
ar
X

iv
:1

20
6.

58
29

v2
 [

cs
.C

R
]

 2
0

M
ar

 2
01

3

Automatically Securing Permission-Based Software by
Reducing the Attack Surface: An Application to Android

Alexandre Bartel, Jacques Klein, Yves
Le Traon

University of Luxembourg, SnT
Luxembourg, Luxembourg

firstName.lastName@uni.lu

Martin Monperrus
University of Lille

INRIA
Lille, France

martin.monperrus@univ-lille1.fr

ABSTRACT
A common security architecture, called the permission-based
security model (used e.g. in Android and Blackberry), en-
tails intrinsic risks. For instance, applications can be granted
more permissions than they actually need, what we call a
“permission gap”. Malware can leverage the unused permis-
sions for achieving their malicious goals, for instance using
code injection. In this paper, we present an approach to de-
tecting permission gaps using static analysis. Our prototype
implementation in the context of Android shows that the
static analysis must take into account a significant amount of
platform-specific knowledge. Using our tool on two datasets
of Android applications, we found out that a non negligible
part of applications suffers from permission gaps, i.e. does
not use all the permissions they declare.

1. INTRODUCTION
Android is one of the most widespread mobile operating sys-
tem in the world accounting 52% market share [13]. More
than 300 000 Android applications available on dozens of ap-
plication markets can be installed by end users. The other
side of the coin is that all kinds of malware are waiting to
be installed on thousands of Android devices. For instance,
Zeus [17] sends banking information to malicious servers.
This motivates researchers and engineers to devise security
models, architectures and tools that are able to mitigate the
malware harmfulness.

The security architecture of Android, the Google Chrome
browser extension system and the Blackberry platform, all
use a similar security model called the permission-based se-
curity model [1]. A permission-based security model can be
loosely defined as a model in which 1) each application is
associated with a set of permissions that allows accessing
certain resources1; 2) permissions are explicitly accepted by
users during the installation process and 3) permissions are

1Contrary to the traditional Unix permission system where
permissions are at the level of users, not applications.

checked at runtime when resources are requested.

This permission model entails intrinsic risks. For instance,
not all users may be able to cleverly reject powerful permis-
sions at installation time. Malwares may also use platform
vulnerabilities to circumvent runtime permission checks. Fi-
nally, applications can be granted more permissions than
they actually need, what we call a “permission gap”. Mal-
wares can leverage the unused permissions for achieving their
malicious goals and have many ways to do so, for instance us-
ing code injection or return-oriented programming [6]. Iden-
tifying permission gaps means reducing the risks for an ap-
plication to be compromised, also known as reducing the
application attack surface [20].

Let us make an analogy with a firewall. In a correctly con-
figured firewall only the ports that are used are open. All
the other ports are closed. However if the firewall is mis-
configured, some unused ports remain open and the attack
surface of the infrastructure behind the firewall is larger.
For instance, let us assume that an information system in-
ternally uses a remote shell service on port 544. If port 544
is open on the firewall, an attacker could perform attacks on
the remote shell server located behind the firewall. In the
same way, an application that requires too many permis-
sions, i.e. that suffers from a permission gap, may allow an
attacker who compromised the application to access more
resources than he should have.

Permission gaps appear because the process of declaring ap-
plication permissions is manual and error-prone: Android
framework developers manually document which permissions
are required for each system resource, and Android applica-
tion developers manually declare the permissions they think
are needed. This paper presents an approach to support
those manual software engineering activities with an auto-
mated tool. This approach secures permission-based soft-
ware in the sense that it reduces the attack risks (not in the
sense that the resulting software is unattackable).

Our tool, called COPES (COrrect PErmissions Set), pro-
ceeds as follows. First, using static analysis, it extracts
from the Android framework bytecode a table that maps
every method of the API to a set of permissions the method
needs to be executed properly. Second, COPES lists all
framework methods used by an application, based on static
analysis of the application bytecode. Third, COPES com-

http://arxiv.org/abs/1206.5829v2

putes the set of permissions that are required for the appli-
cation to run, which means that all permissions in this set
are may be at least once used in the application, and con-
sequently no permission gap remains. Eventually, COPES
computes the permission gap as the difference between the
declared permissions and the required permission. By listing
the permission checks per framework method, COPES can
also help Android designers to comprehensively document
the framework.

To sum up, the contribution of this paper is an approach
to identify and fix permission gaps in permission based soft-
ware. More specifically:
• We show that the permission-based security model can be
expressed within a boolean matrix algebra. This algebra is
not specific to Android.
• We present a novel methodology to compute a close ap-
proximation of the required permission set and the permis-
sion gap based on static analysis, as opposed to concurrent
work that uses testing [10].
• We discuss the design and the implementation of the ap-
proach for the Android platform.
• We evaluate our approach on 742+679 Android applica-
tions and we show that 94+35 applications suffer from a
permission gap.

The reminder of this paper is organized as follows. In Sec-
tion 2 we explain why reducing the attack surface is impor-
tant and present a short study supporting our intuition. In
Section 3 we propose a formalization for permission-based
software and a generic method for deriving correct applica-
tion permission sets. In Section 4 we describe the Android
system and its access control mechanisms. Then, in Section
5 we apply the generic method on the Android system. Ex-
periments we conducted and results are presented and dis-
cussed in Section 6. We present the related work in Section
7. Finally we conclude the paper and discuss open research
challenges in Section 8.

2. THE PERMISSION GAP PROBLEM
This section further details the permission gap problem in-
troduced in Section 1, and presents short empirical facts
showing that this problem actually happens in practice.

2.1 Possible Consequence of a Permission Gap
Let us consider an Android application, appwrong, that is
able to communicate with external servers since it is granted
the INTERNET permission. Moreover, appwrong has de-
clared permission CAMERA while not using it. The CAM-
ERA permission allows the application to take picture with-
out user intervention, i.e. the permission gap consists of one
permission: CAMERA. Unfortunately, appwrong uses a na-
tive library on which a buffer-overflow exploit has recently
been discovered. As a result, through specific payloads, at-
tackers are able to attack devices that are running appwrong

in order to take pictures using the device’s camera and send
them to a remote location on the Internet.

