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ABSTRACT 
Grid systems become very popular during the last decade 
because of their rapidly increasing computational capabilities. 
On the other hand, the advances on different domains cause 
enormous increase in the scale of the manipulated data. This 
issue augments the importance of distributed query processing 
and causes researchers to port their underlying environment 
onto the grid systems. However the dynamicity, heterogeneity 
and large scale characteristics of grid systems pose new 
problems for the distributed query processing domain. Resource 
allocation for query processing in grid systems is one of these 
problems, which attracts many researchers’ attention. In this 
paper, we propose a new resource allocation algorithm for one 
relational join operator in a query considering characteristics of 
the grid systems. We provide theoretical analyses of the 
proposed algorithm and we consolidate analyses with the 
simulations.   

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – distributed 
databases, query processing, relational databases.  

General Terms 
Algorithms, Performance, Design. 

Keywords 
Resource allocation, grid systems, query processing. 

1. INTRODUCTION 
Grid systems are today’s one of the most interesting computing 

environments because of their large computing and storage 
capabilities and their availability [7]. Many different domains 
profit the facilities of grid environments. Distributed query 
processing is one of these domains in which there exists large 
amounts of ongoing research to port the underlying environment 
from distributed and parallel systems to the grid systems [1, 15, 
16, 19, 23]. However, grid system’s characteristics reveal many 
problems. Differently from the parallel and distributed systems, 
grid environments are characterized as large scale, 
heterogeneous and dynamic in their nature [7]. It is generally 
assumed that grid systems have very large number of resources. 
These resources may correspond computational resources such 
as CPU, memory, storage unit or network; they may be data 
resources, which provide metadata and its contents such as 
database; or they may be services, which accomplish specific 
tasks. On the other hand, a node corresponds to a computer in 
the grid, which contains some of those resources with a set of 
characteristics. The nodes in grid systems are heterogeneous and 
dynamic in terms of dynamicity of their properties and 
dynamicity of their existence in the grid. At any time, there may 
be new nodes joining to the grid, or there may be some nodes 
that leave the system without any notice [7]. From the 
distributed query processing point of view, these characteristics 
cause many problems such as resource discovery and allocation. 
To efficiently execute queries in the grid environment, metadata 
about the relations and properties of the residing nodes should 
be discovered beforehand. There can be found many studies in 
the literature which examine resource discovery for query 
processing in grid systems [14]. After discovering resources, 
suitable allocation of resources is essential for effectively 
executing queries. Resource allocation determines how many of 
the candidate resources will be used, and which tasks will be 
executed by which resources. These issues may drastically 
affect the performance of the query execution in grid 
environments. There can be found many studies in the current 
literature which address the problem of resource allocation for 
query processing in grid systems [2, 10-13, 16, 17, 20, 22]. 
Several survey studies examine and evaluate these studies with 
classification [3-5]. Although the existing resource allocation 
studies provide interesting solutions to this problem, to the best 
of our knowledge none of these studies consider decreasing the 
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scale of the search space for the candidate resources. Moreover, 
we have found few studies which focus on the communication 
costs during the resource allocation [2, 17]. Thus, we believe 
that there are still some open issues that are not mentioned 
completely regarding the grid systems’ characteristics.  

In this study, we aim at designing a resource allocation 
algorithm for one join operator in a query in grid systems. We 
first generate a reduced search space for the candidate nodes. 
Then, we create an initial allocation plan considering proximity 
of the candidate nodes to the data resources. Problems, which 
may arise because of the dynamicity property of grids, are not 
covered in this study and are planned to be examined in the near 
future. The contribution of this study is twofold. First, we 
address scalability of the resource allocation method by 
decreasing the size of the search space for candidate resources. 
The second contribution struggles with the heterogeneity of the 
network by selecting candidate nodes according to their 
proximity to the data resources aiming at decreasing data 
transfer costs.  

