
Selection of Regression System Tests for Security Policy
Evolution

JeeHyun Hwang1 Tao Xie1 Donia El Kateb2 Tejeddine Mouelhi3 Yves Le Traon3

1
Department of Computer Science, North Carolina State University, Raleigh, USA

2
Laboratory of Advanced Software SYstems (LASSY), University of Luxembourg, Luxembourg

3
Security, Reliability and Trust Interdisciplinary Research Center, SnT, University of Luxembourg, Luxembourg

jhwang4@ncsu.edu xie@csc.ncsu.edu {donia.elkateb,tejeddine.mouelhi,yves.letraon}@uni.lu

ABSTRACT

As security requirements of software often change, developers may
modify security policies such as access control policies (policies in
short) according to evolving requirements. To increase confidence
that the modification of policies is correct, developers conduct re-
gression testing. However, rerunning all of existing system test
cases could be costly and time-consuming. To address this issue,
we develop a regression-test-selection approach, which selects ev-
ery system test case that may reveal regression faults caused by
policy changes. Our evaluation results show that our test-selection
approach reduces a substantial number of system test cases effi-
ciently.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—Testing

tools

General Terms

Security, Reliability

Keywords

Security Policy; Regression Testing; Test Selection

1. INTRODUCTION
Access control is one of the privacy and security mechanisms

for granting only legitimate users with access to critical informa-
tion. Access control is governed by security policies such as access
control policies (policies in short), each of which includes a se-
quence of rules to specify which subjects are permitted or denied
to access which resources under which conditions. To facilitate
specifying policies, system developers often use policy specifica-
tion languages such as XACML [1], which helps specify and en-
force policies separately from actual functionality (i.e., business
logic) of a system.

With the change of security requirements, developers may mod-
ify policies to comply with the requirements. After the modifica-
tion, it is important to validate and verify the given system to deter-
mine that this modification is correct and does not introduce unex-
pected behaviors (i.e., regression faults). Consider that the system’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’12, September 3-7, 2012, Essen, Germany
Copyright 2012 ACM 978-1-4503-1204-2/12/09 $15.00.

original policy P is replaced with a modified policy P ′. The system
may exhibit different system behaviors affected by different policy
behaviors (i.e., given a request, its evaluated decisions against P
and P ′, respectively, are different) caused by the policy changes.
Such different system behaviors are “dangerous” portions where
regression faults could be exposed.

In order to validate the dangerous portions with existing test
cases, a naive strategy of regression testing is to rerun all exist-
ing system test cases. However, rerunning these test cases could
be costly and time-consuming, especially for large-scale systems.
Instead of this strategy, developers use regression-test selection be-
fore execution of test cases. This regression-test selection selects
and executes only test cases that may expose different behaviors
across different versions of the system. This regression-test selec-
tion may require substantial cost to select and execute such sys-
tem test cases. If the cost of regression-test selection and selected-
test execution is smaller than rerunning all of the initial system test
cases, regression-test selection helps reduce overall cost in validat-
ing whether the modification is correct.

In addition to cost effectiveness, safety is an important aspect
in regression-test selection. A safe approach of regression-test se-
lection selects every test case that may reveal a fault in a modified
program [7]. In contrast, an unsafe approach of regression-test se-
lection may omit test cases that reveal a fault in the modified pro-
gram.

In this paper, we propose a safe approach of regression-test se-
lection to select a superset of fault-revealing test cases, i.e., test
cases that reveal faults due to the policy modification. To the best
of our knowledge, our paper is the first one for test selection in the
context of policy evolution. Different from prior research work on
test selection [2, 4, 7] that deals with changes in program code, our
work deals with code-related components such as policies, which
impact system behaviors.

