
Resource Allocation Algorithm for a Relational Join
Operator in Grid Systems

Deniz Cokuslu1,2
1Izmir Institute of Technology,

Department of Computer Engineering
Gulbahce, Urla, 35430 Izmir, Turkey

+90(232)7507866
denizcokuslu@iyte.edu.tr

Abdelkader Hameurlain2
2IRIT, Paul Sabatier University

118 Route de Narbonne, 31062
Toulouse, France
+33(0)561558248
hameur@irit.fr

Franck Morvan2

2IRIT, Paul Sabatier University
118 Route de Narbonne, 31062

Toulouse, France
+33(0)561556325

franck.morvan@irit.fr

Kayhan Erciyes3
3Izmir University, Gursel Aksel Bulvari,

Uckuyular, 35350 Izmir, Turkey
+90(232)2464949

kayhan.erciyes@izmir.edu.tr

ABSTRACT
Grid systems become very popular during the last decade
because of their rapidly increasing computational capabilities.
On the other hand, the advances on different domains cause
enormous increase in the scale of the manipulated data. This
issue augments the importance of distributed query processing
and causes researchers to port their underlying environment
onto the grid systems. However the dynamicity, heterogeneity
and large scale characteristics of grid systems pose new
problems for the distributed query processing domain. Resource
allocation for query processing in grid systems is one of these
problems, which attracts many researchers’ attention. In this
paper, we propose a new resource allocation algorithm for one
relational join operator in a query considering characteristics of
the grid systems. We provide theoretical analyses of the
proposed algorithm and we consolidate analyses with the
simulations.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – distributed
databases, query processing, relational databases.

General Terms
Algorithms, Performance, Design.

Keywords
Resource allocation, grid systems, query processing.

1. INTRODUCTION
Grid systems are today’s one of the most interesting computing

environments because of their large computing and storage
capabilities and their availability [7]. Many different domains
profit the facilities of grid environments. Distributed query
processing is one of these domains in which there exists large
amounts of ongoing research to port the underlying environment
from distributed and parallel systems to the grid systems [1, 15,
16, 19, 23]. However, grid system’s characteristics reveal many
problems. Differently from the parallel and distributed systems,
grid environments are characterized as large scale,
heterogeneous and dynamic in their nature [7]. It is generally
assumed that grid systems have very large number of resources.
These resources may correspond computational resources such
as CPU, memory, storage unit or network; they may be data
resources, which provide metadata and its contents such as
database; or they may be services, which accomplish specific
tasks. On the other hand, a node corresponds to a computer in
the grid, which contains some of those resources with a set of
characteristics. The nodes in grid systems are heterogeneous and
dynamic in terms of dynamicity of their properties and
dynamicity of their existence in the grid. At any time, there may
be new nodes joining to the grid, or there may be some nodes
that leave the system without any notice [7]. From the
distributed query processing point of view, these characteristics
cause many problems such as resource discovery and allocation.
To efficiently execute queries in the grid environment, metadata
about the relations and properties of the residing nodes should
be discovered beforehand. There can be found many studies in
the literature which examine resource discovery for query
processing in grid systems [14]. After discovering resources,
suitable allocation of resources is essential for effectively
executing queries. Resource allocation determines how many of
the candidate resources will be used, and which tasks will be
executed by which resources. These issues may drastically
affect the performance of the query execution in grid
environments. There can be found many studies in the current
literature which address the problem of resource allocation for
query processing in grid systems [2, 10-13, 16, 17, 20, 22].
Several survey studies examine and evaluate these studies with
classification [3-5]. Although the existing resource allocation
studies provide interesting solutions to this problem, to the best
of our knowledge none of these studies consider decreasing the

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IDEAS12 2012, August 8-10, Prague [Czech Republic]
Editors: Bipin C. Desai, Jaroslav Pokorny, Jorge Bernardino
Copyright ©2012 ACM 978-1-4503-1234-9/12/08 $15.00

139

scale of the search space for the candidate resources. Moreover,
we have found few studies which focus on the communication
costs during the resource allocation [2, 17]. Thus, we believe
that there are still some open issues that are not mentioned
completely regarding the grid systems’ characteristics.