Throughout this study, we assume that the relations, which 
are involved in the join operator, are horizontally partitioned 
into the grid where each partition resides in only one node. The 
existing partitioning may or may not be based on the join 
attribute. Therefore repartitioning may be required during the 
execution of the join operator. We examine a join operator as it 
consists of two atomic tasks namely scan and join. Scan tasks 
act as providers to the join tasks by reading the data from the 
storage unit and sending this data to the corresponding join 
tasks. Considering data locality constraint, we assume that the 
scan tasks are executed on the nodes where the partitions of the 
base relations reside. We call such nodes as scan nodes. The 
scan nodes may either be nodes that hold base relations, or they 
may be nodes that are already allocated for another join operator 
that produce temporary relations to the current join operator. On 
the other hand, we call the nodes in which join tasks are 
executed as join nodes. Lastly, the node that receives the query 
at the beginning will be called as queried node for the rest of 
this study.  
The rest of this paper is structured as follows. In section 2, we 
present a brief literature survey related to the resource allocation 
algorithms for query processing in grid systems. In section 3, we 
introduce the Join Operator Resource Allocation algorithm in 
detail. In section 4, we give complexity analyses of the proposed 
algorithm. In section 5, quantitative evaluations and simulation 
results are discussed. And finally in section 6, conclusions and 
future works are presented. 

2. RELATED WORK 
There can be found many studies in the literature, which 

examine resource allocation for query processing in grid 
environments [2, 10-13, 16, 17, 20, 22]. Although these studies 
have common objectives, they provide different solutions for 
different types of parallelism for query processing. The studies 
[2, 16, 17, 20, 22] consider three types of parallelism, 
independent, pipelined and partitioned parallelism in allocating 
resources; whereas, the studies [10-13] propose resource 
allocation algorithms addressing only the partitioned 
parallelism.  

The main idea behind the first group of algorithms, in which 
all different types of parallelism are considered, is to divide the 
query into independent sub-plans and parallelize each sub-plan 
regarding to the partition scheme of the relations. For instance, 

Soe et al. [22] first analyze the query plans for execution 
sequence to extract inter-query parallelism. After extracting the 
sequence, they map operators to different nodes by considering 
estimated completion times. The intra-query parallelization is 
tackled via iterative refinements by allocating more nodes to 
each operator. On the other hand, Bose et al. profit the bushy 
tree representation of query plans [2]. They split the query tree 
into two segments, and realize resource allocation for each 
segment separately. They repeat this process until all 
independent sub-plans are allocated. Then they allocate nodes 
for each sub-plan considering intra-query parallelism. Likewise, 
Kotowski et al. [16] extract independent sub-plans in the query 
and allocate nodes for each sub-plan considering load on the 
nodes. Each sub-plan is then decomposed into parallelizable 
portions, which will be executed using different data partitions. 
Liu and Karimi [17] allocates nodes with the help of a ranking 
function which evaluates nodes in the system. They first 
determine independent sub-plans in the query and allocate nodes 
regarding their ranks. For each independent operator, they also 
examine intra-query parallelism. These studies provide very 
interesting solutions to the resource allocation problem by 
considering all possible types of parallelism. However, the 
proposed studies do not address large scale characteristic of the 
grid environment since the considered search space for the 
candidate nodes is not specified. The algorithms mention 
ranking of the nodes according to some criteria, but proximity of 
the nodes to the data resources is not mentioned in most of the 
studies.  

