
✮ F E A T U R E A R T I C L E

80 StandardView Vol. 4, No. 2, June/1996

David Rowley
MKS, WATERLOO, ONTARIO

m The focus of this issue of Standard-
View is on application portability. At its
most basic level, portability is an eco-
nomic issue. It centers on leveraging an
existing investment and deploying it in
new ways. It’s about being able to run an
application written for one platform on
an entirely different platform. It’s about
saving time and money, and maintaining
quality. Portability is fundamentally a business
issue, not a technical one.

ortability is also an old issue. Portable
Fortran in the late 1960s first gave rise to
the need to move scientific applications
from outdated equipment to the then
brand-new. From the earliest days of ap-
plication development, rapid advance-
ment of computer hardware and fierce
competition among platform vendors
have created the need for moving appli-
cations. Business requirements change,
integration requirements become more
stringent, mergers and acquisitions force
previously separate MIS groups to ex-
change data and applications, and to
adopt new platform standards. All these
factors create a landscape where applica-

tion portability is key to competitiveness and to the
abilities to innovate and provide high-quality applica-
tion support to line areas.

Application Interface
The fundamental building block of software portabili-
ty is the Application Programming Interface or API. It
represents the contract between the supplier of a ser-
vice (an SDK, OS, etc.) and the user of the service
(the application). When multiple vendors agree to
implement to the same API definitions, users of those
definitions can move their software from one plat-
form to another. Typically, APIs are described in
terms of their C or C++ calling sequence. While ap-
plications are written in many different languages (as-
sembler, COBOL, Pascal, Smalltalk, Delphi, Power-
Builder, etc.), portability discussions usually center
around the 95% portable languages of C and C++.
The non-C-based languages often provide their own
portability environments. For example, applications
written in ParcPlace Smalltalk are portable across all
the platforms ParcPlace supports. Both C and C++
walk a middle road, providing a high degree of
portability while at the same time providing a high
degree of openness and variation.

The Value of Portability
The value of portability is not unique to computing.
The need to move intellectual investment from one
“platform” to another is commonplace. The canonical
example is the VCR. VHS has become the de facto
standard in prerecorded video cassettes. The Beta
vs. VHS battle is long over. In a short time, the

The Business of
Application Portability

PP

http://crossmark.crossref.org/dialog/?doi=10.1145%2F234999.235000&domain=pdf&date_stamp=1996-06-01

StandardView Vol. 4, No. 2, June/1996 81

✮
Portability must be a design requirement from day one.

prerecorded videotape industry dropped support for
the Beta format, in spite of its technical superiority.
The battle was decided not by technical strength, but
rather by market share. Through short-sighted licens-
ing practices, Sony kept the penetration of the Beta
format low. Portability is enhanced by working with
the most popular standard, which is not necessarily
the best one.

Timing Is Everything
As with Gallo wines, no standard should be defined
before its time. The computing industry is advancing
at a rapid pace, and users want to procure against
standards as much as possible. This is the double-
edged challenge of portability: standardizing enough
functionality to leverage the investment while ensur-
ing that innovation occurs in areas that are proving
commercially useful. Standardizing too late causes ar-
bitrary diversity and wasted investment. Standardizing
too early entails the risk of entrenching an approach
or technology that doesn’t meet real-world needs.
Creating standards that don’t serve commercial inter-
ests slows down the growth of the entire industry.
Striking a balance is the key to effective standardiza-
tion.

Non-Portability
One leading electronics company is in the midst of
an all-too-typical project: reengineering an outdated
application written in a variant of Business BASIC
that is no longer supported by the vendor. The appli-
cation consists of hundreds of individual modules,
comprising more than a million lines of code. Their
best alternative, the company decided, was to take
on the conversion effort of moving the product to
ANSI C, one module at a time. The frustrating aspect
of this project is that the primary deliverable is pro-
ducing the exact same functionality as is offered now,
but converted to a contemporary ANSI C-based de-
velopment approach. This provides the users with no
immediate improvement, other than the ability to
more rapidly respond to user demands in the future
and lower maintenance costs. By not taking a long-
term view of the portability of the application, the
company has incurred a huge redevelopment cost.
Other companies can benefit from this lesson by
treating the ability to maintain and port the applica-
tion to future environments as a design requirement
from day one.