In this study, we aim at designing a resource allocation
algorithm for one join operator in a query in grid systems. We
first generate a reduced search space for the candidate nodes.
Then, we create an initial allocation plan considering proximity
of the candidate nodes to the data resources. Problems, which
may arise because of the dynamicity property of grids, are not
covered in this study and are planned to be examined in the near
future. The contribution of this study is twofold. First, we
address scalability of the resource allocation method by
decreasing the size of the search space for candidate resources.
The second contribution struggles with the heterogeneity of the
network by selecting candidate nodes according to their
proximity to the data resources aiming at decreasing data
transfer costs.

Throughout this study, we assume that the relations, which
are involved in the join operator, are horizontally partitioned
into the grid where each partition resides in only one node. The
existing partitioning may or may not be based on the join
attribute. Therefore repartitioning may be required during the
execution of the join operator. We examine a join operator as it
consists of two atomic tasks namely scan and join. Scan tasks
act as providers to the join tasks by reading the data from the
storage unit and sending this data to the corresponding join
tasks. Considering data locality constraint, we assume that the
scan tasks are executed on the nodes where the partitions of the
base relations reside. We call such nodes as scan nodes. The
scan nodes may either be nodes that hold base relations, or they
may be nodes that are already allocated for another join operator
that produce temporary relations to the current join operator. On
the other hand, we call the nodes in which join tasks are
executed as join nodes. Lastly, the node that receives the query
at the beginning will be called as queried node for the rest of
this study.
The rest of this paper is structured as follows. In section 2, we
present a brief literature survey related to the resource allocation
algorithms for query processing in grid systems. In section 3, we
introduce the Join Operator Resource Allocation algorithm in
detail. In section 4, we give complexity analyses of the proposed
algorithm. In section 5, quantitative evaluations and simulation
results are discussed. And finally in section 6, conclusions and
future works are presented.

2. RELATED WORK
There can be found many studies in the literature, which

examine resource allocation for query processing in grid
environments [2, 10-13, 16, 17, 20, 22]. Although these studies
have common objectives, they provide different solutions for
different types of parallelism for query processing. The studies
[2, 16, 17, 20, 22] consider three types of parallelism,
independent, pipelined and partitioned parallelism in allocating
resources; whereas, the studies [10-13] propose resource
allocation algorithms addressing only the partitioned
parallelism.

The main idea behind the first group of algorithms, in which
all different types of parallelism are considered, is to divide the
query into independent sub-plans and parallelize each sub-plan
regarding to the partition scheme of the relations. For instance,

Soe et al. [22] first analyze the query plans for execution
sequence to extract inter-query parallelism. After extracting the
sequence, they map operators to different nodes by considering
estimated completion times. The intra-query parallelization is
tackled via iterative refinements by allocating more nodes to
each operator. On the other hand, Bose et al. profit the bushy
tree representation of query plans [2]. They split the query tree
into two segments, and realize resource allocation for each
segment separately. They repeat this process until all
independent sub-plans are allocated. Then they allocate nodes
for each sub-plan considering intra-query parallelism. Likewise,
Kotowski et al. [16] extract independent sub-plans in the query
and allocate nodes for each sub-plan considering load on the
nodes. Each sub-plan is then decomposed into parallelizable
portions, which will be executed using different data partitions.
Liu and Karimi [17] allocates nodes with the help of a ranking
function which evaluates nodes in the system. They first
determine independent sub-plans in the query and allocate nodes
regarding their ranks. For each independent operator, they also
examine intra-query parallelism. These studies provide very
interesting solutions to the resource allocation problem by
considering all possible types of parallelism. However, the
proposed studies do not address large scale characteristic of the
grid environment since the considered search space for the
candidate nodes is not specified. The algorithms mention
ranking of the nodes according to some criteria, but proximity of
the nodes to the data resources is not mentioned in most of the
studies.