The studies in which only partitioned parallelism is 
examined provide more focused solutions for the resource 
allocation problem. For instance, Gounaris et al. [10, 12] 
proposed a resource scheduling method for parallel query 
processing in computational grids examining the partitioned 
parallelism problem. In their algorithm, they assumed the 
existence of a parallel query plan. The algorithm starts its 
execution by an initial resource allocation by considering the 
data locality. Then, for each operator, it checks if the parallelism 
degree of that operator can be increased. The algorithm allocates 
new resources until performance improvement drops below a 
threshold value. On the other hand, in [11, 13] Gounaris et al. 
enhanced their previous algorithm by providing dynamic 
resource allocation. In the proposed algorithm, the initial 
resource allocation is realized by the use of the algorithm which 
is proposed in [10]. Then, in each allocated node, a grid query 
evaluation service (GQES) is created. The GQES monitors the 
execution of the query sub-plan and creates notifications related 
to the current status of the local execution. A service named 
Monitoring Event Detector is created in each site, which 
evaluates the notifications. The Diagnoser component diagnoses 
the inappropriate workload and proposes an enhanced workload 
distribution vector to the Responder service. The responder 
service decides whether to move the execution to another 
candidate or to leave in the current resource by considering the 
status of the executions. The main objective in this algorithm is 
to make all participating resources finish at the same time. In 
case of a decrease in the performance of an execution, which 
may cause load imbalance, the algorithm makes a decision and 
moves the execution of the query sub-plan to another suitable 
node starting from the latest checkpoint. The algorithms in this 
group provide more focused solutions for the resource allocation 
problem by considering only the partitioned parallelization. 
Although these studies address many characteristics of the grid 
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environments such as dynamicity and heterogeneity, they do not 
propose solutions addressing large scale characteristic of the 
environment. Moreover, the proposed studies do not provide 
detailed cost models, which are focused primarily on the 
communication costs for the selection of candidate nodes.  
In both group of algorithms, the node selection is generally 
realized by the use of parameters such as cpu speed, bandwidth, 
amount of available memory, cpu utilization etc. We find few 
studies in the literature, which focus particularly on the 
communication costs during the resource allocation [2, 17]. 
Since in heterogeneous systems the communication speed 
between nodes may highly fluctuate, we believe that networking 
capabilities should be considered at first glance. Besides, the 
search space for the candidate nodes is not specified in the 
examined studies. Assuming that the search space for the 
candidate nodes is all resources in the grid, the proposed 
algorithms may suffer from the scalability issues in large scale 
environments. To the best of our knowledge, we cannot find 
studies that scale down the initial search space for the candidate 
resources. Since grid systems are large scale, we believe that 
such initial refinement is essential. 

3. JOIN OPERATOR RESOURCE 
ALLOCATION (JORA) ALGORITHM 
In this section, we propose a resource allocation algorithm for a 
single join operator in a query. We aim at finding suitable nodes 
for the scan and join tasks which compose the join operator. 
Due to the data locality constraint, the scan tasks are allocated 
at the nodes in which the partitions of relations reside. However, 
the search space for the candidates of the join tasks is very large 
since there are no strict constraints beforehand for the join 
nodes. For that reason, we first aim at reducing the search space 
for the candidates of join nodes. To realize this, we designed the 
JORA algorithm as consisting of two complementary 
algorithms. In this manner, we first propose Proximity Based 
Candidate List Generation (PBCG) Algorithm in Section 3.1. 
After determining the list of candidate nodes, we propose Join 
Task Resource Allocation (JTRA) Algorithm in Section 3.2, 
which determines the parallelization degree and which finalizes 
the allocation of resources. 

3.1 Proximity Based Candidate List 
Generation (PBCG) Algorithm 
The resource allocation for join tasks is not a straightforward 
process since every node in the grid environment is practically a 
candidate resource for these tasks. In a large scale environment 
it might not be suitable to consider such a large number of nodes 
as candidates for the join task since this may cause performance 
degradation for the resource allocation process. Although there 
might be some constraints to decrease the number of candidates 
for join tasks, such as hardware or software constraints, we 
believe that the most profitable constraint would be the 
proximity of candidates to the scan nodes. For that reason, in 
PBCG algorithm, we try to refine the set of candidates by 
choosing the set of nodes that are closer to the scan nodes in the 
grid. To realize this, we start flooding a message beginning from 
each scan node. The first node that collects flooded messages 
from all scan nodes is considered to be located at the center of 
the scan nodes. The algorithm in the queried node is shown in 
Algorithm 1. At the beginning, the algorithm sends a startPBCG 
message to all scan nodes, which causes them to start flooding 

