
A Sequence of Lab Exercises

for an Introductory Compiler Construction Course

Lawrence A. Coon

Department of Computer Science

Rochester Institute of Technology

Rochester, New York 14623

(716) 475-2237

e-mail: lac@cs.rit.edu

i. Abstract

A sequence of laboratory exercises for an intro-

ductory compiler construction course is described.

The labs are based on four increasingly complex
versions of an imperative language designed so
that each version builds on the previous. The

third version supports integer and character data
types and arrays of integers and characters. The

fourth version adds procedures, but has only

integer data. The procedures do not nest, but

direct recursion is supported.

2. Introduction

There are several popular approaches to designing
projects for an introductory compiler construction

course. These include:

• the "tiny" language approach: using a subset

of a popular language like Pascal or Ada.
[Aho, Fis]

• the "mini" language approach: defining a

language that concentrates on a specific
feature with minimal support for other

features. [Mar]

• the "filling in the blanks" approach: provid-
ing the skeleton of a compiler with implemen-
tation details for critical features to be

provided by the student.

These can generate code for real machines, or for
hypothetical machines for which a simulator is

available.

In addition, there is the "reading" approach where

students analyze and discuss the code for an

existing compiler. This is probably most often

used in conduction with one of the above.

Each has its advantages.

Basing the project languaqe on a subset of a
language known by the students minimizes the over-

head needed to understand the language and enables

the student to concentrate on the compiler design
itself. Furthermore, simple variations of
language features can generate interesting

discussions about language design without adding

undo confusion. These can also disabuse students

of the notion that all that is good is in their
favorite language, and introduce them to the idea
that language and compiler design not only go

hand-in-hand but are based on the art of comprom-
ise.

Usinq a mini-language that concentrates on a basic
feature and reducing other language features to a
bare core appears to maximize learning and minim-

ize busy work. However, the core language must be •

designed carefully, and the satisfaction of ending
up with a "real" language at the end of the course

is missing.

Students can produce ugly code and few instructors

have the time or the grading support needed to
give the feedback they'd like, so reading (and

modifying) well designed real code is also impor-

tant.

In the following, a set of goals is developed
based on a combination of the above approaches.

Then a series of projects that meet those goals is

discussed in detail.

3. Goals

The fundamental objective is to cram the basics of
compiler design into a project that a diligent
student can complete in one term. (At my school
this means a I0 week quarter.) To that end the

following goals were adopted:

(I) Use tools where possible
The mastery of some basic compiler construc-
tion tools is an important end in itself.
Tool use also avoids students getting caught
up in the details of writing lexical analyzers

and parsers (which should be the subject of
other courses) and allows them to quickly get
on to more important issues. The tools I
selected were the ubiquitous lex and yacc

because of their wide availability and gen-

erality. [Lev]

(2) Use both top-down and bottom-up parsing
Introduce recursive-descent techniques and use

them for the simplest project, then shift to

top-down techniques using yacc for the rest of
the projects.

(3) Use ad hoc semantics
Time considerations force ad hoc semantics
(unless students enter with an understanding
of one of the standard methodologies and

appropriate support tools are available.)

(4) Concentrate on the front end
Again, time considerations force an emphasis
on the well understood and a de-emphasis on

the more "interesting" issues such as register

allocation, optimization, etc. Also this is

S I G C S E 6 0 B U L L E T I N VoL 28 No. 3 Sept:. 1996

http://crossmark.crossref.org/dialog/?doi=10.1145%2F234867.234880&domain=pdf&date_stamp=1996-09-01

an undergraduate course and front end issues
are what will be the most useful for those
that get programming jobs and might have to
create interfaces and other simple language
translators. For example, parsing and inter-
preting an argument stream to a cgi program
used at a World Wide Web site.

(5) Use quads as an intermediate code
Quads are easy to understand, and they can be
readily interpreted or used to generate code.
Other approaches might be more interesting,
but time is a hard master.