On the contrary, if appwrong did not declare CAMERA, this
attack would not have been possible, and the consequences
of the buffer-overflow exploit would have been mitigated. As
noted by Manadhata [20], reducing the attack surface does
not mean no risks, but less risks. In order to show that

this example of misconfigured application is not artificial,
we now discuss a short empirical study on the declaration
of two permissions on 1000+ Android applications.

2.2 Declaration and Usage of Permissions
CAMERA and RECORD_AUDIO

We conducted a short empirical study on a 1000+ Android
applications downloaded from the Freewarelovers applica-
tion market2. For permissions CAMERA and RECORD AU-
DIO, we grepped the source code of the Android frame-
work to approximate the set of methods requiring one of
them. These two sets of methods are noted MCAMERA and
MRECORD AUDIO. Then, we computed the list A of all the
applications which declare CAMERA or RECORD AUDIO.
Next, we took each application app ∈ A individually and we
checked the application uses at least one method ofMCAMERA

and MRECORD AUDIO by analyzing the application’s byte-
code. If it is not the case, it meant that app is not using the
corresponding permission. When this happened, we mod-
ified the application manifest that declares the permission
and run the application again to make sure that our grep-
ping approximation did not yield false positives.

There are 7/82 applications that declare CAMERA while
not using it. Similarly, 3/35 applications declare but do not
use RECORD AUDIO . Those results confirm our intuition:
declared permission lists are not always required, and per-
mission gaps indeed exist. Developers would benefit from a
tool that automatically infers the set of required permissions
and computes the permission gap.

3. ANALYZING PERMISSIONS
In this Section we formalize the concept of permission-based
software and propose a generic methodology to compute a
mapping from code to permissions that are required for the
application to run.

Permission-based software is conceptually divided in three
layers: 1) the core platform which is able to access all sys-
tem resources (e.g. change the network policy), it is gener-
ally the operating system; 2) a middleware responsible for
providing a clean application programming interface (API)
to the OS resources and for checking that applications have
the right permissions when they want accessing them; 3)
applications built on top of the middleware. They have to
explicitly declare the permissions they require. Layers #2
and #3 motivate the generic label “permission-based soft-
ware”. Since the middleware also hides the OS complexity
and provides an API, it is sometimes called, as in the case
of Android, a “framework”.

Let us now discuss those terms more in depth and then show
how to infer the list of permissions required by a permission-
based application.

3.1 Definitions
Framework A framework F is a layer that enables appli-
cations to access resources available on the platform. We
model it as a bi-partite graph between framework API meth-
ods and resources.

2http://www.freewarelovers.com/android/

http://www.freewarelovers.com/android/

Example: In the case of Android, F is the Android 2.2 Java
Framework composed of 4071 classes and 126660 methods.
To access a resource, an Android application has to make a
method call that goes through F .

Permission-based system A permission-based system is
composed of at least one framework, a list of permissions
and a list of protected resources. Each protected resource is
associated with a fixed list of permissions

Entry point An entry point of a framework is a method
that an application can use (e.g. public or documented).
Constructors are also considered as entry points. We denote
EntryF the set of all entry points of F .
Example: One of the entry points of the Android framework
is the method getAccounts() from class AccountManager.

An application can call any public method of the framework.
Some methods accessing some system resources (like an ac-
count) are protected by one or more permissions. Let us sup-
pose that the method getAccounts() allows access to a set of
accounts and is protected by one permission GET_ACCOUNTS.
An application can successfully call method getAccounts()
if and only if it declared GET_ACCOUNTS in the application-
specific list (this list is contained in a “manifest”, we shall
use this term later in the paper).

Permission A permission is a token that an application
needs to access a specific resource. We make no assump-
tions on permissions, and we consider them as independent
(neither grouped, nor hierarchical) .
Example: Developers of an Android application define a list
of permissions in a file called the Manifest. To read contact
information, the manifest of the application must declare
the READ_CONTACT permission.

Permissions can be checked at different levels in the system.
We call high-level permissions the set P = {p1, p2, ..., pn} of
permissions that are checked at the framework level. Low-
level permissions are permissions that are checked at the
operating system level.

High-level permission A high-level permission, is a per-
mission that is only checked at the framework level.
Example: In the case of Android, READ_CONTACT is a high-
level permission.

Low-level permission A low-level permission is a permis-
sion associated with a high-level permission and is checked
at a lower level than the framework level.
Example: They are 115 permissions in the Android system,
while 8 permissions are checked at a low-level. This shows
that the framework is responsible for much of the work re-
lated to permissions. Note that if a permission is checked at
the operating system level, it is not possible to detect that
an application uses it by only analyzing the framework.

Declared permission A declared permission for an appli-
cation app is a permission which is in the permission list of
app. The set of all declared permission for an application
app is noted Pd(app).

Required permission A required permission for an appli-

cation app is a permission associated with a resource that
app uses at least once. The set of all required permissions
for an application app is noted Preq(app).
Example: For an application app, if the set of required per-
missions Preq(app) is equal to the set of declared permissions
Pd(app), the permission attack surface is minimal.

Inferred permission An inferred permission for an appli-
cation app is a permission that an analysis technique found
to be required for app. This paper presents such a technique
and computes a set of inferred permissions noted Pifrd(app).
Depending on the analysis technique used, the inferred per-
mission list may be either an over- or an under- approxi-
mation of the required permission list. When using static
analysis techniques, the inferred permission list may be an
over approximation (Preq(app) ⊆ Pifrd(app)). The inferred
permission list may be an under-approximation of the re-
quired permission list (Pifrd(app) ⊆ Preq(app)) when us-
ing testing techniques (testing-based analysis observes only
the executed permissions and potentially misses some per-
mission checks depending on the completeness of the input
data).

When developers write manifests, they write Pd(app) by try-
ing to guess Preq(app) based on documentation and trial-
and-errors. In this paper, we propose to automatically infer
a permission list Pifrd(app) in order to avoid this manual
and error-prone activity. We take a special care in minimiz-
ing the difference between Pifrd(app) and Preq(app).