operation (line 1). After sending this message, queried node 
waits for the candidate nodes to respond to the flooded 
messages. Upon receiving a message from a candidate, the 
queried node adds the sender to the candidate list (line 3). The 
first replied candidate is considered to be the closest candidate 
to all scan nodes. In line 4, the algorithm checks the termination 
condition. Since the queried node is not aware when the 
flooding ends, it has to use a termination condition to finalize 
the algorithm. This allows the queried node to decide when to 
stop waiting new messages for the PBCG algorithm. In our 
algorithm we used the most distant scan nodes (nodeA and 
nodeB) for determining the termination condition. Receiving a 
PBCGCandidate message from one of these two nodes simply 
means that the flooded messages are spread at least to all scan 
nodes. To realize this, if the replied candidate is one of the most 
distant scan nodes, queried node terminates the algorithm and 
finalizes the candidate list.  
 
Algorithm 1. PBCG Algorithm in the queried node 

Input:  (i) The list of scan nodes
 (ii) The most distant scan nodes (nodeA and nodeB) 

Output: List of candidate nodes 

1: send startPBCG message to all scan nodes 
2: upon receiving a PBCGCandidate message: 
3: add sender to the PBCGCandidateList 

4: if sender = nodeA or nodeB then 
5:     terminate 

6: else 
7:     continue receiving messages 

8: endif 

9: end 

  
The algorithm, which is run in other nodes, is shown in 
Algorithm 2. When a node in the grid system receives a 
message, it checks its type. If the message type is startPBCG, 
the node starts the flooding by sending a PBCGFlooding 
message to all its neighbors (line 3). The termination condition 
for flooding is embedded in this message as hopLimit value, 
which is the hop count between the most distant scan nodes. If 
the received message type is PBCGFlooding, the node extracts 
hopCount value from the message and increments by one (line 
6). It then adds origin of the message to the receivedScanNodes 
list (line 7). If the receivedScanNodes list contains all scan 
nodes, the node sends a PBCGCandidate message to the queried 
node, which indicates that it is a candidate for the join task (line 
9). The node then checks if the message should be relayed (line 
11); if the termination condition is not met yet, the node relays 
the message by sending it to all its neighbors except the sender 
of the message (line 12). Each time the message is relayed, it is 
diffused to other nodes in the grid. The flooding operation 
continues hopLimit hops away from the scan nodes. This 
ensures that at least t nodes will be candidate for the join 
operation where t is the number of scan nodes.  

 
Algorithm 2. PBCG Algorithm in other nodes 

1: Upon receiving a message: 
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2: if message type is startPBCG then 
3:     send PBCGFlooding message to all neighbors 

4: else if message type is PBCGFlooding 
5:     extract hopCount and hopLimit values from the message 
6:     increment hopCount by one 
7:     add origin of the message into the receivedScanNodes 

8:     if receivedScanNodes includes all scan nodes then 
9:         send PBCGCandidate message to the queried node 

10:   end if 

11:   if hopCount < hopLimit then 
12:       relay PBCGFlooding message to all neighbors except 
the sender of the       message 

13:   else 
14:       stop flooding the message 

15:   end if 

16: end if 

17: end 

 

