
Caprice: A Tool for Engineering Adaptive Privacy  

 

Inah Omoronyia1, Liliana Pasquale1, Mazeiar Salehie1, Luca Cavallaro1, Gavin Doherty3, Bashar 

Nuseibeh1,2 

 

1 
Lero – The Irish Software Engineering Research Centre, University of Limerick, Ireland   

2
 Department of Computing, The Open University, UK  

3
 Lero – The Irish Software Engineering Research Centre, Trinity College Dublin, Ireland 

   

ABSTRACT 

In a dynamic environment where context changes frequently, 

users’ privacy requirements can also change. To satisfy such 

changing requirements, there is a need for continuous analysis to 

discover new threats and possible mitigation actions. A frequently 

changing context can also blur the boundary between public and 

personal space, making it difficult for users to discover and 

mitigate emerging privacy threats. This challenge necessitates 

some degree of self-adaptive privacy management in software 

applications.  

This paper presents Caprice - a tool for enabling software 

engineers to design systems that discover and mitigate context-

sensitive privacy threats. The tool uses privacy policies, and 

associated domain and software behavioural models, to reason 

over the contexts that threaten privacy. Based on the severity of a 

discovered threat, adaptation actions are then suggested to the 

designer. We present the Caprice architecture and demonstrate, 

through an example, that the tool can enable designers to focus on 

specific privacy threats that arise from changing context and the 

plausible category of adaptation action, such as ignoring, 

preventing, reacting, and terminating interactions that threaten 

privacy. 
 

Categories and Subject Descriptors  

D.2.2 [Software Engineering]: Design Tools and Techniques 

General Terms  

Design, Security, Human Factors, Management 

Keywords  

Privacy, adaptive software, changing context, selective disclosure 

1. INTRODUCTION 

As software applications become increasingly ubiquitous and 

dynamic, users privacy requirements change and become more 

difficult to manage [2]. One class of such requirements is selective 

disclosure – deciding what information to disclose, in which 

context, and the degree of control an individual has over disclosed 

information. The pervasive nature of software applications means 

that users need to be continuously aware of new and changing 

operational context of their applications, and to understand the 

implications of disclosing personal information in new contexts. 

Also, when context changes frequently (e.g., changing time, 

location and activities) then the boundary between public and 

personal spaces can also get blurred [3] and introduce unexpected 

privacy threats. In such scenarios, users may be unaware of when 

and for what purpose sensitive information about them is being 

collected, analysed or disseminated. This makes it even more 

difficult for users to adapt their application to continue to satisfy 

their privacy requirements. 

This challenge calls for a more systematic approach to enable 

the explicit consideration of privacy in the engineering of critical 

software applications. Firstly, it is essential to continuously 

examine context changes, such as changing spatio-temporal user 

attributes, as well as the environmental or regulatory constraints 

over which such attributes are disclosed. Secondly, such 

applications should be able to reason over changing context to 

discover privacy threats, and take actions for their mitigation. 

Although there are some methods for addressing privacy at design 

time [6], they do not target privacy threats arising from changing 

context, nor the adaptation countermeasures that should be 

triggered by applications when such threats occur. 

 In this paper, we present Caprice, a tool aimed at supporting 

software engineers in the design of applications that appropriately 

adapt their behaviour to mitigate privacy threats. At design-time, 

this tool provides software engineers with some insights about the 

functional behaviour of the system under development and   

runtime context changes that can threaten privacy. The core 

features of Caprice include: (1) identifying contextual properties 

to be monitored in order to detect context changes that might 

threaten privacy; (2) reasoning over a history of agent interactions 

to discover privacy threats, and (3) suggesting possible threat 

mitigation actions based on the severity of the discovered threat. 

In this paper, we demonstrate Caprice using a mobile application 

that enables a group of runners to share running data. 

 The next section contains some background on our approach. 

Section 3 describes the Caprice system architecture, while section 

4 illustrates Caprice and its user interface by using an example 

scenario. Related work and conclusions are in sections 5 and 6, 
respectively. 

2. OUR APPROACH 
Consider a designer of a privacy critical system that has a set of 

privacy requirements to meet, and is given a set of privacy 

policies and a domain model representing the operational context 

of the designed system. One way of satisfying such privacy 

requirements in a system design is to justify that the disclosure of 

information by the system as a result of an information request, 

does not result in the violation of associated privacy policies. The 

focus of Caprice (http://caprice.codeplex.com/) is therefore to 

help designers discover possible privacy threats resulting from 

information disclosure and potential mitigation actions. 