Portability and Standards
Portability is closely related to the concept of stan-
dards. Application portability is enabled by multiple
vendors creating separate implementations that con-
form to the same standards. Standards fall into two
categories: de facto (determined by the marketplace)

and de jure (determined by procurement bodies). Ex-
amples of de facto standards include Visual Basic,
Win-32 and TCP/IP. Examples of de jure standards
include POSIX.1, ANSI-C, and now TCP/IP. Note that
TCP/IP falls into both categories. This networking
standard grew in popularity through grass-roots
adoption and investment, eventually leading to stan-
dards bodies defining a specific TCP/IP standard and
creating policy to mandate TCP/IP-compliant net-
works.

Dictatorship vs. Democracy
Given the relationship between standards and porta-
bility, there are basically two approaches to develop-
ing APIs: the benevolent dictator (also called “the Mi-
crosoft approach”), and the open democracy (also
called “Open Systems”). Each model has advantages
and drawbacks.

The Microsoft approach fuels rapid development.
So long as the vendor invests the time and effort to
fully understand user requirements and takes innova-
tive approaches, and so long as the basic paradigm
remains intact, the approach can be very productive.
The Win16 and Win32 de facto standards have rapid-
ly created an enormously successful and profitable
software market. Microsoft has responded well to the
demands of this marketplace, and, for the most part,
the market has benefited. If, however, the paradigm
falls out of favor (such as happened to IBM’s main-
frames, and is perhaps happening now to Microsoft
due to the Internet), then customers may jump ship
to a supplier that can better promote the new oppor-
tunity. Certainly, Netscape is betting on this trend.

The open democracy approach has the benefit of
putting the evolution of the technology into the
hands of an open process, whereby direction is de-
termined by consensus. This process is typically ad-
ministered through any one of a number of standards
bodies (formal or otherwise). Its advantages lie in the
breadth of input that can be taken into account and
the harmonization with other standards. The down-
side is the sometimes glacial pace of standards ef-
forts, with their tedious review/edit/ballot cycle and
the fact that some specification enhancements are
academically oriented and create extensions that
have not been validated in the marketplace.

For an interesting look at standardization and
portability in the Windows world, specifically the
APIW effort, see “Applications Programming Interface
for Windows—A Timely Standard” by Rob Farnum in
this issue.

Innovation
The computer industry was built on innovation; its
people are extremely creative and inventive. The
problem is that often a new technology will become

✮

82 StandardView Vol. 4, No. 2, June/1996

a standard before we have evidence that it is suitable
for handling the mainstream, mature demands placed
on it (CORBA and DCE, for example). Standards es-
tablished and mandated before their underlying con-
cepts have been fully proven in the marketplace can
stifle creative solutions. Therefore, the best standards
are those that deal in interfaces already accepted by
the marketplace. The value of the standards process
is in creating unambiguous definitions of those inter-
faces, and providing a forum for their ongoing evolu-
tion (SQL, ANSI C, ANSI C++, HTML 3.0, etc.). This
process can be conceived as an “open systems value
chain.”

No Relevant Standards?
The above approach works well if there happen to
be existing standards or specifications to draw from.
But what if there aren’t? For example, there is no
cross-platform GUI standard that runs on all systems.
There are a number of commercial offerings: VISIX
Galaxy, XVT, Neuron Data all provide comprehen-
sive portable GUI environments cross-platform. But
they aren’t standards (in fact, an effort to standardize
a cross-platform GUI by the IEEE as P1202 failed).
This means that an investment in any one offering
may be riskier than is acceptable. Plus, you may want
at some point to port your application to a platform
that the suppliers don’t (or don’t want to) support.
Suddenly you are faced with a complete rewrite just
to target a single additional platform.