3.2 A Calculus for Permissions
This section describes the permission gap inference as a
clean and regular calculus on top of boolean matrix algebra.
More importantly, while permission inference is at heart a
reachability analysis (does the application reach a permis-
sion check?), this calculus factorizes much of the static anal-
ysis, hence is much more efficient.

Let app be an application. The access vector for app is a
boolean vector AVapp representing the entry points of the
framework reachable from app. Thus, the length of vector
AV is the number of entry points of F . An element of
the vector is set to true if the corresponding entry point is
called by the application. Otherwise it is set to false. Let
us consider a framework with four entry points (e1, e2, e3,
e4), and an application app with the following access vector,
expressing that app’s code may reach e1, e2 and e3 but not
e4:

AVapp = (1, 1, 1, 0)

We define the permission access matrix M as a boolean ma-
trix which represents the relation between entry points of the
framework and permissions. Rows represent entry points of
the framework and columns represent permissions. A cell
Mi,j is set to true if the corresponding entry point (at row i)
accesses a resource protected by the permission represented
by column j. Otherwise it is set to false. For a framework
with four entry points (e1, e2, e3 and e4) and three permis-
sions (p1, p2 and p3), the permission access matrix could

be:

M =









p1 p2 p3

e1 1 0 0
e2 1 0 0
e3 0 0 0
e4 0 1 0









This means that e1 and e2 require permission p1, e3 requires
no permission and that e4 requires permission p2.

Let app and F be an application and a framework respec-
tively. The inferred permissions vector, IPapp, is a boolean
vector representing the set of inferred permissions for ap-
plication app. We have IPapp = AVapp × M by using the
boolean operators AND and OR instead of arithmetic multi-
plication and addition in the matrix calculus. A cell IPapp(k)
is set to true if the permission at index k is required by app.
Otherwise it is set to false. Note that Pifrd(app) is the
set of all permissions set to true in IPapp, i.e. Pifrd(app)=
{permissionx|IPapp(x)}. Using AVapp and M from the two
previous examples, the inferred permissions vector for app

is:

IPapp =
(

1 1 1 0
)

·









1 0 0
1 0 0
0 0 0
0 1 0









IPapp =
(

1 0 0
)

Application app should declare permissions p1.

3.3 Extraction of M and AV

In this section we present a methodology to extract the per-
mission access matrix M of a framework F . This method-
ology is based on a static analysis of the framework F . Our
idea is to first to compute a call graph for every entry point
of the framework and then to detect whether or not permis-
sion checks are present in the call graph. A call graph is a
directed graph G containing a set of vertices V representing
method calls and a set of arcs A representing links between
method calls.

A permission enforcement point (PEP) is a vertex of a call
graph whose signature corresponds to a system method which
checks permission(s). Each PEP is associated with a list of
required permissions permsPEP . In Figure 1, the call graph
starting from entry point e4 reaches ck2, a call to a PEP. To
localize in which methods PEP are called, we traverse a call
graph G = (V,A) generated from the framework and check
whether a vertex VPEP is a PEP. Methods which directly
check for permissions are represented as vertice VMi

(i ∈
{1,2,...,k}), such that (VMi

, VPEP) ∈ A.

We compute one call graph Gi per entry point ei of the
framework (i ∈ {1,2,...,n})3 . Then , matrixM is constructed
as follows: M is set as a matrix of size (|entry points| × |high
level permissions|); all elements of M are initialized to false;
for each ei that reaches one ore more PEP, and for each
permission j in permsPEP , M(i, j) = true. In other terms,
M is a condensed version of the reachability information that
is latent in call graphs. For instance, a framework with four

3This is especially important for field-sensitive static ana-
lyzes)

s

2 3 4

5

e1 e2 e3 e4

f1 f2 f3

f4 f5

f6

f8

f9

ck1

ck2

p3

p2

p1

Application

Framework

Figure 1: Application and Framework Example

entry points (e1, e2, e3, e4), and three permissions (p1, p2, p3)
is presented in the lower part of Figure 1. For every of
those entry points a call graph is constructed. Three of
those call graphs have a PEP node: e1 and e2 have PEP ck1
which checks permission p1 and e4 has PEP ck2 which checks
permission p2. On the figure a dashed arrow connects each
PEP to the permission(s) it checks. The framework matrix,
noted Mex, is then the same as matrix M (see Section 3.2).

Extracting AV simply means listing the list of entry points
of a framework F called by an application app. The appli-
cation example in Figure 1 features a single entry point,
s. From s a call graph Gex is generated. All elements
of vector AVex of length n = 4 are initially set to false:
AVex = (0, 0, 0, 0). Then for every vertex of Gex which is a
call to the example framework, the corresponding element
of AVex is set to true. In the example, there are three such
vertices (represented as entry points e1, e2 and e3 in Figure
1). This leads to the following vector AVex = (1, 1, 1, 0).

3.4 Computing the Permission Gap
We compute the inferred permission vector according to the
definition presented in Section 3.1. The inferred permission
list corresponds to permissions set to true in IPapp. In Fig-
ure 1, using matrix Mex and vector AVex generated above
for the example framework and application, we obtain an
list of inferred permissions only containing p1. The permis-
sion gap is the difference between the permissions extracted
from IPapp and the declared permissions Pd(app). If the
application declares p1 and p2, the permission gap is {p2}.

4. OVERVIEW OF ANDROID
This section gives an overview of the architecture and speci-
ficity of the Android software stack. We detail how appli-
cations access the frameworkF and where access control is
enforced with respect to permissions.

4.1 Software Stack
Android is a system with different layers. It consists of a
modified Linux kernel, C/C++ libraries, a virtual machine
called Dalvik, a Java framework and a set of basic appli-
cations (including a phone application). Applications for

Android are written in Java. An Android application is
packaged into a Android package file (ending in .apk) which
contains the Dalvik bytecode, data (pictures, sounds, ...)
and the Android manifest file. The developer defines per-
missions the application may use in this manifest.