(6) Use a quad interpreter for the more complex
versions
A simple template based code generator for an
assembly language can be assigned for the
simpler versions. However when implementing
more advanced features code generation gets
tedious and time consuming, so avoid it by
just interpreting the quads.

(7) stick to the most basic control structures
Use "while" as the only looping construct and
"if/then/else" as the only decision construct.
This gives full functionality without the
busywork of implementing other "nonessential"

constructs.

(8) Only use two data types
They should face the issues of type checking
and two types is the minimum. I use integer
and character, and include arrays of both.
This way you have simple strings for free.

(9) Stick to basic subroutine issues
Use simple C-like procedures with no nesting
to avoid the complex symbol table management
and the complex runtime stack management

needed to resolve scope.

(i0) Investigate some simple language design

issues
Here is where a few differences from the usual
world of C, Pascal and Modula2 can be intro-
duced. Some of the issues I like are:

• The use of end-of-line as a statement ter-
minator rather than a semicolon.

• The use of end-of-line as part of the syn-
tax of language elements to enforce style
standards; e.g. the if syntax has an eol
after the "then" to force the body to

start on a separate line.

• Simple run-time and compile-time error

detection; e.g. division by zero and array
bounds checking.

• Global and local scoping for variables.

4. Overview of the Languages

The project language is an imperative language
with features from Pascal and C. It is developed
in four stages: eenie, meenie, miney and moe.
Each of the first three is a superset of the pre-
vious, and is totally written by the student from
a BNF syntax specification and an informal state-
ment of the semantics. The last version only sup-
ports integer data and no arrays -- the emphasis is
on procedures and scoping variables. For this
version, the student adds code to support the new
features to ~ working version from which that code

has been stripped.

4.1. Eenie

Eenie is a simple expression language with no con-

trol structures. (See Appendix A for a complete
specification}. The language features supported
are:

• input and outpu~ of integers.

• variable declaration

• assignment

• basic integer arithmetic

Here is an example eenie program:

-- Example

program example has
decls

int sam, y
body

read (sam)
y <- sam + -3
write (y)

end example

This leads to two projects. The first is to
implement it using recursive descent (lex for lex-

ical analysis but no yacc). The second is to
implement an interpreter using yacc. Students
have already seen how to handle arithmetic when
studying lex and yacc, so they only need to add
the io, declaration and syntactic sugar for the
program structure.

4.2. Meeney

Meeney adds simple control structures to eenie.
(See Appendix B for a complete specification}.
The language features supported are:

• relational operators

• boolean expressions in the C sense of zero
meaning TRUE. (Other versions used the tradi-
tional Boolean operators.)

• if statement with optional else

• while statement

Here is an example meeney program:

program example has
locals

int a

body
a <- 9
while a > 0 do

a <- a-1
if (a - 2* (a/2)) then

write (a)
endif

endwhi I e
writeln

end example

4.3. Miney

Miney adds a character data type and arrays to
meeney. (See Appendix C for a complete specifica-

tion). The language features supported are:

• character and integer data types and type
checking

• character and integer arrays with run-time and

compile-time bounds checking

S I G C S E V o i 28 No. 3 Sept. 1996 61 B U L L E T I N

• block assignment

• simple string support using character arrays

Here is an example miney program:

program example has

decls
int array x with 5 elts
char array y with 5 elts

body
x[1] <- 999
write (x[l])
y(l] <- 'a'
y[2] <- 'b'
y[3] <- 'c'
y[4] <- '^'
write (y)
writeln

end example

4.4. Moe

Moe is a procedure language with only integers and
no arrays. (See Appendix D for a complete specif-
ication). The language features supported are:

• procedures with recursion

• parameter passing by reference

• global and local scoping

Here is an example moe program:

program factorial has
.........................

proc fact(int x, y) has
locals

int a, b
body

a <- x
if a = 1 then

y <- 1
else

a <- a - 1
fact(a, b)

y <- x * b
endif

endproc fact
.........................

locals

int a, ans
body

a <- 5
fact(a, ans)
write (ans)
writeln

end factorial

A global declaration section is added whose vari-
ables are available in all procedures and in the

main. Also added is the ability to declare local
variables for procedures and for the main.