If source code for the product is available, you are
on much firmer ground, especially if the product is
written against lower-level industry standards (X-Win-
dows, POSIX, etc.). If you are then faced with the
need to port your application to an unsupported plat-
form, you can do the port of the GUI layer yourself.
Some companies (including MKS) have, for some
projects, chosen TCL/TK for this reason. The benefits
of TCL/TK are that it is available in source code, it is
freely usable for commercial purposes, it is robust,
and is well supported by the TCL community. The
downside is that it assumes an X Windows environ-
ment (though Windows and Macintosh versions are
forthcoming).

When source is not available, you as an ISV should
carefully consider the interfaces being invested in. It
is often practical to define a higher-level, more ab-
stract, interface, and then write the application
against that, effectively creating your own internal
standard. This allows you to move to a new platform
by writing a new “middleware” layer, preserving the
bulk of your investment. MKS has successfully done
this in our MKS Toolkit product, writing a POSIX.1
style layer for Windows, Windows NT, Windows 95
and OS/2, allowing us to achieve 95% portability of
the core source code.

A Pragmatic Approach: Spec 1170
Standards efforts have started to take a more prag-
matic approach. The first such example is the UNIX
harmonization effort, Spec 1170, named for the 1,170
APIs that eventually made their way into the stan-
dard. Spec 1170 was an acknowledgment that it is
more important to leverage existing investment than
to invent new solutions to old problems.

In spite of UNIX applications generally being re-
garded as “portable,” ISVs were frustrated by the ex-
tensive and arbitrary differences between the flavors
of UNIX. Supporting a UNIX application commercial-
ly meant wrestling with a huge number of indepen-
dent implementations, each offering slightly different
functionality. This led to large amounts of platform-
specific code, arcane collections of #ifdefs, and rapid-
ly unmaintainable applications.

Finally, the UNIX vendors took practical steps to-
wards resolving this situation and establishing a more
competitive UNIX marketplace. In 1993, a group of
system vendors (including IBM, HP, DEC, Sun) un-
dertook a study of the top 50 UNIX applications. This
initiative was called COSE, or the Common Operating
System Environment. Among the applications ana-
lyzed were: Autocad, Cadence, Frame, Lotus, Island
Graphics, Visix, Wingz, and SAS. The investigation
determined the portability requirements of each ap-
plication. This information was distilled into a re-
quirements specification. These requirements, in har-
mony with existing open systems standards (POSIX,
X/Open, OSF), led to the creation of Spec 1170,
which includes all of the functionality in POSIX.1,
POSIX.2, and the XPG4 Base.

In March 1994, the document was transferred to
X/Open for “fast-tracking” and was renamed the Sin-
gle UNIX specification (X/Open is annoyed if you
still refer to it as Spec 1170.) X/Open has now
launched a branding program that allows any system
vendor to brand their offering as UNIX (specifically
UNIX 95). Not only does this mean greater common-
ality between AIX, Solaris, HP/UX, and other histori-
cal UNIX implementations, it also allows other sys-
tems such as Windows NT, IBM MVS, DEC VMS, and
Linux to also be branded as full UNIX platforms.

What Went Wrong?
The above story may sound like UNIX has finally
been unified, once and forever. Unfortunately, the

An
Open Systems

Value Chain

Vulnerability
of Investment

Requirements
Process

Specifications

Test Technology

Conformance
BrandingConforming

Products

ISV Awareness

ISV Investment

End-User
Procurements

Innovation

Unmet Needs

Early Adopters

StandardView Vol. 4, No. 2, June/1996 83

impact of Single UNIX has yet to be felt. System ven-
dors are still working to incorporate full Single UNIX
conformance into their next major OS release. Even
when this happens, there will still be portability is-
sues. The Single UNIX specification group decided
that X-Windows and Motif should not be included in
the final document, as this would disallow “server-
oriented” systems from achieving UNIX branding. As
a result, they are now included in the separate “Com-
mon Desktop Environment” standard, which not only
includes the developer APIs, but also a standard
“look and feel,” standard desktop accessories (calen-
dars, etc.) and a common desktop manager. It will be
the end of 1996 or early 1997 before a critical mass of
platforms support both the Single UNIX and CDE
standards. Once this happens, ISVs will be able to
write full graphical applications that are source-code
portable to a large number of environments.