An Android application is made of components which can
be: 1. an Activity which is a user interface; 2. a Service which
runs in background; 3. a BroadcastReceiver which listens for
“intents” (a kind of message comparable to inter processes
communication, aka IPC); 4. a ContentProvider which is a
kind of backend database used to store and share data4.

4.2 Services
Applications define services that can be used by other appli-
cations. They also communicate with the operating system
using a special kind of services called system services that
are used by the system for enforcing permission checks. Sys-
tem services are specific services running in a specific scope
(called the “system server”) and allow applications to ac-
cess system resources. Those resources may be protected by
Android permissions. The permission checks associated to
services are mostly implemented in Java, but Android also
checks permissions in C++ services, content providers and
when using intents. In this paper, we focus on the former
(Java services), the impact of this focus is discussed in Sec-
tion 6.

Applications synchronously communicate with others ser-
vices (deployed from other applications or the OS) through
a mechanism called Binder. The first step to communicate
with a remote service is to dynamically get a reference to
the service by calling Context.getSystemService() (step
1 in Figure 2). The next step is to call a method on the
reference (step 2 in Figure 2). A special component, called
“binder” is responsible for delivering references, intercept-
ing and redirecting that service calls to the remote service
which performs the actual computation (steps 3 and 5 in
Figure 2). The system service is responsible for enforcing
the permission policy (step 4 in Figure 2).

Application Code

r = getSystemService();
r.getPassword();

Service Call

Binder

getPassword() {
checkPermission();
return p;
}

Account System Service

1

2

3

4

5

Figure 2: Android System Service

4.3 Permissions and Application Installation
When installing an Android application from an applica-
tion market, the user has to approve as a whole (or reject

4An application uses URIs (Uniform Resource Identifiers
from RFC #2396) to locate and work with local or remote
content providers

as a whole) all the permissions the application declared in
its manifest. If all permissions are approved, the applica-
tion is installed and mapped with the corresponding permis-
sions. Moreover, it receives a device-specific user id (UID)
and group memberships for the permissions that are mapped
with Unix groups. For instance, an application Foo is given
two group memberships net_bt and inet when associated
with permissions BLUETOOTH and INTERNET, respectively. In
other terms, the standard Unix ACL is used as an imple-
mentation means for checking permissions.

Android 2.2 declares 107 (115-8) high-level permissions, high-
level in the sense that they are enforced at the framework
level (ex: to read contact information an application must
have the READ_CONTACT permission). Note that high-level
permissions are related to where permissions are checked (in
the framework) not how (mostly using Unix group mem-
berships by the Dalvik virtual machine). There are eight
high-level permissions that may also be indirectly enforced
at the kernel level by checking unix group IDs (ex: to create
a socket an application has to have the INTERNET permission
to be in the inet group).

In Section 3, we have defined a generic model and method-
ology to generate a matrix M which maps entry points of
a frameworkF to permissions. We have seen in Section 4
that the Android system fits in the model and contains a
framework corresponding to F . The next Section presents a
static analysis to extract M from the Android frameworkF

and to infer the list of required permissions (as opposed to
declared permissions) for an Android application.

5. STATIC ANALYSIS FOR ANDROID
Our approach to detecting permission gaps presented in Sec-
tion 3 is implemented with two tools. One extracts from
a permission-based framework a binary matrix that maps
framework methods to permissions, we call it the mapper.
The other extracts from application code the list of frame-
work methods used, we call it the sniffer. In COPES, both
tools are based on static analysis. Implementing both tools
was much more difficult than expected. In other terms, there
was a significant gap between the regularity and the concise-
ness of the approach presented in Section 3 and the actual
implementation.

The key insights of our analysis are related to correctly han-
dling the service and binder mechanisms of Android (see
4.2). This section presents our solutions to the most impor-
tant issues in order to 1) enable other researchers to repli-
cate our results, and 2) facilitate the implementation of the
approach for another permission-based platform.

5.1 Framework Call Graphs
The core of our approach consists of building and manipu-
lating call graphs. COPES call graph construction leverages
the Soot call graph analysis Spark [19] together with the
service mapping information described in below in 5.3 and
5.4.

We run Spark in context-insensitive, path-insensitive, flow-
-insensitive, field-sensitive mode to generate the call graph.
In context-insensitive mode, every call to a same method
are merged to a single edge independently of the context

(receiver and parameters values). A path-insensitive anal-
ysis ignores conditional branching hence takes into account
all paths of method bodies. The call graph construction is
flow-insensitive since it does not consider the order of execu-
tions of instructions. It is also field-sensitive because it uses
and propagates initialization data (e.g. constructor calls) to
reduce the number of egdes.

Spark requires an entry point (usually a main) in order to ap-
ply its aggressive edge removal techniques. In the case of an
API (such as the Android API), there is no “main”. Hence,
we build one call graph per public method of the Android
API by creating one fake main method per public class of the
framework (for Android, android.* and com.android.*).
We can also build an artificial main calling all public meth-
ods, which is conceptually equivalent yet less scalable5.

5.2 Extracting Permission Enforcement Points
Permission Enforcement Points in Android are method calls
to certain method of classes Context and ContextWrapper

(for instance method checkPermission). Those method calls
can be resolved statically. However, the actual permission(s)
that are checked are dynamically set by a String parameter
or sometimes, an array of strings. Thus, when a check per-
mission system method is found in the call graph, a basic
analysis is only able to tell that a permission check occurs,
but not which precise permission.

To overcome this issue, we have implemented a String anal-
ysis as a Soot plugin. Once PEPs are found, it extracts
the corresponding permission(s). This plugin performs an
intra-method analysis and manages the following scenarios:
either (1) the permission is directly given as parameter, or
(2) the permission value is initialized in a variable which is
given as a parameter, or (3) an array is initialized with sev-
eral permissions and is given as a parameter. In every case
we do a backward analysis of the method’s bytecode using
Soot’s Unit Graphs which describe relations among state-
ments of a method. In the case where only one permission
is given to the method, the first statement in the unit graph
containing a reference to a valid Android permission String
is extracted and the permission added to the list of the per-
missions needed by the method under analysis. In case of
an array, all permissions of references to Android permission
Strings are added to the list.