Specifically, Caprice is meant to inform an implementation of 

adaptive privacy systems. Caprice is potentially useful for 

supporting privacy-by-design by making explicit the context of 

 

 



privacy violations and possible mitigation actions at design time. 

The underlying research upon which Caprice is based is described 

elsewhere [1]. 

The approach implemented in Caprice consists of three 

analysis steps. First we identify the set of attributes that need to be 

monitored to detect context changes that may threaten privacy. 

This is important as monitoring all attributes that characterise a 

usage context can incur performance cost.  This step is enabled 

via the notion of privacy awareness requirements – the set of 

attributes that need to be monitored to detect context changes that 

may threaten privacy. This involves the parameterisation of 

attributes in a domain model to instantiate an operational context. 

Then, by relating the system behaviour to privacy policies we 

identify a subset of attributes in the operational context to be 

monitored. 

In the second step, based on the monitored attributes, we carry 

out privacy threats analysis to discover operational context that 

can violate privacy. Caprice makes use of Barth et al.’s contextual 

integrity framework [5] to justify the preservation or violation of 

privacy in a system's behavioural model. Contextual integrity 

posits that the transfer of information about a subject from a 

sender to a receiver, in a specific context, is tied to certain 

transmission principles, such as notice, consent, and 

confidentiality. In Caprice, we operationalize these transmission 

principles by using privacy policies. Then, based on the 

behavioural representation of the system  and a domain model, we 

reason over the operational contexts that threaten privacy. The 

reasoning is an iterative process that simulates a possible 

valuation/aggregation of attributes in an operational context that 

can result in a privacy policies violation.  

For the final step, by computing the severity of a discovered 

threat, a possible adaptation action is suggested to the designer. 

The severity of a threat is computed based on a utility value 

derived from the sensitivity and obfuscation levels of the 

disclosed attribute. The sensitivity level of an attribute describes 

its importance to its owner (the subject).  The obfuscation level 

refers to the precision/accuracy of the attribute being disclosed. 

For example, the parameterised attribute age = 55 is more precise 

compared to age = 45-60. Thus, the severity of a threat will be 

lower if the sensitivity level is very low and the obfuscation level 

is inaccurate and imprecise. Conversely, threat severity will be 

higher if the obfuscation level is accurate and precise. Caprice 

suggests four categories of adaptation actions based on the 

severity of the discovered threat. These categories include Ignore, 

React, Prevent or Terminate. A user can choose to ignore a threat 

if the expected severity is low (i.e. utility value is high). 

Conversely, a higher than expected severity level might require a 

different action. In react, a user can allow the message to be 

transferred, but additional conditions need to be satisfied by the 

sender/receiver to mitigate the effects of discovered threat. 

Prevent involves a user simply objecting to the message 

transmission between the sender and the receiver. Finally, 

terminate is the action that is selected when threat severity is at 

the peak level. This involves stopping further message transfers, 

thus withdrawing from associating with the group objective.  

3. CAPRICE SYSTEM ARCHITECTURE 
Caprice is implemented using the Microsoft .Net framework and 

its architecture consists of three layers, as shown in Figure 1. The 

modelling layer (layer 1) generates the domain, policy and 

behavioural model of the system. The domain model is 

instantiated using an interpreter from a domain knowledge 

repository. The policy model retrieves policy statements from a 

policy repository. Finally, a behavioural model is generated and 

represented as an FSM of the system. 

The second layer is composed of the operational context 

emulator, the FSM-Policy connector, and the agent interaction 

simulator. An agent here represents the sender, receiver or subject 

of transferred information. The operational context emulator 

evaluates a sequence of operational contexts based on attributes 

defined in the domain model. The FSM-Policy Connector 

overlays state transitions with privacy policies. Using the agent 

interaction simulator, Caprice can then simulate interaction 

between multiple agents. This is achieved by associating an FSM 

instance with each agent. Then a random message transfer 

involving agents is simulated using a Monte Carlo simulation 

algorithm. It is also possible for the designer to customize the 

policies associated with each FSM instance representing an agent.  

In the third layer, for every operational context simulated in 

the second layer, the designer is presented with a runtime view of 

FSM instances. This includes the possible privacy threats and 

mitigation actions that can be generated by the added operational 

context. The privacy awareness engine filters an evaluated subset 

of monitored attributes from the operational context. 