5. Conclusions

For the last 7 years I have successfully utilized
this approach in one quarter introductory under-
graduate and graduate compiler courses where it is
imperative that a meaningful amount of material be
covered in a short period. Student feedback is
quite positive and student success is very high.
References

[Aho] Aho, Sethi and Ullman, Compilers: Princi-

ples, Techniques, and Tools, Addison Wesley, 1986.

[Fis] Fisher and LeBlanc, Crafting a Compiler,

Benjamin Cummings, 1988.

[Mar] Marcotty and Ledgard, Programming Language

Landscape, SRA, 1986.

[Levi Levine, Mason and Brown, lex and yacc,

O'Reilly & Associates, 1992.

Appendix A: Eenie

BNF for eenie

pgm ::= head decpart bodypart tail
head ::= program NAME has EOS

decpart ::= decls EOS int varlst EOS I £

bodypart ::= body EOS stmtlst

tail : := end NAME
varlst ::= varlst , ID I ID
stmlst : := stmtlst stmt I stmt

stmt ::= io EOS I asgn EOS

io ::= read (ID) I write (exp)
I writeln

asgn ::= ID <- exp
exp : := exp + term ~ exp - term I term
term : := term * factor ~ term / factor

I term % factor I factor
factor ::= ID ~ NUM I (exp) I " factor

Semantics for eenie

The reserved words are: program, has, decls, int,

body, end, read, write, and writeln. The ID and
NUM stand for identifier and integer constant
respectively. Identifiers will be any sequence of
lower case letters. There is a separate declara-
tion section for variables, as in Pascal, which
are always of type integer.

When an identifier is defined, you should create a
symbol table entry after checking for double
definition. The symbol table should also be used
for storage. When an identifier is referenced

simply look it up in the table and use (or store)
the value there.

The semantics are as expected. Comments start
with two dashes and continue to the end of the

line (as in Ada) . For this language, the end of
statement (EOS) is the end of the line. This has
the advantage of forcing some formatting conven-
tions on a program. For example, the declaration
section is introduced by a line containing only
the reserved word decls. This also has the disad-
vantage of restricting the size of arithmetic
expressions. To get around this we will use an @
character as a line continuation character. The
sequence "@\n" indicates that the next line is a
continuation of the current line. When printing
an integer, leave one space after it so that when
more than one is printed on a line the values are
readable.

Appendix B: meeny

BNF for meeney
pgm ::= head decpart bodypart tail
head ::= program NAME has EOS
decparC ::= decls EOS int varlst EOS [8
bodypart ::=body EOS stmtlst
tail : := end NAME

varlst : := varlst , ID / ID

s~mlst ::= stmCls~ s~m~ / s~m~

s t~mt ::= io EOS i asgn EOS J loop EOS
condl EOS

S I G C S E
B U L L E T I N Vol. 28 No. 3 Sept, 199(; 62

condl

loop
bexp
relop

io

asgn

exp
term

factor

::= if bexp then EOS stmtlst endif
] if bexp then EOS stmtlst else EOS
stmtlst endif

::= while bexp do EOS stmtlst endwhile
::= exp / exp relop exp
: : = < / > / < = / > = / = / #

::= read (ID) / write (exp) ~ writeln
::= ID <- exp

::= exp + term / exp - term ~ term

::= term * factor] term / factor
/ term % factor / factor

::= ID / N5~ / (exp) [- factor

loop

bexp

relop
io

asgn

exp

term

factor
var

/ if bexp then EOS stmtlst else EOS
scmtlst endif

::=while bexp do EOS stmtlst endwhile
::= exp / exp relop exp

: : = < I > / < = / > = / = t #
::=read (var) / write (exp)] writeln
::= var <- exp