The studies in which only partitioned parallelism is
examined provide more focused solutions for the resource
allocation problem. For instance, Gounaris et al. [10, 12]
proposed a resource scheduling method for parallel query
processing in computational grids examining the partitioned
parallelism problem. In their algorithm, they assumed the
existence of a parallel query plan. The algorithm starts its
execution by an initial resource allocation by considering the
data locality. Then, for each operator, it checks if the parallelism
degree of that operator can be increased. The algorithm allocates
new resources until performance improvement drops below a
threshold value. On the other hand, in [11, 13] Gounaris et al.
enhanced their previous algorithm by providing dynamic
resource allocation. In the proposed algorithm, the initial
resource allocation is realized by the use of the algorithm which
is proposed in [10]. Then, in each allocated node, a grid query
evaluation service (GQES) is created. The GQES monitors the
execution of the query sub-plan and creates notifications related
to the current status of the local execution. A service named
Monitoring Event Detector is created in each site, which
evaluates the notifications. The Diagnoser component diagnoses
the inappropriate workload and proposes an enhanced workload
distribution vector to the Responder service. The responder
service decides whether to move the execution to another
candidate or to leave in the current resource by considering the
status of the executions. The main objective in this algorithm is
to make all participating resources finish at the same time. In
case of a decrease in the performance of an execution, which
may cause load imbalance, the algorithm makes a decision and
moves the execution of the query sub-plan to another suitable
node starting from the latest checkpoint. The algorithms in this
group provide more focused solutions for the resource allocation
problem by considering only the partitioned parallelization.
Although these studies address many characteristics of the grid

140

environments such as dynamicity and heterogeneity, they do not
propose solutions addressing large scale characteristic of the
environment. Moreover, the proposed studies do not provide
detailed cost models, which are focused primarily on the
communication costs for the selection of candidate nodes.
In both group of algorithms, the node selection is generally
realized by the use of parameters such as cpu speed, bandwidth,
amount of available memory, cpu utilization etc. We find few
studies in the literature, which focus particularly on the
communication costs during the resource allocation [2, 17].
Since in heterogeneous systems the communication speed
between nodes may highly fluctuate, we believe that networking
capabilities should be considered at first glance. Besides, the
search space for the candidate nodes is not specified in the
examined studies. Assuming that the search space for the
candidate nodes is all resources in the grid, the proposed
algorithms may suffer from the scalability issues in large scale
environments. To the best of our knowledge, we cannot find
studies that scale down the initial search space for the candidate
resources. Since grid systems are large scale, we believe that
such initial refinement is essential.

3. JOIN OPERATOR RESOURCE
ALLOCATION (JORA) ALGORITHM
In this section, we propose a resource allocation algorithm for a
single join operator in a query. We aim at finding suitable nodes
for the scan and join tasks which compose the join operator.
Due to the data locality constraint, the scan tasks are allocated
at the nodes in which the partitions of relations reside. However,
the search space for the candidates of the join tasks is very large
since there are no strict constraints beforehand for the join
nodes. For that reason, we first aim at reducing the search space
for the candidates of join nodes. To realize this, we designed the
JORA algorithm as consisting of two complementary
algorithms. In this manner, we first propose Proximity Based
Candidate List Generation (PBCG) Algorithm in Section 3.1.
After determining the list of candidate nodes, we propose Join
Task Resource Allocation (JTRA) Algorithm in Section 3.2,
which determines the parallelization degree and which finalizes
the allocation of resources.

3.1 Proximity Based Candidate List
Generation (PBCG) Algorithm
The resource allocation for join tasks is not a straightforward
process since every node in the grid environment is practically a
candidate resource for these tasks. In a large scale environment
it might not be suitable to consider such a large number of nodes
as candidates for the join task since this may cause performance
degradation for the resource allocation process. Although there
might be some constraints to decrease the number of candidates
for join tasks, such as hardware or software constraints, we
believe that the most profitable constraint would be the
proximity of candidates to the scan nodes. For that reason, in
PBCG algorithm, we try to refine the set of candidates by
choosing the set of nodes that are closer to the scan nodes in the
grid. To realize this, we start flooding a message beginning from
each scan node. The first node that collects flooded messages
from all scan nodes is considered to be located at the center of
the scan nodes. The algorithm in the queried node is shown in
Algorithm 1. At the beginning, the algorithm sends a startPBCG
message to all scan nodes, which causes them to start flooding