Subsequently, the privacy threats reasoner checks if the 

operational context of an agent interaction satisfies the privacy 

policies of the associated subject. It does so by first building a 

model of knowledge gained by interacting agents about the 

subject over a sequence of interactions. Based on LTL properties 

associated with the ensuing policy, the privacy threats reasoner 

then checks if the modelled knowledge will satisfy the privacy 

policies of the subject for that operational context. Finally, if the 

policies are not satisfied, the Mitigation Action Analyser 

recommends a possible mitigation action based on predefined 

adaptation rules. 

4. USING CAPRICE 
In this paper, we use a track sharing mobile application for 

runners and other outdoor activity to illustrate the usage of 

Caprice. Similar examples of such application include B.iCycle 

(http://b-icycle.com/), MyTracks (mytracks.appspot.com/) etc.  

Typically, such applications enable a group of runners to share 

live GPS tracks and performance statistics with fellow runners 

and other agents such as their fitness instructors and physicians. 

For this example, privacy management includes the capability of 

runners to decide the limits of information disclosure to other 

agents – about their current location, running time, distance, age, 

heart rate, burned calories, weight loss, etc. Effective adaptive 

 
Figure 1 Caprice architecture 

 



privacy requires runners to understand information flows, weigh 

the consequences of sharing information, and make informed, 

context-specific decisions to disclose or withhold information. 

 The overall workflow for using Caprice separates between 

three tasks. This includes the process of instantiating the domain 

and behavioural models with associated policy repository in order 

to identify privacy awareness requirements. The second task is 

related to discovering privacy threats. The last step involves the 

suggestion of plausible adaptation actions to mitigate the threats 

discovered. In this section, we describe how these three tasks can 

be performed in Caprice. 

4.1. Privacy Awareness Requirements  
The identification of privacy awareness requirements starts with 

identifying attributes that characterise the domain of system 

operation. This is an activity that can be carried out by a domain 

expert/system designer. The FSM of the designed system is then 

modelled by identifying the states, events, and transitions that 

define the behaviour of the system. In particular, an FSM 

description includes highlighting the domain attributes that are 

disclosed as a result of a state transition, as well as privacy 

policies that constrain defined state transitions. The set of 

attributes that need to be monitored for privacy threats analysis is 

the subset of domain attributes that are common to both the set of 

disclosed attributes resulting from a transition, and privacy policy 

that constrains that transition. 

 Domain attributes are captured by clicking the ‘add attribute’ 

button on the domain model tab of Caprice. This step also allows 

the definition of inference relations amongst attributes. An 

inference relation is a phenomenon that enables the deduction of 

previously unknown information from another disclosed attribute. 

In Caprice, this is achieved either via direct implication or 

aggregation. They both involve the use of established rules that 

predict the value of an attribute to some degree of accuracy. 

Implication inference relations are uni/bidirectional relations 

between two attributes. An example of a bidirectional implication 

inference is locationName ⇔ !"#$%&"'("")*&'$%+, (i.e. if a 

runner’s locationName is disclosed, it is possible to deduce the 

locationCoordinates and vice versa). Aggregation inference can 

be deduced by learning patterns that occur in the values of 

attributes over time. For example, the relation Weight ⊧!BMI ∩ 

height infers that the knowledge of a runner’s BMI and height 

may be aggregated to infer the runner’s weight. While some forms 

of aggregation relations can be bidirectional, we have only 

considered unidirectional aggregations. Generally, these 

relationships necessitate monitoring additional attributes to satisfy 

privacy awareness requirements. For example, assuming Weight is 

private for a runner, there is also a need to monitor the disclosure 

of BMI and height of the runner. Additionally, a subset of possible 

attribute values with the associated sensitivity and obfuscation 

levels are also defined.  

The functional behaviour of the system is modelled in Caprice 

using an FSM editor. An example of an FSM is shown in Figure 2 

(bottom-middle). For every event that is created, the domain 

attributes that characterise the event are identified. For example, 

the event EstablishFix enables the application to obtain an initial 

GPS fix, and the attribute that characterises this event is the 

runner’s current !"#$%&"'("")*&'$%+,"! Subsequently, for every 

state transition that is defined, the FSM editor enables a designer 

to select the event that triggers the transition. We envisage that not 

all states or transitions in a state machine will be involved in the 

disclosure of privacy sensitive information. In such cases, a 

designer can uncheck the affected transitions or states"!