::= exp + term / exp - term / term

::= term * factor / term / factor
/ term % factor / factor

::= var] NUM / CHAR f (exp) / - factor
::= ID / ID [exp]

interpreting meeney

You are to implement a translator for the language

that produces quads and interprets them. You are
to submit all necessary files including a
Makefile, yacc and lax source files. Running make

should produce an executable module called meeney

that compiles the source file into quads as

described below and interprets them. If meeney is

given a flag -q, it should write the quads to a
text file called name.q (where name is the name of

the source file) before doing the interpreting.

The quad operators you will use in this lab are:

+ add
subtract

* multiply

/ divide
% modulo

< less than, if opdl is less than opd2,
set result to 1 else to 0

> greater than, if opdl is less than opd2,

set result to 1 else to 0

1 less than or equal, if opdl is less than or

equal to opd2, set result to ! else to 0
g greater than or equal, if opdl is greater than

or equal to opd2, set result to 1 else to 0

e equal, if opdl is equal to opd2, set result
to 1 else to 0

not equal, if opdl is not equal to opd2,
set result to 1 else to 0

r read an integer into result
w write an integer from result

n write a newline

= assign the value of the first operand to result
t test first operand, if it is zero jump to the

quad in result
j jump to the quad in result

? handle a runtime error, result will hold an

error message number

h halt

Appendix C: Miney

BNF for miney
pgm ::= head decpart bodypart tail
head ::= program NAME has EOS

decpart ::= decls EOS declst ~ s
declst ::= decl declst / decl
decl ::= int varlst EOS

] char varlst EOS
varlst ::= varlst , vardecl / vardecl

vardecl ::= ID / array ID with NUM elts
bodypart ::= body EOS stmClst
tail ::= end NAME

stmlst ::= stmtlst stmt] stmC

stmt ::= io EOS [asgn EOS / loop EOS
[condl EOS

condl ::= if bexp then EOS stmtlst endif

Semantics for miney

Initialize integer arrays to all zeros and charac-

ter arrays to all ?'s Array bounds start at 0.

Since there are now two basic data types and two

compound data types, type checking is necessary.

Compile time type checking should include checking
for assignment of variables of one type to vari-

ables of another (e.g. character constants to
integer variables) and checking for arithmetic

operations involving characters constants or vari-

ables. These are errors. Type checking should
include array bounds checking as with zero divi-
sion, this can occur at compile time or run time.

Reading in a character variable should be done

using getchar() . Reading in an integer variable

should be done using scanf("%d"). Two other
semantic niceties should be implemented: block
assignments and string I/O. These involve using

the bare array name, other uses of the bare array
name are errors.

If an assignment statement takes the form 'fred <-
sam' where fred and sam are arrays of the same
size and element type, do a block transfer (i.e.
copy all elements in sam into fred). This avoids
one of the principle uses of the for-statement and
makes its omission less onerous.

If the name of a char array occurs in an I/O
statement; read into the array until a newline is
encountered and add a '^' at the end, or write

from the array until a '^' character is encoun-
tered. This will allow us to simulate strings. I

want the terminating character &xpHcitly placed to
reduce the chance of error and I want a 'visible'
fill character. This removes the up-arrow charac-

ter from the usable printable character set for
this language.

For example, executing the statement read(x) where
x is declared to be a ? element character array

and the input from standard input is "hello" will
fill the first 5 elements array, put a '^' in the

6th and leave a '?' in the 7th. Then executing
the statement write(x) will cause "hello" to be

sent to standard output. Executing write(x) when
x contains 'h', 'e', 'i', 'i', 'o', ' ', '?' is an
error and should be detected when the upper bound
is encountered since blanks and question marks are

perfectly good printable characters. Also, exe-
cuting the statement read(x) where x is declared
to be a 7 element character array and the input
from standard input is "hello fred" is an error
since there is no room. In fact, x can only hold

strings with at most 6 characters since there must

be room for the '^' terminating character. But
executing read(y) where y is a char variable or
read(x[5]) with h in the input is fine. Note that
the quotes are not really in the input or output
but are just there for emphasis in this document.