When no valid permission String is found, methods in the
call-stack of the PEP method are analyzed. Indeed, permis-
sion String can be assigned indirectly to PEP methods.

5.3 Handling Binder-based Communication
Static analysis can not resolve call to services since they
are done dynamically through the binder (see 4). Since the
binding uses a lookup table that is instantiated once at boot
time within the system server, our solution is to intercepted
this lookup table and use it in a Soot plugin to redirect
every proxy call to the concrete instance of the class which
implements the service. In other terms, we feed the call
graph engine with this domain specific information that it
does not know from code.

5we were not able to extract such a call graph on a machine
with 24GB RAM

Note that when using a field-sensitive (such as Spark) or
context-sensitive analysis, services must be properly initial-
ized. Otherwise, their fields would point to null and method
calls on those fields would not be considered during the call
graph construction. We resolve this issue by providing a spe-
cial initialization class to Spark containing services objects
towards which remote service calls are redirected.

5.4 Service Identity Inversion
In Android, services can call other services either with the
identity of the initial caller (by default) or with the iden-
tity of the service itself. In the later case, remote calls are
within clearIdentity() and restoreIdentity() method
calls. When using the service identity, the permission checks
are not done against the caller’s declared permissions, but
against the service’s declared permissions. Since our goal is
to compute the permission gap of an application (and not of
system services), we can safely discard all permission checks
that occur between calls to clearIdentity() and restor-

eIdentity(). This significantly decreases the number of
inferred permissions hence the number of false positives.

For instance, let us assume that service S requires and de-
clares permission θ which is not declared by application A.
If A calls S, the code of S is executed with the identity of A
itself which would require A to declare θ. To avoid this, the
portion of code requiring θ is executed with S identity. Spark
is flow-insensitive, so when we encounter calls to clearIden-
tity() or restoreIdentity(), we use an intra-procedural
flow-sensitive analysis to discard permission checks that oc-
cur between those calls.

5.5 Reflection in the Framework
If the framework uses reflection, then the call graph con-
struction is incomplete by construction. Fortunately, the
Android framework uses reflection in only 7 classes. We
manually analyzed their source code. Five of those classes
are debugging classes. The View class uses reflection for
handling animations. Finally, the VCardComposer uses re-
flection in a branch that is only executed for testing purpose.
In all cases, the code is not related to system resources hence
no permission checks are done at all. This does not impact
the static analysis of the Android framework.

5.6 Dynamic Class Loading
The Java language has the possibility to load classes dy-
namically. When used this features makes static analysis
impossible since the loaded classes are only known at run-
time. We found that eight classes of the Android system
are using the loadClass method. After manual check, six
of them are system management classes and either are not
linked to permission checks (ex: instrumenting an applica-
tion) or have to be accessed through a service. Two are
related to the webkit packaged. They are used in the Load-

File and PluginManager classes. In both cases, permissions
are checked before loading classes, and not inside the loaded
classes. Thus, there is no missed permission enforcement
points either.

5.7 Bytecode Manipulation Toolkits
A last technical yet blocking issue was related to manipula-
tion of Android bytecode. We had to write the mapper and

SOOT Spark with binder
methods 126660
permissions 71
methods with no check 112824
meth. with ≥ 1 perm. 9562
median perm. checks 2
max perm. checks 50

perm. checks 137408

Table 1: Descriptive Statistics of The Permission
Maps Found by Static Analysis

the sniffer on top of two different toolkits: the mapper uses
the Soot analysis framework developed at McGill University
[29]; the sniffer uses the ASM framework [2]. We had to use
two different toolkits for the following reasons. On the one
hand, the code of the framework is open-source and written
in Java, which is perfectly appropriate for an analysis using
Soot. On the other hand, since we do not assume to have the
source code of end-user commercial applications, the appli-
cation bytecode is only available as Dalvik bytecode. While
we can transform Dalvik bytecode to Java bytecode using a
tool called “ded” developed at Penn State University6, the
bytecode resulting from too many complex transformations
is often not compatible with Soot for obscure reasons. The
lower-level API of ASM enabled us to overcome these prob-
lems.

5.8 Recapitulation
We have presented the core technical issues we encountered
while implementing our approach. We think that those
problems may arise in other permission-based platforms than
Android, and that identifying them and their solutions can
be of great help for future work. Last not but not least,
those points are crucial for replication of our results.

6. EVALUATION
This section presents an evaluation of our approach. First,
we discuss the permission map extracted by static analy-
sis using Soot and Spark. Then we compare our results to
the map extracted by Felt et al.[10] using runtime testing
techniques. Finally, we show that our approach actually de-
tects permission gaps in real applications published in two
different application stores.

6.1 Extracted Permission Maps
In the Android v2.2 framework, 115 permissions are defined.
When predicting the required permissions of Android app-
plications, we want to guarantee that the inferred permission
set is sound, i.e. that all inferred permissions are actually
checked in code and that we do not miss some checks. As
said in Section 3.1 (definition: Low Level Permission), and
in Section 4.2, our static analysis method does not deal with:
8 low-level kernel permissions; 30 permissions checked at the
level C++ services; 8 permissions checked at the level of con-
tent provider. Removing these permissions from the initial
set of 115 permissions and by taking care of overlapping per-
missions (for instance, a permission can be checked at both
C++ service and content provider levels) yields a set of 71

6http://siis.cse.psu.edu/ded/

high-level permissions. In the following, our discussion and
comparison will only consider this set of 71 permissions.

For those 71 high level permissions, we claim that our static
analysis at the framework level is sound.

We ran the static analysis based on Soot and which uses the
Spark call graph analysis described in 5.1 augmented with
binder and service specifities (see Sections 5.3 and 5.4) on
the Android v2.2 framework bytecode. The resulting map is
summarized in table 1. It gives the number of analyzed entry
points (methods of the framework), the number of methods
with no permission checks, the total number of permission
checks (ones in the matrix), and the number of methods
with at least one permission checks (with the median and
maximum number of permission checks).

According to this analysis, there are 9562 methods requiring
at least one permission, and among them, there are a median
of 2 permissions checked.

