation of
type operi can be executed exactly in ki clock cycles with no slack.
Second, we prove the sufficiency. Assume that the delays of the operation

types are {t1, t2, . . . , tn} and that there are corresponding positive
integers {k1, k2, . . . , ki} such that an operation of type operi can be
executed exactly in ki clock cycles with no slack, then the clock period r
satisfies Definition 5.1: positive integer ki] rki 5 ti, i. e

Because a clock period that causes zero-slack should be a common divisor
of the delays of those operation types, it is trivial to infer the next theorem.

THEOREM 5.2. The longest clock period that causes no clock slack for a
given set of operations is the GCD of the delays of these operations.

From Theorem 5.2, we can see that if we select the GCD of the delays of all
the operation types used in the design to be the clock period, there will be no
idle portion in all of the clock cycles, no matter what operations are executed
in each clock cycle; that is, the longest clock period for which we will have a
zero clock slack for all operation types is the GCD of their delays.

6. SLACK MINIMIZATION METHOD

Although using the GCD of all the operation delays as the clock period will
result in zero clock slack, it is sometimes too small to be practically imple-
mented. Thus we need a method to select a good clock period with the smallest
average slack within the feasible range when the GCD is not applicable.
Consider the definition of the slack minimization problem [Eq. (7)]. To

find out the properties of Eq. (7), we expand the equation into a formula of
primary terms, shown in the following.

Find clk $ clkmin that (8)

Minimizes

Oi$occur~operi! 3 ~~delay~operi! 4 clk 3 clk! 2 delay~operi!!%

Oi occur~operi!
.

Optimal Clock Period Selection Method • 361

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

Because we are minimizing Eq. (8) over a range of clock period values,
terms in the equation that are invariant regardless of the specific clock
period value being considered (clk) can be treated as constants. Thus the
problem can be further simplified into Eq. (9) shown in the following.

Find clk $ clkmin that Minimizes O
i

$ki 3 ~~di 4 clk 3 clk! 2 di!%, (9)

where both ki 5 (occur(operi))/(i occur(operi)) and di 5 delay(operi) are constants
under various clk.
Let fi(clk) denote a single term of Eq. (9); we can obtain the following

equation.

fi~clk! 5 ki 3 ~~di 4 clk 3 clk! 2 di! (10)

5 5
ki 3 ~clk 2 di! where di # clk

ki 3 ~m 3 clk 2 di! where
1

m
di # clk ,

1

m 2 1
di ,

; integer m . 1.

For example,

when
1

2
di # clk , di , f~clk! 5 ki 3 2 3 clk 2 di ;

when
1

3
di # clk ,

1

2
di , fi~clk! 5 ki 3 3 3 clk 2 di ;

when
1

4
di # clk ,

1

3
di , fi~clk! 5 ki 3 4 3 clk 2 di .

Figure 5 graphically depicts the function Eq. (10). Therefore we observe the
following useful properties on Eq. (10).

(1) A discontinuous point (break point) of this function is created if and
only if it is on clk 5 di/m, where m is a positive integer.

(2) The gradient between any two adjacent discontinuous points is fixed.
(3) A minimal value is generated if and only if it is on a discontinuous

point.

Because Eq. (9) is a summation of Eq. (10), it inherits these properties
from Eq. (10). These properties of Eq. (9) can be seen clearly in Figure 6, an
example of the function diagram of Eq. (9) which is computed from the HAL
second-order differential equation example [Paulin et al. 1986]. With these

362 • E.-S. Chang et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

properties we can derive the minimal average slack by examining all the
discontinuous points and the boundary, clkmin.
The slack minimization algorithm, which computes the clock period with

the minimum average slack, is outlined in Figure 7. First we follow the
definition of operator occurrences to compute occur(operi) of each operation
type operi. Then we search all the discontinuous points of the function
ave slack(clk) defined in Eq. (6) to find the clock period min slack clk that
will cause minimum average slack within the clock range specified. The
value clkmin is the lower bound of the clock range.
The time complexity of computing operator occurrences is O(n), where n

is the number of nodes in the DFG provided. The time complexities of
computing function ave slack(clk) is O(m), where m is the number of the
operation types used. The number of points searched is

O
i

delay~operi!

clkmin 1 1, (11)

which is O(m). Thus the overall time complexity is O(n 1 m2).

Fig. 5. fi(clk) 5 ki 3 ((di 4 clk 3 clk) 2 di).