The Future
The key revelation in this project is the approach:
standardizing APIs that are actually being used, lever-
aging existing investment, and harmonizing them
with existing standards. The approach guards against
the OSI syndrome of creating standards that nobody
ends up using, and it can serve as a roadmap for fu-
ture standards efforts.

Specifically, future standardization efforts could en-
tail establishing a dialogue with as broad a subset of
the ISV community as possible, and performing an
ongoing analysis on their applications to determine
the active areas of investment by the group. The APIs
that draw the greatest investment would then be
specified, standardized, and established as require-

ments for the system vendors to support. Previously,
establishing the infrastructure required to support this
process would have been prohibitively difficult. For-
tunately, thanks to much better tool support and the
Internet, implementing this approach is now feasible
and cost-effective.

HTML
Portability is a key attribute of many Internet-related
standards, HTML being the obvious example. While
there are a great number of vendor-specific exten-
sions (Microsoft’s scrolling banners and AVI widgets,
Netscape’s tables and frames, and JavaScript), the in-
dustry has recognized the importance of adopting
broadly-supported and portable HTML standards. The
HTML 3.0 standard, for example, defines the specific
behavior of HTML tables. This ensures that any
HTML 3.0-compliant page using tables will be accu-
rately viewed by any HTML 3.0-compliant browser.
The major vendors of both HTML authoring packages
and browsers are supporting this standard.

This example again illustrates the important bal-
ance between innovation (non-portability) and stan-
dardization (portability). If nobody was enhancing
the functionality of the web; if everyone was waiting
for a standards body to dictate what is and is not
valid, the web would not be experiencing the incred-
ible growth (and investment) we see. Because devel-
opers are throwing new functionality into the ring
and working to get users to adopt it and to recognize
the benefits of the extensions, the web platform is
rapidly evolving into a highly responsive and agile
marketplace where the focus is on commercial value,
not standards.

Portability and Testing
One valuable side-effect of application portability is
the impact it has on quality. When an application
runs on multiple platforms, defects that may only
show up under unusual circumstances are more ef-
fectively detected and corrected. Even though an ap-
plication may be 100% portable, there is no substitute
for platform-specific regression testing. Users demand
(reasonably) that the application perform properly on
the platform desired. This means that portability of
the test technology (harness, test cases, etc.) is also a
requirement in defining a portable application. Test
harness vendors (Mercury International, SQA, etc.)
ensure that their products run on a variety of plat-
forms and that the test cases can be used on multiple
machines.

Portability Branding
Recently, there has been a great deal of discussion
within the standards community on the issue of “ap-
plication branding.” This refers to a formal process

✮
An application doesn’t become a solution until it is up and running.

How Standards
Work Together

XPG4 UNIX
(Spec 1170)

XPG4 Base V2

XPG4 BASE

POSIX.1
FI000.1_1990

POSIX.2
FI000.2_1991

Win32 APIs, SQL, ODBC, C++, COBOL, Fortran, NFS,
CDE (Common Desktop Environment), CORBA, OLE,
RPC, OpenDoc. Notice that no operating system
names appear in the list (neither Windows nor UNIX
nor MVS). Standards are available in many environ-
ments, therefore providing the alternatives required
for true open systems.

That’s fine in theory, but what about in practice?
There is no value in referencing a standard unless it
is actually available on the platforms you want to tar-
get (both now and in the future). Here’s how a few
of the common operating systems stack up against
some of the items in the list:

The POSIX system interfaces include basic APIs to
file I/O (open, read, write, close), process primitives
(create a new process, job control), signals, etc. The
POSIX utilities include the historical UNIX commands
such as the Korn shell, awk, grep, the vi editor, tar,
uuencode/uudecode, ls, etc. Emulators such as
Bristol’s Wind/U, Mainsoft, and Insignia Solutions all
help to leverage the existing investment in
Win16/Win32 APIs to new platforms. In fact, Bristol
has recently announced they will be bringing the
Wind/U environment to Digital’s Open VMS. As the
market demand for standards availability grows, ex-
pect to see much more standards availability for the
ISV community.