This fits with our developer experience with Android, the
methods have a clear scope and generally require a few
permissions (for instance, a method related to Bluetooth
management only requires permission BLUETOOTH). The
maximum of 50 permissions is related to methods which are
highly dependent of the usage context. In practice, develop-
ers only use the method indirectly and in a specific context
and declare a handful permission. However, from the blind
viewpoint of static analysis, there are 50 permissions in-
volved in this method. There are only couple of such outlier
in the 9562 methods predicted by Spark to require at least
one permission. The question whether we are still sound,
i.e. whether we did not remove too many edges in the call
graph is answered in the next sub-sections.

The matrice is very sparse (it mostly contains zeros and a
few ones – the number of permission checks), because many
methods do not contain permission checks and because one
method checks at most an handful permissions.

In terms of CPU cost, the computation of the most CPU-
intensive analysis, Soot Spark, is performed in about 11
hours on a Desktop Dell dual quad-core 2.4GHz with 24
Go RAM.

6.2 Comparison with Felt et al.
Let us now compare our results obtained with static anal-
ysis with the results of Felt et al.’ obtained with testing
[10]. Both extract a list of required permissions for each
method of the Android framework. Felt et al.’s results con-
tain 673 methods related with high-level permissions. We
analyze only 671 methods because 2 methods are related
with application-specific objects provided in Felt’s approach
that are not available per construction in our static analysis
approach. Using our Spark-based static analysis approach
with a maximum call graph depth of 10, for a given method,
we either find the same permission set, or a larger one. Our
method never misses a permission that Felt et al. describe,
this is piece of evidence of the soundness of our approach.

More precisely, we infer the same permission set per method
signature for 552 methods (82.3% of commonly analyzed

http://siis.cse.psu.edu/ded/

Permission set Number of
Methods

#Methods analyzed in [10] 1282
#Methods with HL perm. only 673
Identical 552 (82.3%)
we find more permission checks 119 (17.7%)

one more 118 (17.6%)
two more 1 (0.1%)

[soundness evidence] we find less permission
checks

0 (0%)

Table 2: Comparison with Felt et al. [10]. The dis-
crepancy is due to the conceptual differences be-
tween static analysis and testing.

methods). There is one ore additional permissions for 119
methods (1 additional permission for 118 methods, 2 for 1
methods).There is no method for which we miss a permis-
sion, Table 2 summarizes those results. Let us now discuss
the discrepancy between our results.

The additional permissions are due to either analyzing ir-
relevant code or to missing input data in Felt et al.’s ap-
proach. In the latter case, we are able to find permissions
that are checked within specific contexts that were not taken
into account by the generated tests of Felt et al. For in-
stance, MOUNT_UNMOUNT_FILESYSTEMS is only checked for me-
thod MountService.shutdown() if the media (storage de-
vice) is “present not mounted and shared via USB mass stor-
age” (from the API documentation). Another permission,
READ_PHONE_STATE is needed for method CallerInfo.get-

CallerId() only if the phone number passed in parameter
is the voice mail number. Those test cases were not gen-
erated by Felt’s testing approach. In real applications, test
generation techniques can not guarantee a comprehensive
exploration of the input space.

To us, these findings are typical when comparing a static
analysis approach against a testing one: static analysis some-
times suffers from analyzing all code (including debugging
and dead code, or code run in specific runtime environ-
ments), but is strong at abstracting over input data. On
the other hand, testing must simulate as close as possible
the production environment, but is cursed to always miss
very specific usage scenarios.

Those results highlight the complementarity between static
analysis and testing in the context of permission inference.
We think that the static analysis approach is complemen-
tary to the testing approach. Indeed, the testing approach
yields an under-approximation which misses some permis-
sion checks whereas the static analysis approach yields an
over-approximation in which those missing permission checks
are found. Using both approaches in collaboration would en-
able developers to obtain a lower and a upper bound of the
permission gap. In particular, for an given Android appli-
cations, if both testing and static analysis approaches yield
the same list of permissions, this list is the exact list of re-
quired permissions. This strong result is only possible by
using both approaches in conjunction.

Note that we also compared the Spark based static analy-
sis with a naive (Class Hierachy Analysis based) one which
yields worst results (bigger permission sets). As expected,

these results show that the precision is higher when using
Spark.

6.3 Permission Gaps in Real Applications
We ran our tool on two datasets of Android applications.
The first comes from an alternative Android Market7 and
contains 1329 android applications. For the second one, we
consider the top 50 download applications of all 34 top-level
categories of the Official Android Market, as well as the top
500 of all the applications and the top 500 of new appli-
cations (at the date of February, 23rd 2012). As a result,
after deduplicating the applications that appear in several
rankings, the second dataset contains 2057 applications.

Alternative Android Market: For sake of soundness,
we discard 587 applications that use reflection and/or class
loading. Of the 742 remaining applications, 94 are declaring
one or more permissions which they do not use. Conse-
quently, we identify a permission gap for 94 Android ap-
plications. We define the “area of the attack surface” with
respect to permission gaps, as the number of unnecessary
permission. In all, among applications suffering from a per-
mission gap, 76.6% have an attack surface of 1 permission,
19.2% have an attack surface of 2 permissions, 2,1% of 3
permissions and also 2,1% of 4 permissions.

Official Android Market: For sake of soundness, we dis-
card 1378 applications using reflection and/or class loading.
On the 679 remaining applications, 124 are declaring one
or more permissions which they do not use. In all, among
applications suffering from a permission gap, 64.5% have an
attack surface of 1 permission, 23.4% have an attack surface
of 2 permissions, 12.1% of 3 or more permissions.

To sum up, those results show that permission gaps exists,
and that our tool allows developers to fix the declared per-
mission list in order to reduce the attack surface of permission-
based software.

7. RELATED WORK
We have presented an approach to reduce the attack surface
of permission-based software. The concept of “attack sur-
face” was introduced by Manadhata and colleagues [20], it
describes all manners in which an adversary can enter the
system and potentially cause damage. This paper describes
a method to identify the attack surface of Android appli-
cations, which is a important research challenge given the
sheer popularity of the Android platform. In the context
of Android, reducing the attack surface is adhering to the
principle of least privileges introduced by Saltzer [27].