operation (line 1). After sending this message, queried node
waits for the candidate nodes to respond to the flooded
messages. Upon receiving a message from a candidate, the
queried node adds the sender to the candidate list (line 3). The
first replied candidate is considered to be the closest candidate
to all scan nodes. In line 4, the algorithm checks the termination
condition. Since the queried node is not aware when the
flooding ends, it has to use a termination condition to finalize
the algorithm. This allows the queried node to decide when to
stop waiting new messages for the PBCG algorithm. In our
algorithm we used the most distant scan nodes (nodeA and
nodeB) for determining the termination condition. Receiving a
PBCGCandidate message from one of these two nodes simply
means that the flooded messages are spread at least to all scan
nodes. To realize this, if the replied candidate is one of the most
distant scan nodes, queried node terminates the algorithm and
finalizes the candidate list.

Algorithm 1. PBCG Algorithm in the queried node

Input: (i) The list of scan nodes
 (ii) The most distant scan nodes (nodeA and nodeB)

Output: List of candidate nodes

1: send startPBCG message to all scan nodes
2: upon receiving a PBCGCandidate message:
3: add sender to the PBCGCandidateList

4: if sender = nodeA or nodeB then
5: terminate

6: else
7: continue receiving messages

8: endif

9: end

The algorithm, which is run in other nodes, is shown in
Algorithm 2. When a node in the grid system receives a
message, it checks its type. If the message type is startPBCG,
the node starts the flooding by sending a PBCGFlooding
message to all its neighbors (line 3). The termination condition
for flooding is embedded in this message as hopLimit value,
which is the hop count between the most distant scan nodes. If
the received message type is PBCGFlooding, the node extracts
hopCount value from the message and increments by one (line
6). It then adds origin of the message to the receivedScanNodes
list (line 7). If the receivedScanNodes list contains all scan
nodes, the node sends a PBCGCandidate message to the queried
node, which indicates that it is a candidate for the join task (line
9). The node then checks if the message should be relayed (line
11); if the termination condition is not met yet, the node relays
the message by sending it to all its neighbors except the sender
of the message (line 12). Each time the message is relayed, it is
diffused to other nodes in the grid. The flooding operation
continues hopLimit hops away from the scan nodes. This
ensures that at least t nodes will be candidate for the join
operation where t is the number of scan nodes.

Algorithm 2. PBCG Algorithm in other nodes

1: Upon receiving a message:

141

2: if message type is startPBCG then
3: send PBCGFlooding message to all neighbors

4: else if message type is PBCGFlooding
5: extract hopCount and hopLimit values from the message
6: increment hopCount by one
7: add origin of the message into the receivedScanNodes

8: if receivedScanNodes includes all scan nodes then
9: send PBCGCandidate message to the queried node

10: end if

11: if hopCount < hopLimit then
12: relay PBCGFlooding message to all neighbors except
the sender of the message

13: else
14: stop flooding the message

15: end if

16: end if

17: end

3.2 Join Task Resource Allocation (JTRA)
Algorithm

The basic execution of queries with partitioned parallelism
can be realized by the allocation of a single node for the join
task initially. On the other hand, parallelization of the join task
might drastically increase or decrease the performance of the
query execution depending on the characteristics of the
allocated nodes. For that reason, determining parallelization
degree for a join operator is very important in query processing
in grid environments, in which resources are heterogeneous.
There are many different parameters that affect the performance
of execution of a query in such environments. A resource
allocation algorithm, which covers all these parameters, may
cause excessive computation time to decide the parallelization
degree and which nodes to allocate. Therefore, heuristically
selected parameters are generally used in the current resource
allocation algorithms [2, 8, 9, 17, 18, 21]. We believe that, in
grid environments, data transmission costs are the determining
factor in execution time of a query. Therefore, in JTRA
algorithm, we propose a resource allocation algorithm, which
considers the data transmission costs as the decision function for
the parallelization degree. Although there are some similarities
between the JTRA algorithm and the algorithm which is
proposed in [12], the difference is that, our algorithm allocates
nodes starting from the closest nodes to the scan nodes which
ensures smaller data transfer costs. Another difference is that,
our algorithm includes a decision function for the parallelism
degree, based on the estimated data transfer costs, which
struggles the heterogeneity issues in grid environment.