3.2 Join Task Resource Allocation (JTRA) 
Algorithm 

The basic execution of queries with partitioned parallelism 
can be realized by the allocation of a single node for the join 
task initially. On the other hand, parallelization of the join task 
might drastically increase or decrease the performance of the 
query execution depending on the characteristics of the 
allocated nodes. For that reason, determining parallelization 
degree for a join operator is very important in query processing 
in grid environments, in which resources are heterogeneous. 
There are many different parameters that affect the performance 
of execution of a query in such environments. A resource 
allocation algorithm, which covers all these parameters, may 
cause excessive computation time to decide the parallelization 
degree and which nodes to allocate. Therefore, heuristically 
selected parameters are generally used in the current resource 
allocation algorithms [2, 8, 9, 17, 18, 21]. We believe that, in 
grid environments, data transmission costs are the determining 
factor in execution time of a query. Therefore, in JTRA 
algorithm, we propose a resource allocation algorithm, which 
considers the data transmission costs as the decision function for 
the parallelization degree. Although there are some similarities 
between the JTRA algorithm and the algorithm which is 
proposed in [12], the difference is that, our algorithm allocates 
nodes starting from the closest nodes to the scan nodes which 
ensures smaller data transfer costs. Another difference is that, 
our algorithm includes a decision function for the parallelism 
degree, based on the estimated data transfer costs, which 
struggles the heterogeneity issues in grid environment.  

In JTRA algorithm, we use the candidate list, which is 
generated by the PBCG algorithm. This list contains candidate 
resources, which are closer to the scan nodes. The top of the list 
contains the closest candidate whereas the bottom parts contain 
more distant candidates. The JTRA algorithm can be seen in 
Algorithm 3. We start JTRA algorithm by taking a node from the 
top of the candidate list (line 2), which is located at the center of 

the scan nodes. Then we measure communication speeds 
between the selected node and the scan nodes (line 3). This 
measurement is realized on-the-go by the use of round-trip-time 
(RTT). After gathering communication speed information, the 
algorithm calculates the new estimated data transfer cost. The 
addition of another candidate increases parallelization degree of 
the join task. As the parallelization degree increases, the amount 
of data to be transferred to each join node decreases. However, 
since newly selected candidates get more distant, the lastly 
added node will have a poorer communication capability. This 
reveals a trade-off between decreased amount of data transfer 
and increased data transfer costs.  

 
Algorithm 3. JTRA Algorithm 

Input:  (i) The list of join candidates (candidateList)
 (ii) The metadata about the relations 

Output: List of nodes that are allocated for the join task 

  1: do 
  2:     nodeC  take a node from top of the candidateList 
  3:     measure connection speeds between all scan nodes and 
nodeC 
  4:    newEstimation  estimate new data transmission time 

  5:     if newEstimation < queryRuntimeEstimation then 
  6:         add nodeC to the selectedNodes list 
  7: queryRuntimeEstimation  newEstimation 

  8:     end if 

  9: while candidateList is not empty 
10: allocate selected nodes for the join task 

11: end 

 
Since the the size of the search space for the candidate 

nodes is limited by the use of the PBGC algorithm, the JTRA 
algorithm iterates the whole candidate list. In each iteration the 
data transfer duration of the join operator is estimated. If 
addition of a candidate does not lead to a performance increase, 
the algorithm skips the addition of that candidate and iterates 
through the next candidate in the list. At the end of the 
algorithm, the best sorted resource combination within the 
candidate list is allocated for the join task.  

The estimation of data transfer costs in JTRA algorithm 
consists of three parameters:  
(i) communication speeds between scan and join nodes (Sij), (ii) 
local bandwidth of each join node (Bj), (iii) sizes of partitions in 
each scan node (|Pi|). From those parameters, Bj and |Pi| are 
provided by the resource discovery step. However, Sij is 
determined on-the-go each time a new candidate node is added. 
Even if the measurements for Sij are accurate individually, at the 
runtime, they might differ from the measured values when all 
scan nodes send their data to the join nodes concurrently. In 
such cases, the local bandwidth of a join node might become 
insufficient to meet all incoming packets. In such cases, the 
congestion control mechanism of the underlying communication 
protocol regularizes the transfer rate of the sender nodes. In 
today’s networking environments, most of the communication is 
handled by the TCP protocol, which provides its own 
congestion control mechanism. The main idea behind TCP’s 
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congestion control is to ask senders to decrease transmission 
rate for a specified amount if congestion occurs. This amount is 
generally determined proportionally regarding to the percentage 
of the sender’s transmission over the entire traffic [6]. 
Therefore, we heuristically normalize the Sij measurements 
beforehand as appears in Algorithm 4.  