7.1 On the Java Permission Model
While the Android permission model is different from the
one implemented in Java, the following pieces of research
present related and relevant points to put our contribution
in perspective.

Koved and al. described a new static analysis [18] to gener-
ate a permission list for a Java2 program (in the Java per-
mission model). An improved methodology was presented
by Geay et al. [14]. We also use static analysis but in

7www.freewarelovers.com/android

the context of Android which differs from a Java environ-
ment especially with respect to the binder mechanism link-
ing Android API to services. As shown in our evaluation,
the binder prevents off-the-shelf Java static analysis tools to
resolve remote call to a service.
Pistoia et al. [25] presented a static analysis to identify por-
tions of the code which should be made privileged. This
issue does not arise in the Android framework since code
is not privileged per se, the access control is instead done
at entry points. This means that the Android framework
designers must be careful of creating unique entry points
protected by permission enforcement points, but does not
impact our static analysis.
Role-based access control (RBAC) mechanisms are analyzed
using static analysis by Centonze et al. [4]. When a pro-
tected operation manipulates data, this data should not
be directly or indirectly accessible by a path not defined
in the policy. If not, the operation is said to be location-
inconsistent. The tool they developed can check whether or
not an RBAC policy for JavaEE programs is location con-
sistent or present some flaws. The Android system defines
permissions which protects operation which in turn manip-
ulate protected data. Our goal consists of computing per-
mission gaps which may reveal a violation of the principle of
least privilege. Whether Android protected operations are
location consistent is out of scope of this paper.
Also related to role-based access control, Pistoia et al. [24]
formally model RBAC and statically check the consistency
of a JavaEE based RBAC system. We check that permis-
sion lists of Android applications respect the principle of
least priviledge. The concepts are the same (Android per-
missions could be approximated to roles, and we check which
roles are needed at every point of the Android framework)
but the target systems are not. Interestingly, we use a sim-
ilar approach for solving the Binder problem as they do for
solving the remote method invocation problem: instead of
statically analyzing the Binder/RMI code which would not
resolve the method, a mapping is computed from the call
to a remote method to the remote method itself. A major
difference though is that in the case of Android system ser-
vices and context must be initialized beforehand to simulate
a correct system state.

7.2 On the Android Permission Model
The Android security model has been described as much
in the gray literature [9, 28] as in the official documenta-
tion [16]. Different kinds of issues have been studied such
as social engineering attacks [17], collusion attacks [21], pri-
vacy leaks [15] and privilege escalation attacks [12, 6]. In
contrast, this paper does not describe a particular weakness
but rather a software engineering approach to reduce poten-
tial vulnerabilities.
However, we are not describing a new security model for
Android as done by [22, 23, 7, 5, 3]. For instance, Quire [7]
maintains at runtime the call chain and data provenance of
requests to prevent certain kinds of attacks. In this paper,
we do not modify the existing Android security model and
we devise an approach to mitigate its intrinsic problems.
Also, different authors empirically explored the usage of the
Android model. For instance, Barrera et al. [1] presented
an empirical study on how permissions are used. In particu-
lar, they used visualizing techniques such as self-organizing
maps to identify patterns of permissions depending on the

application domain, and patterns of permission grouping.
Other empirical studies include Felt’s one [11] on the effec-
tiveness of the permission model, and Roesner’s one [26] on
how users react to permission-based systems. While our pa-
per also contains an empirical part, it is also operational
because we devise an operational software engineering ap-
proach to tame permission-based security models in general
and Android’s one in particular.
Enck et al [8] presented an approach to detect dangerous
permissions and malicious permission groups. They devised
a language to express rules which are expressed by security
experts. Rules that do not hold at installation time indi-
cate a potential security problem hence a high attack sur-
face. Our goal is different, we don’t aim at identifying risks
identified from experts, but to identify the gap between the
application’s permission specification and the actual usage
of platform resources and services. Contrary to [8], our ap-
proach is fully automated and does not involve an expert in
the process.
Finally, Felt et al. [10] concurrently worked on the same
topic as this paper. They published a very first version of
the map between developer’s resources (e.g. API calls) and
permissions. Interestingly, we took two completely different
approaches to identify the map: while they use testing, we
use static analysis. As a result, our work validates most of
their results although we found several discrepancies that
we discussed in details in Section 6. But the key difference
is that our approach is fully automated while theirs requires
manually providing testing “seeds” (such as input values).
However, in the presence of reflection, their approach works
better if the tests are appropriate. Hence, we consider that
both approaches are complementary, both at the conceptual
level for permission-based architectures, and concretely for
reverse-engineering and documenting Android permissions.

8. CONCLUSIONS AND PERSPECTIVES
In this paper, we have presented a generic approach to re-
duce the attack surface of permission-based software. We
have extensively discussed the problematic consequences of
having more permissions than necessary and showed that
the problem can be mitigated using static analysis. The ap-
proach has been fully implemented for Android, a permission-
based platform for mobile devices. Our prototype implemen-
tation is able to automatically find 9562 Android framework
entry points which check permissions. In a permission-based
framework, all those checks have to be documented, hence
our approach does a significant job in achieving this task in
a systematic manner. For end-user applications, our evalu-
ation revealed that 94/742 and 35/679 crawled applications
from application stores for Android indeed suffer from per-
mission gaps. We have also shown that our static analysis
based approach is complementary to concurrent work [10]
based on testing.

The security architecture of permission based software in
general and Android in particular is complex. In this pa-
per, we abstracted over several characteristics of the plat-
form such as low-level permissions. We are now working on
a modular approach that would be able to analyze native
code and bytecode in concert and to combine the permis-
sion information from both. Furthermore, we are exploring
how to express permission enforcement as a cross cutting
concern, in order to automatically add or remove permis-

sion enforcement points at the level of application or the
framework, according to a security specification.

9. REFERENCES
[1] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and

A. Somayaji. A methodology for empirical analysis of
permission-based security models and its application
to android. In ACM Conference on Computer and
Communications Security (CCS 2010), pages 73–84,
Chicago, Illinois, USA, October 4-8, 2010.