In JTRA algorithm, we use the candidate list, which is
generated by the PBCG algorithm. This list contains candidate
resources, which are closer to the scan nodes. The top of the list
contains the closest candidate whereas the bottom parts contain
more distant candidates. The JTRA algorithm can be seen in
Algorithm 3. We start JTRA algorithm by taking a node from the
top of the candidate list (line 2), which is located at the center of

the scan nodes. Then we measure communication speeds
between the selected node and the scan nodes (line 3). This
measurement is realized on-the-go by the use of round-trip-time
(RTT). After gathering communication speed information, the
algorithm calculates the new estimated data transfer cost. The
addition of another candidate increases parallelization degree of
the join task. As the parallelization degree increases, the amount
of data to be transferred to each join node decreases. However,
since newly selected candidates get more distant, the lastly
added node will have a poorer communication capability. This
reveals a trade-off between decreased amount of data transfer
and increased data transfer costs.

Algorithm 3. JTRA Algorithm

Input: (i) The list of join candidates (candidateList)
 (ii) The metadata about the relations

Output: List of nodes that are allocated for the join task

 1: do
 2: nodeC take a node from top of the candidateList
 3: measure connection speeds between all scan nodes and
nodeC
 4: newEstimation estimate new data transmission time

 5: if newEstimation < queryRuntimeEstimation then
 6: add nodeC to the selectedNodes list
 7: queryRuntimeEstimation newEstimation

 8: end if

 9: while candidateList is not empty
10: allocate selected nodes for the join task

11: end

Since the the size of the search space for the candidate

nodes is limited by the use of the PBGC algorithm, the JTRA
algorithm iterates the whole candidate list. In each iteration the
data transfer duration of the join operator is estimated. If
addition of a candidate does not lead to a performance increase,
the algorithm skips the addition of that candidate and iterates
through the next candidate in the list. At the end of the
algorithm, the best sorted resource combination within the
candidate list is allocated for the join task.

The estimation of data transfer costs in JTRA algorithm
consists of three parameters:
(i) communication speeds between scan and join nodes (Sij), (ii)
local bandwidth of each join node (Bj), (iii) sizes of partitions in
each scan node (|Pi|). From those parameters, Bj and |Pi| are
provided by the resource discovery step. However, Sij is
determined on-the-go each time a new candidate node is added.
Even if the measurements for Sij are accurate individually, at the
runtime, they might differ from the measured values when all
scan nodes send their data to the join nodes concurrently. In
such cases, the local bandwidth of a join node might become
insufficient to meet all incoming packets. In such cases, the
congestion control mechanism of the underlying communication
protocol regularizes the transfer rate of the sender nodes. In
today’s networking environments, most of the communication is
handled by the TCP protocol, which provides its own
congestion control mechanism. The main idea behind TCP’s

142

congestion control is to ask senders to decrease transmission
rate for a specified amount if congestion occurs. This amount is
generally determined proportionally regarding to the percentage
of the sender’s transmission over the entire traffic [6].
Therefore, we heuristically normalize the Sij measurements
beforehand as appears in Algorithm 4.

Algorithm 4. Connection speed measurements normalization
algorithm

Input: (i) Measured connection speeds between scan and join
nodes (Sij)
 (ii) Local bandwidth of join node (Bj)

Output: Normalized list of Sij

1: sumj Sij
i=0−>n
∑

2: difference Bj - sumj

3: if difference > 0 then

4: for i =0 to n do
5: Sij = Sij – (difference * (Sij / sumj)

6: end for

7: end if

8: end

Assuming that the partitions are evenly distributed on the

scan nodes and redistribution of tuples will be uniform, the data
transfer time between n scan nodes and m join nodes will be
bounded by the slowest communication link. In such setting, the
data to be transferred from each scan node i to a join node will
be {|Pi| / m}. Therefore the data transfer time estimation can be
constructed as equation (1).

max
i=0−>n
j=0−>m

|Pi |
m*Sij

 (1)

The equation (1) returns the cost for data transmission
between scan and join nodes considering the slowest parallel
portion of the join task. Since all the remaining parallel portions
of join task should wait for the slowest portion, it is the
determining portion for the entire data transmission costs of the
examined join task.