S I G C S E
B U L L E T I N Vol. 28 No. 3 Sept. 1 9 9 6 6 3

Appendix D: Moe

BNF for moe
pgm ::= head gbidecl rtndecl locdecl

bodypart tail
head ::= program NAME has EOS

gbldecl ::= globals EOS declst / c
rtndecl ::= r~nlst / 8
rtnlst ::= rtnlst rtndef / rtndef
rtndef ::= rtnhead locdecl bodypart rtntai!
rtnhead ::=proc NAME (pardeclst) has EOS

/ proc NAME has EOS

rCntail ::= endproc NAME EOS

pardeclsc ::=pardeclst ; pardecl / pardecl
pardec2 ::= int varlst

locdecl ::= locals EOS declst] 8

declst ::= declst decln / decln
decln ::= int varlst EOS
varlst ::= varls~ , ID /ID
body~art ::=body EOS s~mtls~
stmt ::= io EOS] asgn EOS / condl ~OS

loop EOS [procall EOS

io ::= read (ID) / write (exp)
] writeln

asgn ::= ID <- exp
condl ::= if bexp then EOS stmtlst endif

/ if bexp then EOS stmtlst else EOS

stmtlst endif
loop ::=while bexp do EOS stmtlst endwhile
procall ::= ID (parlst) /ID
parlst ::=parlst , ID /ID
bexp ::= exp / exp top exp

r o p : : = < / > I < = f >= l = I #
exp ::= exp + term] exp - term [term
term ::= term * facCor / term / factor

/ term % factor / factor
factor ::= ID / ~M [(exD) / " factor

Some Lexical Details

Parameters are to be passed by reference and the
procedures can be called recursively. Since there
is no 'forward' statement and I wouldn't require
you to make two passes over the procedure declara-
tion section, indirect recursion need not be
implemented -- only direct recursion. Therefore,
procedures can be called only after they are

declared.

The global declaration section defines variables
that are accessible to all routines including the
main program. The local declaration sections
define variables accessible to the body of the
associated procedure or to the main program. Note
that procedures are declared in the global section
so local variables can be declared with the same

name as a procedure.

References

{A/ao] Aho, Sethi and Ullman, Compilers: Princi-

pleS, Techniques, and Tools, Addison Wesley, 1986.

[Fis] Fisher and LeBlanc, Crafting a Compiler,

Benjamin Cummings, 1988.

[Mar] Marcotty and Ledgard, Programming Language

Landscape, SRA, 1986.

[Lev] Levine, Mason and Brown, lex and yacc,

O'Reiily & Associates, 1992.

*** From Page ***********************************

Werth and J. Werth (Eds.), 13th Intern. Confer-
ence on Software Engineering, Austin (TX), May
12-16, 1991

[40] Zalewski J., Cohesive Use of Commercial 'fools
in a Classroom. Proc. 7th SEI Conf. on Software
Engineering Education, pp. 65-75, San Antonio
(TX), January 5-7, 1994, J.L. Diaz-Herrera (Ed.),
Springer-Verlag, Berlin, 1994

[41] Zalewski J., Boiler Water Content Controller
Based on EWICS Safety Model. Proc. Intern. In-
vitational Workshop on the Design and Review
of Software Co'ntrolled Safety-Related Systems,
Ottawa, Canada, June 28-29, 1993. University of
Waterloo, Institute of Risk Research, 1994

[42] Zalewski J. (Ed.), Advanced Multimicroproces-
sor Bus Architectures. IEEE Computer Society
Press, Los Alamitos (CA), 1995

S I G C S E B U L L E T I N Vol. 28 No. 3 Sept. 1996 64