 
Algorithm 4. Connection speed measurements normalization 
algorithm 

Input:  (i) Measured connection speeds between scan and join 
nodes (Sij)
 (ii) Local bandwidth of join node (Bj) 

Output: Normalized list of Sij 

1: sumj  Sij
i=0−>n
∑  

2: difference  Bj - sumj 

3: if difference > 0 then 

4:     for i =0 to n do 
5:         Sij = Sij – (difference * (Sij / sumj) 

6:     end for 

7: end if 

8: end 

 
Assuming that the partitions are evenly distributed on the 

scan nodes and redistribution of tuples will be uniform, the data 
transfer time between n scan nodes and m join nodes will be 
bounded by the slowest communication link. In such setting, the 
data to be transferred from each scan node i to a join node will 
be {|Pi| / m}. Therefore the data transfer time estimation can be 
constructed as equation (1). 

                  

max
i=0−>n
j=0−>m

|Pi |
m*Sij

   (1) 

The equation (1) returns the cost for data transmission 
between scan and join nodes considering the slowest parallel 
portion of the join task. Since all the remaining parallel portions 
of join task should wait for the slowest portion, it is the 
determining portion for the entire data transmission costs of the 
examined join task. 

4. ANALYSIS 
In this section we provide time and message complexity 

analyses of the proposed algorithms, PBCG and JTRA.  
Theorem 1. The PBCG algorithm has O(d) time complexity, 

where d is the diameter of the network.  
Proof. PBCG algorithm uses the distance between the most 

distant scan nodes for the termination condition. In the worst-
case scenario, the distance between the two most distant nodes 
in the network is the diameter of the network. Since the 
algorithm propagates d hops away from each scan node, the 
time complexity of the algorithm is O(d) where d is the diameter 
of the network.  

Theorem 2. The PBCG algorithm has O(nN2) message 
complexity, where n is the number of the scan nodes and N is 
the number of the nodes in the grid system.  

Proof. In PBCG algorithm, each scan node initiates a 
flooding operation originated from itself. Therefore there are n 
messages to be flooded to the network. In the worst case, the 
flooding operation lasts until all the nodes in the network 
receives flooded messages. Since each flooding operation has N2 
message complexity, the total worst case message complexity of 
the algorithm is O(nN2).  

Theorem 3. The worst case time complexity of the JTRA 
algorithm is O(nN), where n is the number of scan nodes and N 
is the number of nodes in the network.  

Proof. The JTRA algorithm uses the candidate list, which is 
generated by the PBCG algorithm. In the worst case, the list 
contains all nodes in the network. For each of these candidates, 
the JTRA algorithm measures the connection speed between the 
candidate and n scan nodes by sending them RTT messages. 
Therefore, the worst case time complexity of the algorithm is 
bounded by the number of messages which is O(nN).  

Theorem 4. The worst case message complexity of the 
JTRA algorithm is O(2nN), where n is the number of scan nodes 
and N is the number of nodes in the network.  
Proof. The JTRA algorithm uses two messages for measuring 
the communication speed between each candidate and scan 
nodes. Since in the worst case the algorithm uses N candidates, 
the total number of message exchange is O(2nN). 

5. QUANTITATIVE EVALUATION 
In this section we present quantitative evaluation of the Join 
Operator Resource Allocation (JORA) algorithm by comparing 
with a comparative algorithm (CA) which reflects the common 
properties of the recent resource allocation algorithms such as 
[10, 12]. The main idea behind the CA is very similar to the 
algorithm proposed by Gounaris et al. [10, 12]. The algorithm 
ranks the nodes in the grid according to their properties. In our 
case, the most important property that influences the simulation 
results is the connection speed of the nodes. Therefore the CA 
algorithm ranks the nodes according to their connection speeds. 
Then the ranked nodes are sorted and the algorithm starts to 
allocate nodes starting from the top of the list. When addition of 
a new node does not lead to a performance increase, the 
algorithm terminates. We have implemented JORA and CA 
algorithms in ns2 simulation environment and collected results 
for the duration of resource allocation process and duration of 
query execution. 