[2] E. Bruneton. Asm 3.0, a java bytecode engineering
library, http://download.forge.objectweb.org/
asm/asm-guide.pdf, 2007.

[3] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and
A.-R. Sadeghi. Xmandroid: A new android evolution
to mitigate privilege escalation attacks. Technical
Report TR-2011-04, Technische Universität
Darmstadt, Apr 2011.

[4] P. Centonze, G. Naumovich, S. J. Fink, and
M. Pistoia. Role-based access control consistency
validation. In ISSTA 2006, pages 121–132.

[5] M. Conti, V. T. N. Nguyen, and B. Crispo. Crepe:
context-related policy enforcement for android. In
Proceedings of the 13th International Conference on
Information security, 2011.

[6] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and
M. Winandy. Privilege escalation attacks on android.
In Proceedings of the 13th International Conference on
Information Security, 2011.

[7] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S.
Wallach. Quire: Lightweight provenance for smart
phone operating systems. In 20th USENIX Security
Symposium, Aug. 2011.

[8] W. Enck, M. Ongtang, and P. McDaniel. On
lightweight mobile phone application certification. In
Proceedings of the 16th ACM CCS, pages 235–245,
New York, NY, USA, 2009.

[9] W. Enck, M. Ongtang, and P. McDaniel.
Understanding android security. IEEE Security and
Privacy, 2009.

[10] A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android permissions demystified. In ACM CCS 2011.

[11] A. P. Felt, K. Greenwood, and D. Wagner. The
effectiveness of application permissions. In Proceedings
of the 2nd USENIX conference on Web application
development, WebApps’11, pages 7–7, Berkeley, CA,
USA, 2011. USENIX Association.

[12] A. P. Felt, H. Wang, A. Moshchuk, S. Hanna, and
E. Chin. Permission re-delegation: Attacks and
defenses. In Proceedings of the 20th USENIX Security
Symposium, 2011.

[13] Gartner.com. Gartner says sales of mobile devices
grew 5.6 percent in third quarter of 2011; smartphone
sales increased 42 percent. http://goo.gl/HkyA4,
Last accessed: March 2 2012.

[14] E. Geay, M. Pistoia, T. Tateishi, B. G. Ryder, and
J. Dolby. Modular string-sensitive permission analysis
with demand-driven precision. In ICSE, pages
177–187. IEEE, 2009.

[15] C. Gibler, J. Crussel, J. Erickson, and H. Chen.
Androidleaks detecting privacy leaks in android
applications. Technical report, UC Davis, 2011.

[16] Google. The android developer’s guide, last-accessed:
2011-09.
http://developer.android.com/guide/index.html .

[17] S. Hoffman. Zeus banking trojan variant attacks
android smartphones. CRN, 2011.
http://goo.gl/xAEGr.

[18] L. Koved, M. Pistoia, and A. Kershenbaum. Access
rights analysis for Java. ACM SIGPLAN Notices,
37(11):359–372, Nov. 2002.

[19] O. Lhoták and L. Hendren. Scaling Java points-to
analysis using Spark. In 12th International Conference
on Compiler Construction, 2003.

[20] P. Manadhata and J. Wing. An attack surface metric.
IEEE Transactions on Software Engineering,
37(3):371 –386, may-june 2011.

[21] C. Marforio, A. Francillon, and S. Čapkun.
Application collusion attack on the permission-based
security model and its implications for modern
smartphone systems. Technical Report 724, ETH
Zurich, April 2011.

[22] M. Nauman, S. Khan, and X. Zhang. Apex: extending
android permission model and enforcement with
user-defined runtime constraints. In Proceedings of the
5th ACM Symposium on Information, Computer and
Communications Security, 2010.

[23] M. Ongtang, S. McLaughlin, W. Enck, and
P. McDanie. Semantically rich application-centric
security in android. Journal of Security and
Communication Networks, 2011.

[24] M. Pistoia, S. J. Fink, R. J. Flynn, and E. Yahav.
When role models have flaws: Static validation of
enterprise security policies. In ICSE, 2007.

[25] M. Pistoia, R. J. Flynn, L. Koved, and V. C. Sreedhar.
Interprocedural analysis for privileged code placement
and tainted variable detection. In ECOOP, 2005.

[26] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J.
Wang, and C. Cowan. User-driven access control:
Rethinking permission granting in modern operating
systems. Technical Report MSR-TR-2011-91,
Microsoft Research, 2011.

[27] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. In Proceedings of
the IEEE, 1975.

[28] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, and
S. Dolev. Google android: A state-of-the-art review of
security mechanisms. CoRR, abs/0912.5101, 2009.

[29] R. Vallée-Rai, L. Hendren, V. Sundaresan, E. G.
Patrick Lam, and P. Co. Soot - a java optimization
framework. In Proceedings of CASCON 1999, pages
125–135, 1999.

http://goo.gl/HkyA4
http://developer.android.com/guide/index.html
http://goo.gl/xAEGr

	1 Introduction
	2 The Permission Gap Problem
	2.1 Possible Consequence of a Permission Gap
	2.2 Declaration and Usage of Permissions CAMERA and RECORD_AUDIO

	3 Analyzing Permissions
	3.1 Definitions
	3.2 A Calculus for Permissions
	3.3 Extraction of M and AV
	3.4 Computing the Permission Gap

	4 Overview of Android
	4.1 Software Stack
	4.2 Services
	4.3 Permissions and Application Installation

	5 Static Analysis for Android
	5.1 Framework Call Graphs
	5.2 Extracting Permission Enforcement Points
	5.3 Handling Binder-based Communication
	5.4 Service Identity Inversion
	5.5 Reflection in the Framework
	5.6 Dynamic Class Loading
	5.7 Bytecode Manipulation Toolkits
	5.8 Recapitulation

	6 Evaluation
	6.1 Extracted Permission Maps
	6.2 Comparison with Felt et al.
	6.3 Permission Gaps in Real Applications

	7 Related Work
	7.1 On the Java Permission Model
	7.2 On the Android Permission Model

	8 Conclusions and Perspectives
	9 References