4. ANALYSIS
In this section we provide time and message complexity

analyses of the proposed algorithms, PBCG and JTRA.
Theorem 1. The PBCG algorithm has O(d) time complexity,

where d is the diameter of the network.
Proof. PBCG algorithm uses the distance between the most

distant scan nodes for the termination condition. In the worst-
case scenario, the distance between the two most distant nodes
in the network is the diameter of the network. Since the
algorithm propagates d hops away from each scan node, the
time complexity of the algorithm is O(d) where d is the diameter
of the network.

Theorem 2. The PBCG algorithm has O(nN2) message
complexity, where n is the number of the scan nodes and N is
the number of the nodes in the grid system.

Proof. In PBCG algorithm, each scan node initiates a
flooding operation originated from itself. Therefore there are n
messages to be flooded to the network. In the worst case, the
flooding operation lasts until all the nodes in the network
receives flooded messages. Since each flooding operation has N2
message complexity, the total worst case message complexity of
the algorithm is O(nN2).

Theorem 3. The worst case time complexity of the JTRA
algorithm is O(nN), where n is the number of scan nodes and N
is the number of nodes in the network.

Proof. The JTRA algorithm uses the candidate list, which is
generated by the PBCG algorithm. In the worst case, the list
contains all nodes in the network. For each of these candidates,
the JTRA algorithm measures the connection speed between the
candidate and n scan nodes by sending them RTT messages.
Therefore, the worst case time complexity of the algorithm is
bounded by the number of messages which is O(nN).

Theorem 4. The worst case message complexity of the
JTRA algorithm is O(2nN), where n is the number of scan nodes
and N is the number of nodes in the network.
Proof. The JTRA algorithm uses two messages for measuring
the communication speed between each candidate and scan
nodes. Since in the worst case the algorithm uses N candidates,
the total number of message exchange is O(2nN).

5. QUANTITATIVE EVALUATION
In this section we present quantitative evaluation of the Join
Operator Resource Allocation (JORA) algorithm by comparing
with a comparative algorithm (CA) which reflects the common
properties of the recent resource allocation algorithms such as
[10, 12]. The main idea behind the CA is very similar to the
algorithm proposed by Gounaris et al. [10, 12]. The algorithm
ranks the nodes in the grid according to their properties. In our
case, the most important property that influences the simulation
results is the connection speed of the nodes. Therefore the CA
algorithm ranks the nodes according to their connection speeds.
Then the ranked nodes are sorted and the algorithm starts to
allocate nodes starting from the top of the list. When addition of
a new node does not lead to a performance increase, the
algorithm terminates. We have implemented JORA and CA
algorithms in ns2 simulation environment and collected results
for the duration of resource allocation process and duration of
query execution.

5.1 Simulation Setup
We have implemented the JORA and comparative algorithm
(CA) in ns2 simulation environment. We have generated grid
simulation scenarios consisting of 100 through 700 nodes. Each
node in the scenario represents a uni-processor computer in the
grid system which has arbitrary connections to other nodes in
the grid environment. The bandwidths of duplex connections
between nodes are randomly assigned between 1 and 10 Gbps.
We have randomly determined 20 scan nodes in each scenario.
The distribution of these scan nodes are realized randomly over
the simulated environment. Each scan node is assumed to store a
partition of a base relation. The size of partitions in each node is
assumed to be 50 GBytes and each scan node stores only one
partition.

143

5.2 Simulation Results
We have collected test results for the duration of resource
allocation process and duration of query execution. Figure 1,
shows the duration for the resource allocation process. As it can
be seen in Figure 1, the duration of the execution of the JORA
algorithm is longer than the CA. This is because the JORA
algorithm processes its entire candidate list to find the best
possible resource allocation within its candidates.