Once ISVs have the ability to write portable appli-
cations, system vendors will continue to promote

their own specific added value, encouraging ISVs to
write custom versions of their applications to take ad-
vantage of the added functionality. ISVs must careful-
ly weigh the tradeoffs entailed in following this path.
Their competition may well be prepared to write for
a specific platform (especially one with a good mar-
ket share). If the custom development results in a
more attractive product (performance, functionality,
integration), then the effort is warranted. This sce-
nario demonstrates how portability is not an all-or-
nothing issue. ISVs can profit by ensuring that, say,

whereby the portability requirements of a specific ap-
plication are determined through the use of a tool,
and are then fed into a “Good Housekeeping Seal of
Approval”-style branding mechanism. This brand
would allow buyers of the application to understand
how readily the vendor may be able to deploy the
application on additional platforms, and how well
they may respond to future platforms.

While this aspect of branding has value, the real
value of portability branding may lie in the outsourc-
ing of development projects to third parties. A man-
dated portability policy in the development of the ap-
plication could be mechanically verified to ensure
that the development company adhered to the stated
specifications. Where source is not supplied to the
customer, the supplier could provide a standard set
of reports with the deliverables to certify that they
had followed the policy.

Application branding could also form part of a
company’s adherence to their ISO 9000 development
policy, ensuring that their applications were designed
to meet changing requirements in a volatile world.

For a closer look at the issues of application brand-
ing, Paul Tanner’s “Software Portability: Still an Open
Issue?” provides a good overview of X/Open’s efforts
and vision in this area.

Unintentional Non-Portability
Even though many development managers have

portability as a standard objective, applications often
become non-portable gradually and unintentionally.
A few new developers who are not familiar with the
coding policy can slowly compromise the applica-
tion’s portability. Unless the application is regularly
built and tested on all the platforms supported or an-
alyzed by portability verification tools, the problem
can quickly get out of hand.

Key Standards1

So what is the state of the art when it comes to stan-
dards? Well, these should come as no great surprise,
since they are, indeed, standards: POSIX System In-
terfaces, POSIX utilities, real-time extensions, sockets,
shared memory, TCP/IP, ANSI-C, DCE, X11, Motif,

✮

84 StandardView Vol. 4, No. 2, June/1996

Standard Microsoft NT SOLARIS 2.3 AIX V4.1 IBM OS/2 HP-UX 9.04

POSIX System Interfaces
P1003.1 Yes Yes Yes No Yes

POSIX Utilities
P1003.2 No Yes-O Yes No Yes

XPG3 Base No Yes No No Yes

XPG4 Base No Yes (V2.4) Yes No Yes

ANSI C Yes Yes Yes Yes Yes

DCE Yes Yes Yes Commit Yes

X-Windows Yes-O Yes Yes Yes Yes

1 Information courtesy of D. H. Brown Associates. Used with permission. From
DHBA Report: “Update to Standards Conformance: An Ongoing Battle” June 1994.

StandardView Vol. 4, No. 2, June/1996 85

only 75% of their application source code is portable.
The other 25%, clearly identified as platform specific,
takes advantage of platform-specific features.

Beyond API Portability
While API portability is important, there is more to
open systems. The tools available within the environ-
ment, the documentation, the quality assurance
process, are all areas of great investment. MKS be-
lieves the following challenges must still be over-
come:

—common documentation
—portable program construction tools
—portable test technology
—portable install tools
—unified software distribution channels

COMMON DOCUMENTATION
One of the impediments to application portability, es-
pecially in the UNIX community, is the lack of stan-
dard documentation. As a developer sits down to
write code, he typically either consults the on-line
documentation for a specific platform (Solaris, AIX,
HP/UX, etc.) or the hard-copy versions of same. As a
result, it is difficult for the developer to understand
which APIs are based on standards and which repre-
sent vendor-specific value-adds.

Fortunately, X/Open is now in the process of cre-
ating user-level documentation, describing the func-
tionality of the Single UNIX Specification. For the first
time, the “Common Doc” project will enable a devel-
oper to consult documentation for a portable applica-
tion development environment, with vendor-specific
value-adds being clearly identified.