Our approach includes three regression-test selection techniques:
the first one based mutation analysis, the second one based on cov-
erage analysis, and the third one based on recorded request eval-
uation. The first two techniques are based on correlation between
test cases and rules Rimp where Rimp are rules being involved
with syntactic changes across policy versions. The first technique
selects a rule ri in P and creates P ’s mutant M(ri) by changing
ri’s decision. This technique selects test cases that reveal different
policy behaviors by executing test cases on program code interact-
ing with P and M(ri), respectively. Our rationale is that, if a test
case is correlated with ri, the test case may reveal different system
behaviors affected by modification of ri in P . However, this tech-
nique is costly because it requires at least 2×n executions of each
test case to find all correlations between test cases and rules where
n is the number of rules in P .

Figure 1: Evaluation process of XACML policies in a policy-

based software system.

Figure 2: An example policy specified in XACML.

The second technique uses coverage analysis to establish corre-
lations between test cases and rules by monitoring which rules are
evaluated (i.e., covered) for requests issued from program code.
Compared with the first technique, this technique substantially re-
duces cost during the correlation process because it requires execu-
tion of each test case once.

The third one first captures requests issued from program code
while executing test cases. This technique evaluates these requests
against P and P ′, respectively. This technique then selects only
test cases that issue requests evaluated to different decisions.

2. BACKGROUND
Our approach is based on policy-based software systems regu-

lated by policies specified in XACML [1]. XACML has become the
de facto standard for specifying policies. Typically, XACML poli-
cies are specified separately from actual functionality (i.e., business
logic) in program code. Figure 1 illustrates evaluation process of
XACML policies. At an abstract level, program code interacts with
policies as follows. Program code includes security checks, called
Policy Enforcement Points (PEPs), to check whether a given sub-
ject can have access to protected information. The PEPs formulate
and send an access request to a security component, called Policy
Decision Point (PDP) loaded with policies. The PDP next evaluates
the request against the policies and determines whether the request
should be permitted or denied. Finally, the PDP sends the decision
back to the PEPs to proceed.

An XACML policy consists of a policy set, which further con-
sists of policy sets and policies. A policy consists of a sequence of
rules, each of which specifies under what conditions C subject S is
allowed or denied to perform action A (e.g., read) on certain object
(i.e., resources) O in a given system.

More than one rule in a policy may be applicable to a given
request. A combining algorithm is used to combine multiple de-
cisions into a single decision. There are four standard combin-

Figure 3: An example mutant policy by changing the first rule’s

decision (i.e., effect).

ing algorithms. The deny-overrides algorithm returns Deny if any
rule evaluation returns Deny or no rule is applicable. The permit-

overrides algorithm returns Permit if any rule evaluation returns
Permit. Otherwise, the algorithm returns Deny. The first-applicable

algorithm returns what the evaluation of the first applicable rule re-
turns. The only-one-applicable algorithm returns the decision of
the only applicable rule if there is only one applicable rule, and
returns error otherwise.

Figure 2 shows an example policy specified in XACML. Due to
space limit, we describe only one rule in the policy in a simpli-
fied XACML format. Lines 3-12 describe a rule that borrower is
permitted to borroweractivity (e.g., borrowing books) book in
working days.

3. APPROACH
As manual selection of test cases for regression testing is tedious

and error-prone, we have developed three techniques to automate
selection of test cases for security policy evolution. Consider that
program code interacts with a PDP loaded with a policy P . Let P ′

denote P ’s modified policy. Let SP denote program code interact-
ing with P . For regression-test selection, our goal is to select T ′

⊆

T where T is an existing test suite and T ′ reveals different system
behaviors due to the modification between P and P ′.

3.1 Test Selection based on Mutation Analysis
Our first technique first establishes correlation between rules and

test cases based on mutation analysis before regression-test selec-
tion.

Correlation between rules and test cases. For rule ri in P , we
create P ’s rule-decision-change (RDC) mutant M(ri) by changing
ri’s decision (e.g., Permit to Deny). Figure 3 illustrates an example
mutant by changing the decision of the first rule in Figure 2. The
technique next executes T on SP and SM(ri), respectively, and
monitors evaluated decisions. If the two decisions are different for
t ∈ T , the technique establishes correlation between ri and t.

Regression-test selection. This step selects test cases corre-
lated with rules that are involved with syntactic changes between P

and P ′. In particular, this technique analyzes syntactic difference,
SDiff, between P and P ′ (e.g., a rule’s decisions or locations are
changed) and identifies rules that are involved in the syntactic dif-
ference.