Figure 1. Duration for the resource allocation process

On the other hand, CA stops adding new resources whenever its
performance increase drops below a certain threshold value. The
approach used by CA may miss better resource allocation
combinations with higher number of resources. However it is
conceptually impossible to evaluate all possible resource
allocation combinations without having a limited search space.
 Figure 2 shows the simulated query execution durations for
the simulated query. In the figure, it can be seen that the
resources allocated by the JORA algorithm perform better than
the resources that are allocated by the CA. This is because,
although the resources that are allocated by the CA are the
highest ranked nodes in the grid, they might be placed far from
the scan nodes, which may result in slower data transfer rates.
On the other hand, the resources that are allocated by the JORA
algorithm are closer to the scan nodes. For that reason, JORA
algorithm ensures allocation of more effective resources in
terms of the communication performances with the scan nodes.
This heuristic causes the JORA algorithm outperforms the CA.
 Regarding the simulation results which are shown in Figure
1 and 2, the JORA algorithm is more preferable if the resource
allocation processing durations do not exceed the estimated
query execution durations. In our simulation scenarios, the
durations of query executions are much higher than the
durations of the resource allocation processes. Therefore in such
cases the JORA algorithm might be considered as a better
alternative to the existing resource allocation algorithms which
are based on ranking functions.

6. CONCLUSION
In this paper, we proposed a Join Operator Resource Allocation
(JORA) algorithm which generates a finite candidate resource
list by exploiting proximities of the candidates to the scan
nodes. We presented our algorithm in detail and proposed
complexity analyses. Then, we strengthened our perspectives by
the use of quantitative analyses and simulations. We showed
that our algorithm outperforms the algorithms that use ranking

functions without having the proximity information to the data
resources.

Figure 2. Query execution durations

Regarding to the results showed, we conclude that the JORA
algorithm might be a strong alternative to the existing resource
allocation algorithms in many cases in which queries deal with
large amount of distributed data. As indicated in its name, the
JORA algorithm is a resource allocation algorithm for a single
join operator in a query. For the future works, we plan to extend
the JORA algorithm so that it will cover all join operators in an
entire query. Finally we plan to mention dynamicity issues to
propose a complete resource allocation algorithm for query
processing in grid environments.

7. REFERENCES

[1] Antonioletti, M., Atkinson, M., Baxter, R., Borley, A.,

Hong, N. P. C., Collins, B., Hardman, N., Hume, A. C.,
Knox, A., Jackson, M., Krause, A., Laws, S., Magowan,
J., Paton, N. W., Pearson, D., Sugden, T., Watson, P. and
Westhead, M. The design and implementation of Grid
database services in OGSA-DAI: Research Articles.
Concurr. Comput. : Pract. Exper., 17, 2-4 2005), 357-376.

[2] Bose, S. K., Krishnamoorthy, S. and Ranade, N.
Allocating Resources to Parallel Query Plans in Data
Grids. In Proceedings of the GCC '07: Proceedings of the
Sixth International Conference on Grid and Cooperative
Computing (2007). IEEE Computer Society, [insert City
of Publication],[insert 2007 of Publication].

[3] Cokuslu, D., Hamuerlain, A. and Erciyes, K. Resource
Allocation for Query Processing in Grid Systems: A
Survey. irit/rr--2010-22--fr, IRIT, Université Paul
Sabatier, 2011.

[4] Costa, R. L. d. C. and Furtado, P. Scheduling in Grid
Databases. In Proceedings of the Proceedings of the 22nd
International Conference on Advanced Information
Networking and Applications - Workshops (2008). IEEE
Computer Society, [insert City of Publication],[insert 2008
of Publication].

[5] Epimakhov, I., Hameurlain, A., Dillon, T. and Morvan, F.
Resource Scheduling Methods for Query Optimization in

144

Data Grid Systems Advances in Databases and
Information Systems. Springer Berlin / Heidelberg, City,
2011.

[6] Fall, K. and Varadhan, K. The ns Manual (formerly ns
Notes and Documentation). City, 2010.

[7] Foster, I. and Kesselman, C. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann
Publishers, 2004.

[8] Garofalakis, M. N. and Ioannidis, Y. E. Parallel Query
Scheduling and Optimization with Time- and Space-
Shared Resources. In Proceedings of the VLDB '97:
Proceedings of the 23rd International Conference on Very
Large Data Bases (San Francisco, CA, USA, 1997).
Morgan Kaufmann Publishers Inc., [insert City of
Publication],[insert 1997 of Publication].