Optimal Clock Period Selection Method • 363

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

7. EXPERIMENTAL RESULT

To verify the accuracy of the slack minimization criteria and to prove that
the clock period selected by the slack minimization algorithm can produce
significantly improved design performance, the Slack Minimization method
was applied to several well-known benchmarks, the HAL second order
differential equation [Paulin et al. 1986], a fifth order elliptical filter [Kung
et al. 1985], a AR lattice filter [Jain et al. 1988], a linear phase B-spline
interpolated filter [Pang and Ferrari 1989], and a design with conditional
branches [Kim et al. 1991]. We use the resource-constrained scheduler of
BDA [Ramachandran and Gajski 1994] to perform the scheduling.
The datapath elements we used, shown in Table I(a), are taken from

VLSI Technology Inc. [1992] VCC4DP3 Datapath Library. Computed by Eq.
(3), the delay(operi) we used are shown in Table I(b). The minimum clock
period clkmin is 2.54 ns, which is determined by the speed of the global
control input noninverting buffer of the VCC4DP3 Library.

7.1 Relation Between Average Slack and DFG Completion Time

Figure 8 illustrates the correlation between the average clock slack and the
execution time for the entire behavior. Using an allocation of two functional

Fig. 6. ave slack (clk) 5 (i fi(clk) of HAL example.

364 • E.-S. Chang et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

units for each operation type, the DFG completion time and the average
slack are plotted over a clock range for the fifth order digital elliptical filter
[Kung et al. 1985].
From this figure, we can find clearly the relationship between DFG

completion time and the average slack: smaller average slack is associated
with shorter DFG completion time in a range wherever the functions are
continuous. This property is true regardless of the behavior being synthe-
sized, the resources allocated, or the scheduler involved. When we shrink
the clock period, as long as it does not change the number of clock cycles
needed to execute each operation type, it does not change the number of
total clock cycles needed to execute the behavior. Under such conditions,
not only is the average slack reduced, but the DFG completion time is
shortened as well. However, when the clock period is shrunk such that it
changes the number of clock cycles needed to execute one of the operation
types, the clock slack for the operation type will jump up one clock period
and consequently the average slack will increase. This accounts for the
discontinuous point of the average slack function. At the same time, owing
to the change in the number of clock cycles required to perform an
operation of a specific type, it may change the schedule and consequently
change the number of total clock cycles required to execute the behavior.
Thus a discontinuous point of the DFG completion time function is also
created at the same clock period.
Because there is a strong relationship between the average slack and

DFG completion time, the clock period with the smallest average slack is
an ideal metric to be used while estimating the clock period that will result

Fig. 7. Slack minimization algorithm.

Optimal Clock Period Selection Method • 365

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

in the shortest DFG completion time. Thus we can obtain the best perfor-
mance of the design if we select the clock period with the smallest average
slack.
Moreover, we can find the clock period that results in the fastest DFG

completion time by scheduling the DFG with every clock period at which
the average slack function is discontinuous, and then selecting the one with
the shortest DFG completion time. According to the properties of Eq. (6)
discussed in Section 6, this approach guarantees the optimal solution.
However, this approach is impractical, because repetitive scheduling is
computationally expensive.
The clock periods shown in the following subsections are the exact values

obtained by our algorithm. In actual design, some clock margins might be
considered. The user could utilize a ceiling function to round off the
theoretical result into suitable precision. The user also could choose a
suitable clkmin, which is the lower limit for the clock period.

7.2 Benchmark Results

Table II shows the experimental results of four benchmarks using three
approaches: the maximum-operator-delay method, the slack minimization
method, and the optimal clock period. The optimal clock period is found by
using exhausted search declared in Section 7.1.
In Table II, the third column is the clock period selected by each method.

The fourth column is the average slack computed by Eq. (6). The fifth

Table I. Operation delays derived from VCC4DP3 Datapath Library: (a) datapath elements
used in the designs; (b) delay(operi) we used.

366 • E.-S. Chang et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

column is the DFG completion time after we scheduled each benchmark
with the clock period selected by each method. We schedule them with the
allocation of two functional units of each operation type. Finally, the sixth
column shows the slow-down factors of two clock estimation methods: the
maximum-operator-delay method and the slack minimization method. The
slow-down factor is calculated by Eq. (12) shown in the following.

slow down5
DFG completion time for the clock estimation method

DFG completion time for the optimal clock period
21

(12)

From this table, we can see that the DFG completion time for the clock
period selected by the slack minimization method is very close to the DFG
completion time for the optimal clock period.

Fig. 8. Relation between average slack and DFG completion time using the fifth order
elliptical filter as example.

Optimal Clock Period Selection Method • 367

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

7.3 Effects of Varying Allocation

In Table III, we examine the fact of whether the clock period selected by the
slack minimization method can achieve the DFG completion time that is
closed to the DFG completion time for the optimal clock period, regardless
of the final allocation of functional units used to implement the design. We
scheduled the DFG of the fifth order digital elliptical filter [Kung et al.
1985] with different allocations for the clock period selected by the three
approaches and compared their DFG completion time.
Similar to the results in Section 7.2, the DFG completion time for the

clock period selected by the slack minimization method is very close to the
DFG completion time for the optimal clock period regardless of the alloca-
tion used for finally implementing the design.