The drawback of this technique is that it requires the correlation
step, which could be costly in terms of execution time. This tech-
nique executes T for 2×n times where n is the number of rules in
P . Moreover, if the policy is modified, the correlation step should
be done again for the changed rules. As this regression-test selec-
tion is based on SDiff, this technique may select rules that may
not be involved with actual policy behavior changes (i.e., semantic
policy changes).

3.2 Test Selection based on Coverage Analysis
To reduce the cost of the correlation step in the preceding tech-

nique, our second technique correlates only rules that can be eval-
uated (i.e., covered) by test cases.

Correlation between rules and test cases. Our technique ex-
ecutes test cases T on SP and monitors which rules are evaluated
for requests issued from the execution of test case t ∈ T . Our tech-
nique establishes correlation between a rule ri and ti ∈ T if and
only if ri is evaluated for requests issued from PEPs while execut-
ing ti.

Regression-test selection. We use the same selection step in
the preceding technique. An important benefit of this technique is
to reduce cost in terms of execution of test cases. This technique
requires executing T only once. Similar to the preceding technique,
this technique finds the modified rules based on SDiff between P

and P ′, which may not be involved with actual policy behavior
changes.

3.3 Test Selection based on Recorded Request
Evaluation

To reduce correlation cost in the preceding techniques, we de-
velop a technique that does not require correlation between test
cases and rules. The third technique executes T on SP . The tech-
nique captures and records requests Rrs issued from PEPs while
executing T on SP . For test selection, our technique evaluates Rrs

against P and P ′. Our technique selects test case t ∈ T that issues
requests engendering different decisions for P and P ′.

This technique requires the execution of T only once. More-
over, this technique is useful especially when polices are not avail-
able, but only evaluated decisions are available. As different deci-
sions are reflected by actual policy behavior changes (i.e., seman-
tic changes) between P and P ′, this technique can select fault-
revealing test cases more effectively.

3.4 Safe Test-Selection Techniques
A test-selection algorithm is safe if the algorithm includes the

set of every fault-revealing test case that would reveal faults in a
modified version. In our work, the first test-selection technique
is safe when a policy uses the first-applicable algorithm. If the
policy uses other combining algorithms, we use our previous ap-
proach [5] to convert the policy to its corresponding policy using
the first-applicable algorithm. The second and third techniques are
safe for any policies specified in XACML. Due to space limit,
proof of safety of our three techniques is presented on our project
website1.

4. EXPERIMENTS
We conducted experiments for evaluating our proposed techniques

of regression-test selection. We carried out our experiments on
a PC, running Windows 7 with Intel Core i5, 2410 Mhz proces-
sor, and 4 GB of RAM. As experimental subjects, we collected
three Java programs [6] each interacting with policies written in
XACML. The Library Management System (LMS) provides web
services to borrow/return/manage books in a library. The Virtual
Meeting System (VMS) provides web conference services to or-
ganize online meetings. The Auction Sale Management System
(ASMS) provides web services to manage online auction. These
three subjects include 29, 10, and 91 security test cases, which tar-
get at testing security checks and policies. The test cases cover

1http://research.csc.ncsu.edu/ase/projects/
regpolicy/

100%, 12%, and 83% of 42, 106, and 129 rules from policies in
LMS, VMS, and ASMS, respectively.

Instrumentation. We implemented a regression simulator, which
injects any number of policy changes based on three predefined re-
gression types. RMR (Rule Removal) removes a randomly selected
rule. RDC (Rule Decision Change) changes the decision of a ran-
domly selected rule. RA (Rule Addition) adds a new rule consisting
of attributes randomly selected among attributes collected from P .
Combination of the three regression types can incur various policy
changes.

For our experiments, the regression simulator injects 5, 10, 15,
20, and 25 policy changes, respectively. Our experiments are re-
peated 12 times to avoid the impact of randomness of policy changes.
We measure effectiveness and efficiency of our three techniques by
measuring test-reduction percentage, the number of fault-revealing
test cases, and elapsed time.