CONSTRUCTION TOOLS
The process used to build the actual application from
the component source code, data files, etc. is often
complex, and supported by a host of different tools.
Compilers, linkers, profilers, debuggers, make en-
gines, parser generators, SQL/4GL preprocessors, are
all huge dependencies. ISVs must also weigh the
portability of these tools when looking at platform-
specific investment.

TEST TECHNOLOGY
Software is so complex these days that manual quali-
ty assurance and verification is almost completely ob-
solete. As a result, there is an increasing investment
in test technology (frameworks, test plan tools, etc.)
These tools must also run within each supported en-
vironment, often becoming a portability problem
themselves. Common examples of problems include:

variation in output formats from platform to platform
(say, due to floating point representation) leading to
bogus test failures, fragility of GUI test plans, and so
on.

INSTALL TOOLS
An application doesn’t become a solution until it is
up and running on the customer’s platform. The
process whereby your application is installed into the
user’s environment is often complex. Handling de-
pendencies related to other components, directory
structure layouts, security, user administration, disk
space, and license management are all items where
platform-specific approaches add to the ISVs’
expense.

UNIFIED SOFTWARE DISTRIBUTION
Finally, the cost of developing platform-specific distri-
bution channels is often prohibitive. An ISV may well
be able to service its Windows, OS/2, Solaris and AIX
customers by working with standard, mass-market-
oriented distribution partners. The cost of servicing
DG/UX, MVS, VMS, MPE/iX and Linux customers
often leaves these markets untapped. A more unified
approach to software distribution would make a dra-
matic difference in leveling the playing field. Fortu-
nately, Internet-based distribution seems to be posi-
tioned to fill this void.

How Do I Adopt a Portable Approach?
Understand your investment, and work to protect it.
Try performing a Spec1170-style analysis on your
own applications. Determine your dependencies on
underlying build tools. Support the suppliers that
provide the standards you depend upon. Tell them
what you need and, more importantly, tell them what
you don’t need. Talk to other ISVs and users in simi-
lar situations. Compare notes. Develop your own
consensus. Work with organizations like X/Open,
OMG, UniForum, and OSF to ensure they are re-
sponding to your real-world needs.

At every turn, work to reduce the arbitrary differ-
ences between platforms that end up costing us all.
Only when ISVs and users get involved will the
potential of open systems be realized and result in
a larger and more cost-effective market for your
products.

Portability vs. Availability
One important aspect to keep in mind is the distinc-
tion between the portability of an application and the
actual availability of that application. Even though
the code base might be portable to 20 flavors of
UNIX, unless the vendor builds, tests, sells, and sup-

✮
Microsoft’s dominance of the desktop is being challenged [by Java].

ports the product on each of those platforms, the
portability of the application is irrelevant to the cus-
tomer. As a result, portability is primarily an issue of
interest to application developers, both ISVs and in-
ternal MIS developers.

INDUSTRY GROUPS
Due to the specialized requirements of certain sectors
of the economy, a number of industry groups have
formed to serve the portability and standardization
needs of their member companies. No vertically-ori-
ented group stands out more than the Petro-technical
Open Systems Consortia. Supported by the major oil
and gas companies, POSC has established a leader-
ship role in industry-oriented standardization efforts.
Alan Doniger and Nigel Goodwin’s article, “Stan-
dards: What’s in it for Me?” clearly illustrates the busi-
ness advantages of such an approach.

THE U.S. GOVERNMENT
One staunch supporter of application portability
through standardization has been the U.S. govern-
ment, with efforts led by both the National Institute
of Standards and Technology (NIST) and the Defense
Information Systems Agency (DISA). As Gary Fisher
from NIST points out, their use of a disciplined ap-
proach in writing portable applications stems from
their interest in reducing costs and improving deploy-
ment flexibility.

STANDARDS BODIES AND CONSORTIA
The best way to get a handle on the standards-based
choices available is to familiarize yourself with the ac-
tivities of the various consortia. The following is a se-
lection of the more useful organizations and their re-
spective mission statements:

X/OPEN COMPANY LIMITED
X/Open is a not-for-profit, vendor-independent, inter-
national consortium dedicated to the advancement of
open systems throughout the world. It has become
the integrator of standards within the industry, bring-
ing together users, vendors and standards bodies
working towards the proliferation of open systems.