7.4 Designs with Conditional Branch

In the case including conditional branches, the Operator Occurrences,
occur(operi) may be defined as following,

occur~operi! 5 O
branch k

$probability~k! 3 block occur~operi, k!%, (13)

where probability(k) is the expectation for executing the branch k, and
block occur(operi, k) is the number of occurrences of the operation type
operi in the branch k.

Table II. Result of four benchmarks scheduled with allocating two functional units of each
operation type.

368 • E.-S. Chang et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

Table IV shows the experimental results for the Kim’s example [Kim et
al. 1991], which includes conditional branches, using three approaches. We
presume equal probability on each branch. From this table, we can see the
slack minimization method also can be used for designs including condi-
tional branches.
Moreover, the GCD method developed in Section 5 can be used for the

case including conditional branches, because the occur(operi) does not affect
the analysis for the GCD method.

8. CONCLUSION

In this article we present a new approach for clock period selection, based
on clock slack minimization criteria, which provide both designers and
synthesis tools with useful methods for the clock period selection.
We prove that the longest clock period that produces no slack for the

functional units used in each clock cycle is the extended GCD defined in
Section 5.

Table III. Result of fifth order elliptical filter scheduled with allocating different number of
functional units.

Table IV. Result of benchmark including conditional branches.

Optimal Clock Period Selection Method • 369

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

In some cases the extended GCD may be too small to be practically
implementable. When the extended GCD is not applicable, a method of
finding the clock period with the smallest average slack in any given range
is presented. Experimental results show that the DFG completion time for
the clock period selected by the method we propose is very close to the
optimal solution.

REFERENCES

BALAKRISHNAN, M. AND MARWEDEL, P. 1989. A synthesis approach for design space explora-
tion. In Proceedings of the Design Automation Conference (Las Vegas, NV), 68–74.

GAJSKI, D. 1996. Principles of Digital Design. Prentice Hall, NJ.
GAJSKI, D., DUTT, N., WU, C., AND LIN, Y. 1991. High-Level Synthesis: Introduction to Chip
and System Design. Kluwer Academic, Boston, MA.

GAJSKI, D., VAHID, F., NARAYAN, S., AND GONG, J. 1994. Specification and Design of Embed-
ded Systems. Prentice Hall, Englewood Cliffs, NJ.

JAIN, R., MLINAR, M., AND PARKER, A. 1988. Area-time model for synthesis of nonpipelined
designs. In Proceedings of the International Conference on Computer-Aided Design (Santa
Clara, CA).

KIM, T., LIU, J., AND LIU, C. 1991. A scheduling algorithm for conditional resource sharing.
In Proceedings of the International Conference on Computer-Aided Design (Santa, Clara,
CA).

KUNG, S., WHITEHOUSE, H., AND KAILATH, T. 1985. VLSI and Modern Signal Processing.
Prentice-Hall, Englewood Cliffs, NJ.

MCFARLAND, M. AND KOWALSKI, T. 1990. Incorporating bottom-up design into hardware
synthesis. IEEE Trans. Comput.-Aided Des. 9, 9 (Sept.).

PANG, D. AND FERRARI, L. 1989. Unified approach to general IFIR filter design using the
B-spline function. In Proceedings of the Asilomar Conference on Signals, Systems &
Computers.

PARK, N. AND PARKER, A. 1985. Synthesis of optimal clocking schemes. In Proceedings of the
Design Automation Conference (Las Vegas, NV).

PARKER, A., PIZZARO, T., AND MLINAR, M. 1986. MAHA: A program for datapath synthesis. In
Proceedings of the Design Automation Conference (Las Vegas, NV).

PAULIN, P. AND KNIGHT, J. 1989. Algorithms for high-level synthesis. In IEEE Des. Test
Comput. (Dec.).

PAULIN, P., KNIGHT, J., AND GIRZYC, E. 1986. HAL: A multi-paradigm approach to datapath
synthesis. In Proceedings of the Design Automation Conference.

RAMACHANDRAN, L. AND GAJSKI, D. 1994. Behavioral design assistant (bda) user’s manual.
UC Irvine, Dept. of ICS, Tech. Rep. 94-36.

VLSI TECHNOLOGIES INC. 1988. VDP100 1.5 Micron CMOS Datapath Cell Library.
VLSI TECHNOLOGIES INC. 1992. 0.8-Micron Datapath Library (VCC4DP3).
WALKER, R. AND CAMPOSANO, R. 1991. A Survey of High-Level Synthesis Systems. Kluwer
Academic, Boston, MA.

Received January 1996; revised April 1996; accepted April 1996

370 • E.-S. Chang et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 1, No. 3, July 1996.