Research questions. We intend to address the following re-
search questions:

• RQ1: How high percentage of test cases (from an existing
test suite) are reduced by our test-selection techniques? This
question helps show that our techniques can reduce the cost
of regression testing.

• RQ2: How high percentage of selected test cases can reveal
regression faults? This question helps show that our tech-
niques can effectively select fault-revealing test cases.

• RQ3: How much time do our techniques take to conduct test
selection? This question helps compare performance of our
techniques by measuring their efficiency.

Results. To answer RQ1, we measure test-reduction percentage
(%TR), which is the number of selected test cases divided by the
number of existing security test cases. Table 1 shows the number
of selected test cases on average for each technique. “Regression
- m” denotes a group of modified policies where m is the number
of policy changes on P . “#SM”, “#SC”, and “#SR” denote the
number of selected test cases on average by our three test-selection
techniques, one based on mutation analysis (TSM), one based on
coverage analysis (TSC), and one based on recorded request eval-
uation (TSR), respectively. We observe that TSR selected a fewer
number of test cases than the other two techniques. The reason
is that, while TSM and TSC select test cases based on syntactic
difference, TSR selects test cases based on actual policy behav-
ior changes (i.e., semantic policy changes). As illustrated in Sec-
tion 3, syntactic difference may not result in actual policy behavior
changes.

Figure 4 shows the results of test-reduction percentage for our
three subjects with modified policies. LMS1 (LMS2), VMS1 (VMS2),
and ASMS1 (ASMS2) show test-reduction percentages for our three
subjects, respectively, using TSM and TSC (TSR). We observe that
our techniques achieve 42%∼97% of test reduction for our subjects
with 5∼25 policy changes. Such test reduction reduces a substan-
tial cost in terms of test-execution time for regression testing.

To answer RQ2, we show the percentage of selected test cases
that reveal regression faults. Detection of regression faults is de-
pendent on the quality of test oracles in test cases. The test cases
for our three subjects include test oracles, which check correctness
of decisions evaluated for all the requests issued from PEPs. There-
fore, selected test cases by TSR would all detect regression faults
(caused by semantic policy changes). On average, the percentages
of selected test cases that reveal regression faults are 87%, 87%,
and 100% for our three techniques TSM , TSC , and TSR, respec-
tively

To answer RQ3, we measure elapsed time of conducting test se-
lection. The goal of this research question is to compare efficiency

Table 1: The number of selected test cases on average for each policy group by each technique.

Subject
Regression - 5 Regression - 10 Regression - 15 Regression - 20 Regression - 25

#SM #SC #SR #SM #SC #SR #SM #SC #SR #SM #SC #SR #SM #SC #SR

LMS 4.7 4.7 4.5 11.0 11.0 9.5 12.9 12.9 10.2 14.8 14.8 13.8 16.8 16.8 14.6

VMS 0.1 0.1 0.1 0.4 0.4 0.2 1.2 1.2 0.8 1.6 1.6 1.2 1.8 1.8 1.1

ASMS 6.6 6.6 5.9 10.9 10.9 10.0 16.4 16.4 14.8 21.3 21.3 19.3 22.4 22.4 17.2

Average 3.8 3.8 3.5 7.4 7.4 6.6 10.2 10.2 8.6 12.6 12.6 11.4 13.7 13.7 11.0

0

20

40

60

80

100

1 2 3 4 5

LMS1 VMS1 ASMS1 LMS2 VMS2 ASMS2

Figure 4: LMS1 (LMS2), VMS1 (VMS2), and ASMS1

(ASMS2) show test-reduction percentages for our subjects with

modified policies, respectively, using TSM and TSC (TSR). Y

axis denotes the percentage of test reduction. X axis denotes

the number of policy changes on our subjects.

Table 2: Elapsed time (millisecond) for each test-selection tech-

nique, and each policy.