[9] Gomoluch, J. and Schroeder, M. Market-Based Resource
Allocation for Grid Computing: A Model and Simulation.
City, 2003.

[10] Gounaris, A., Sakellariou, R., Paton, N. W. and
Fernandes, A. A. A. Resource Scheduling For Parallel
Query Processing On Computational Grids. In
Proceedings of the Grid Computing, 2004. Proceedings.
Fifth IEEE/ACM International Workshop on (2004),
[insert City of Publication],[insert 2004 of Publication].

[11] Gounaris, A., Smith, J., Paton, N. W., Sakellariou, R.,
Fernandez, A. A. A. and Watson, P. Adapting to Changing
Resource Performance in Grid Query Processing. In
Proceedings of the DMG, Lecture Notes in Computer
Science (2005). Springer, [insert City of
Publication],[insert 2005 of Publication].

[12] Gounaris, A., Sakellariou, R., Paton, N. W. and
Fernandes, A. A. A novel approach to resource scheduling
for parallel query processing on computational grids.
Distrib. Parallel Databases, 19, 2-3 2006), 87-106.

[13] Gounaris, A., Smith, J., Paton, N. W., Sakellariou, R.,
Fernandes, A. A. and Watson, P. Adaptive workload
allocation in query processing in autonomous
heterogeneous environments. Distrib. Parallel Databases,
25, 3 2009), 125-164.

[14] Hameurlain, A., Cokuslu, D. and Erciyes, K. Resource
discovery in grid systems: a survey. International Journal
of Metadata, Semantics and Ontologies, 5, 3 2010), 251-
263.

[15] Huang, C., Wu, Z., Zheng, G. and Wu, X. Dart: A
Framework for Grid-Based Database Resource Access and
Discovery. In Proceedings of the Grid and Cooperative
Computing (2003), [insert City of Publication],[insert
2003 of Publication].

[16] Kotowski, N., Lima, A. A. B., Pacitti, E., Valduriez, P.
and Mattoso, M. Parallel query processing for OLAP in
grids. Concurr. Comput. : Pract. Exper., 20, 17 2008),
2039-2048.

[17] Liu, S. and Karimi, H. A. Grid query optimizer to improve
query processing in grids. Future Gener. Comput. Syst.,
24, 5 2008), 342-353.

[18] Mandal, A., Kennedy, K., Koelbel, C., Marin, G., Mellor-
Crummey, J., Liu, B. and Johnsson, L. Scheduling
Strategies For Mapping Application Workflows Onto The
Grid. In Proceedings of the Proceedings, 14th IEEE
International Symposium on High Performance
Distributed Computing (2005), [insert City of
Publication],[insert 2005 of Publication].

[19] Pacitti, E., Valduriez, P. and Mattoso, M. Grid Data
Management: Open Problems and New Issues. Journal of
Grid Computing, 5, 3 2007), 273-281.

[20] Silva, V. F. V. D., Dutra, M. L., Porto, F., Schulze, B.,
Barbosa, A. C. and de Oliveira, J. C. An adaptive parallel
query processing middleware for the Grid: Research
Articles. Concurr. Comput. : Pract. Exper., 18, 6 2006),
621-634.

[21] Slimani, Y., Najjar, F. and Mami, N. An Adaptive Cost
Model for Distributed Query Optimization on the Grid. In
Proceedings of the OTM Workshops (2004), [insert City
of Publication],[insert 2004 of Publication].

[22] Soe, K. M., Nwe, A. A., Aung, T. N., Naing, T. T. and
Thein, N. L. Efficient Scheduling of Resources for
Parallel Query Processing on Grid-based Architecture. In
Proceedings of the Information and Telecommunication
Technologies, 2005. APSITT 2005 Proceedings. 6th Asia-
Pacific Symposium on (2005), [insert City of
Publication],[insert 2005 of Publication].

[23] Taniar, D., Leung, C. H. C., Rahayu, W. and Goel, S.
High Performance Parallel Database Processing and
Grid Databases. Wiley Publishing, 2008.

145