5.1 Simulation Setup 
We have implemented the JORA and comparative algorithm 
(CA) in ns2 simulation environment. We have generated grid 
simulation scenarios consisting of 100 through 700 nodes. Each 
node in the scenario represents a uni-processor computer in the 
grid system which has arbitrary connections to other nodes in 
the grid environment. The bandwidths of duplex connections 
between nodes are randomly assigned between 1 and 10 Gbps. 
We have randomly determined 20 scan nodes in each scenario. 
The distribution of these scan nodes are realized randomly over 
the simulated environment. Each scan node is assumed to store a 
partition of a base relation. The size of partitions in each node is 
assumed to be 50 GBytes and each scan node stores only one 
partition.  
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5.2 Simulation Results 
We have collected test results for the duration of resource 
allocation process and duration of query execution. Figure 1, 
shows the duration for the resource allocation process. As it can 
be seen in Figure 1, the duration of the execution of the JORA 
algorithm is longer than the CA. This is because the JORA 
algorithm processes its entire candidate list to find the best 
possible resource allocation within its candidates. 

 
Figure 1. Duration for the resource allocation process 

 
On the other hand, CA stops adding new resources whenever its 
performance increase drops below a certain threshold value. The 
approach used by CA may miss better resource allocation 
combinations with higher number of resources. However it is 
conceptually impossible to evaluate all possible resource 
allocation combinations without having a limited search space. 
 Figure 2 shows the simulated query execution durations for 
the simulated query. In the figure, it can be seen that the 
resources allocated by the JORA algorithm perform better than 
the resources that are allocated by the CA. This is because, 
although the resources that are allocated by the CA are the 
highest ranked nodes in the grid, they might be placed far from 
the scan nodes, which may result in slower data transfer rates. 
On the other hand, the resources that are allocated by the JORA 
algorithm are closer to the scan nodes. For that reason, JORA 
algorithm ensures allocation of more effective resources in 
terms of the communication performances with the scan nodes. 
This heuristic causes the JORA algorithm outperforms the CA.  
 Regarding the simulation results which are shown in Figure 
1 and 2, the JORA algorithm is more preferable if the resource 
allocation processing durations do not exceed the estimated 
query execution durations. In our simulation scenarios, the 
durations of query executions are much higher than the 
durations of the resource allocation processes. Therefore in such 
cases the JORA algorithm might be considered as a better 
alternative to the existing resource allocation algorithms which 
are based on ranking functions. 

6. CONCLUSION 
In this paper, we proposed a Join Operator Resource Allocation 
(JORA) algorithm which generates a finite candidate resource 
list by exploiting proximities of the candidates to the scan 
nodes. We presented our algorithm in detail and proposed 
complexity analyses. Then, we strengthened our perspectives by 
the use of quantitative analyses and simulations. We showed 
that our algorithm outperforms the algorithms that use ranking 

functions without having the proximity information to the data 
resources. 

  
Figure 2. Query execution durations 

 
Regarding to the results showed, we conclude that the JORA 
algorithm might be a strong alternative to the existing resource 
allocation algorithms in many cases in which queries deal with 
large amount of distributed data. As indicated in its name, the 
JORA algorithm is a resource allocation algorithm for a single 
join operator in a query. For the future works, we plan to extend 
the JORA algorithm so that it will cover all join operators in an 
entire query. Finally we plan to mention dynamicity issues to 
propose a complete resource allocation algorithm for query 
processing in grid environments. 
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