Subject
TSM TSC TSR

Cor Sel Cor Sel Col Sel

LMS 70,496 4 5,214 4 2,096 2

VMS 19,771 1 7,506 1 1,873 2

ASMS 118,248 11 22,423 11 1,064 21

Average 69,505 5 11,714 5 1,678 8

of our three test-selection techniques. Table 2 shows the evaluation
results. For TSM and TSC , the results show the elapsed time of cor-
relation (“Cor”) and test selection (“Sel”), respectively. For TSR,
the results show the elapsed time of request recording (“Col”) and
test selection (“Sel”). We observe that correlation (11,714 millisec-
onds on average) of TSC takes substantially less time than correla-
tion (69,505 milliseconds on average) of TSM . The reason is that
TSC executes the existing test cases only once but TSM executes
the existing test cases for 2×n times where n is the number of rules
in a policy under test. For total elapsed time by each technique, we
observe that the total elapsed time of TSR is 43 and 8 times faster
than that of TSM and TSC , respectively.

Threats to validity. The threats to external validity primarily
include the degree to which the subject programs, the policies, and
regression model are representative of true practice. These threats
could be reduced by further experimentation on a wider type of
policy-based software systems and a larger number of policies. The
threats to internal validity are instrumentation effects that can bias
our results such as faults in the PDP, and faults in our implementa-
tion.

5. RELATED WORK
Various techniques have been proposed on regression testing of

software programs [2, 4, 7]. These techniques aim to select test

cases that could reveal different behaviors after modification in
programs. These techniques are related to regression-test selec-
tion [7], [4], and test-suite prioritization [2]. Note that these tech-
niques focus on changes at code level. None of these techniques
consider potential changes that can arise from code-related com-
ponents (such as security policies specified separately). Polices
and general programs are fundamentally different in terms of struc-
tures, semantics, and functionalities, etc. Therefore, techniques for
regression testing of programs are not suitable for addressing the
test-selection problem for policy evolution. Our work is the first
automatic test-selection approach for policy evolution.

Another approach closest to ours is Fisler et al.’s approach [3].
They developed a tool called Margrave that enables conducting
change-impact analysis between two XACML policies. We could
use Margrave to identify semantic policy changes between two poli-
cies. However, Margrave supports for only limited functionality of
XACML. Moreover, Margrave does not support test selection as
our work does.

6. CONCLUSION
Our approach could be practical and effective to select test cases

for policy-based software systems interacting not only with XACML
policies but also with policies specified by other policy specifica-
tion languages (e.g., EPAL). We make two key contributions in this
paper. First, we proposed three test-selection techniques. To the
best of our knowledge, our paper is the first one for automatic test
selection in the context of policy evolution. Second, we conducted
experiments to assess the effectiveness and efficiency of our three
test-selection techniques.

Acknowledgments. This work is supported in part by NSF grants
CCF-0845272, CCF-0915400, CNS-0958235, ARO grant W911NF-
08-1-0443, an NSA Science of Security Lablet grant, and a NIST
grant.

7. REFERENCES

[1] OASIS eXtensible Access Control Markup Language (XACML).
http://www.oasis-open.org/committees/xacml/, 2005.

[2] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Prioritizing test cases for
regression testing. In Proc. ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISSTA), pages 102–112, 2000.

[3] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C. Tschantz. Verification
and change-impact analysis of access-control policies. In Proc. 27th

International Conference on Software Engineering (ICSE), pages 196–205, 2005.

[4] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. An
empirical study of regression test selection techniques. ACM Trans. Softw. Eng.

Methodol., pages 184–208, 2001.

[5] A. X. Liu, F. Chen, J. Hwang, and T. Xie. XEngine: A fast and scalable XACML
policy evaluation engine. In Proc. International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS), pages 265–276, 2008.

[6] T. Mouelhi, Y. Le Traon, and B. Baudry. Transforming and selecting functional
test cases for security policy testing. In Proc. 2nd International Conference on

Software Testing, Verification, and Validation (ICST), pages 171–180, 2009.

[7] G. Rothermel and M. J. Harrold. Analyzing regression test selection techniques.
IEEE Trans. Softw. Eng., 22:529–551, 1996.