Since its founding in 1984, X/Open Company Ltd.
has demonstrated its unique ability to bring value to
open systems application and systems developers
and those who use them. Today the X/Open brand,
used by hundreds of commercial and government or-
ganizations worldwide, is the most widely-used tool
for making sense of the “standards confusion.”

IEEE (POSIX)
The objectives of the society’s standards activities are:
“to provide an organizational framework and con-
ducive environment within which to develop broadly
accepted, sound, timely, and technically excellent
standards that will advance the theory and practice of
computing and information processing science and
technology.”

OBJECT MANAGEMENT GROUP
“The Object Management Group (OMG) is a non-
profit consortium dedicated to promoting the theory
and practice of object technology (OT) for the devel-
opment of distributed computing systems. OMG was
formed to help reduce the complexity, lower the
costs, and hasten the introduction of new software
applications. Our goal is to provide a common archi-
tectural framework for object-oriented applications
based on widely available interface specifications.”

UNIFORUM
UniForum is a vendor-independent, not-for-profit
professional association that helps individuals and
their organizations increase their information system’s
effectiveness through the use of open systems, based
on shared industry standards. Central to UniForum’s
mission is the delivery of high-quality educational
programs, trade shows and conferences, publications,
on-line services, and peer group interactions.

OPEN SOFTWARE FOUNDATION (OSF)
The Open Software Foundation is a not-for-profit re-
search and development organization whose goal is
to provide a software solution that enables computers
from multiple vendors to work together in a true
open systems computing environment. OSF uses an
innovative open process for selecting and implement-
ing technology.

The Future of Portability
The whole “open systems” approach is rapidly accel-
erating. The Internet in particular is fueling this accel-
eration. Let’s examine why.

Issues of portability and standards become more
important as equipment from different vendors must
work together. The Internet is the ultimate example
of this. Multiple hardware configurations, operating
systems, databases, protocols, etc. are being thrust to-
gether as never before, necessitating a much greater
focus on portability and interoperability standards.

A new approach to portability on the client side is
being put forward by Sun with their Java interpreter.
Java takes a portable bytecode approach, offering a
standard set of services (networking, GUI, I/O) that
can be used to write small, object-oriented applets
which can be sent down the wire to a Java-enabled
web-browser to implement full client-side interactive
front-ends. While initial experimentation with Java
seems limited to rather unimpressive embellishments
to standard HTML pages, the full promise of Java is
clear-full client-side portability. Microsoft’s dominance
on the desktop is challenged as the investment line
moves from Win32 to the Java API.

As a result, Netscape and other browser suppliers
are well-positioned to ensure that these new stan-
dards become thoroughly entrenched.

Summary
Application portability plays a central role in the cost-
effectiveness of information technology. There is al-

✮

86 StandardView Vol. 4, No. 2, June/1996

ready a great investment being made in tools and
SDKs that facilitate portability, and even more sophis-
ticated products are coming on the market to make
the process more manageable. An approach midway
between “standards for standards sake” and “we’ll
stick with a single vendor who will take care of all of
our needs” is the best prescription for taking com-
mercial advantage of portability. All these issues
point to the central tenet: understand the portability
of your software investment, and design it into every-
thing you do from day one. In this chaotic market,
you never know when you’re going to need it. sv

Where to Find More Information. Interested readers
can get further details on portability, application pro-

gramming interfaces, standards and standardization
by contacting:

X/Open, http://www.xopen.org/; UniForum,
http://www.uniforum.org/; ECMA, http://www.
ecma.ch/; POSC, http://www.posc.org/; OSF,
http://www.osf.org/.

✮

Permission to make digital/hard copy of all or part of this material without fee is
granted provided that the copies are not made or distributed for profit or commer-
cial advantage, the ACM copyright/server notice, the title of the publication, and its
date appear, and notice is given that copying is by permission of ACM. To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior
specific permission and/or a fee.

© 1996 ACM 1067-9936/96/-0600-080 $3.50

StandardView Vol. 4, No. 2, June/1996 87