The key assumption in associating privacy policies with state 

transitions is that the transition from one state to another is bound 

by specific transmission principles operationalized as privacy 

policies. Thus, privacy policies that are associated with attributes 

disclosed as a result of the event are automatically selected as the 

 

Figure 2 Privacy threats analysis and mitigation action selection in Caprice 

 



transmission principles for that transition. As! Figure 2 (bottom-

left) shows#! privacy policies are expressed using IF-THEN-

UNLESS statements tagged with temporal constraints. These 

temporal constraints can be expressed in the past (using 

PREVIOUSLY and LAST-TIME temporal operators), in the 

future (using NEXT-TIME, HENCEFORTH, EVENTUALLY 

temporal operators), and in all states (using ALL-TIME operator). 

4.2. Privacy Threats Analysis  
Privacy threat analysis is an automated process that is triggered by 

selecting a source agent in the Caprice environment, and clicking 

the ‘play’ button. The analysis involves the discovery of different 

operational contexts (a specific set of valuations of attributes in a 

domain model – example in Figure 2 top-right) over which if a 

state transition occurs, then the associated transmission principles 

will not be satisfied. In order to achieve this, Caprice models 

users as a group of interacting social agents. These agents perform 

actions involving personal information in a given operational 

context. Each agent is represented by an FSM instance that is used 

to model its behaviour across a sequence of operational contexts. 

A state transition is then triggered when an agent interacts with 

another agent, by requesting or receiving information. Each agent 

can adjust privacy policies associated with its FSM instance based 

on specific preferences. Agents also share knowledge among their 

group members and keep memory of past interactions. In this 

way, a subject’s decision to consider a specific information 

request or response as privacy threatening is based on two factors: 

the history of operational context and what knowledge other 

agents in the group already have about the subject. We model 

such group knowledge using epistemic modal reasoning that is 

based on the S5 axiomatic system [7]. Figure 2 (top-middle) 

shows an example of simulated interactions involving 6 agents 

(B1-B6), where B4 transfers previously acquired information 

about B1 to B6. The left corner of Figure 2 shows the operational 

context that threatens privacy, as well as the information about B1 

that is transferred from B4 to B6, and the violated privacy 
policies. 

4.3. Mitigation Action Selection 
Once a privacy threat is identified, Caprice recommends a 

mitigation action based on predefined adaptation rules configured 

by the designer. These rules are based on severity and frequency 

of discovered threats. The severity of a threat is calculated using a 

utility function. Figure 2 (right) shows a suggested mitigation 

action based on the privacy threat resulting from interaction 

between B4 and B6. For this example, the age, gender and weight 

of B1 is being disclosed to B6 in a privacy threatening context. 

Subsequently, a Prevent adaption action is suggested to the 

designer in order to mitigate the inappropriately disclosed of 

information related B1. In this illustration, both sensitivity and 

obfuscation levels have the same utility weight, and the partial 

utility functions are positive and negative exponential functions 
with a damping factor of 3 and 2, respectively.  

5. RELATED WORK 
We are not aware of any similar work for engineering adaptive 

privacy. General work on inconsistency management in software 

engineering has considered so-called “repair actions” [8] to 

mitigate discovered inconsistencies. However, despite some 

similarities, it does not address privacy and its dynamic context 

sensitivity. On the other hand, Spiekermann and Cranor provided 

a framework for engineering privacy [6], but without focusing on 

the challenges brought by changing context nor on software 

engineering concerns. Our research brings these two perspectives 

together. It also differs from traditional requirements monitoring 

approaches, such as those proposed by Fickas and Feather [9], 

which do not address monitoring privacy-critical contextual 
properties. 

6. CONCLUSION AND FURTHER WORK 
This paper has demonstrated Caprice – a tool to aid the design of 

privacy-critical systems.  The focus has been on systems whose 

intended usage is characterised by a dynamic environment where 

context changes frequently. We demonstrated a simulation 

environment in Caprice that discovers privacy threats and 

suggests plausible mitigation actions. Assuming an attribute is 

being transferred from a sending to a receiving agent (expressed 

as a transition in a state machine), Caprice reasons over what 

associated agents may know over time about the subject of their 

transmissions.. If such knowledge will violate the subject’s 

privacy policy, a mitigation action is recommended to the 

designer. These actions are based on the nature of disclosed 

information, and the frequency of occurrence of the threats. The 

demonstration highlights the plausibility of Caprice to support 

designers in making informed decisions about what privacy 

management capabilities to enable in software systems.  

Further work will focus on the semantics of the different 

categories of mitigation actions and the details of how they can be 

implemented and applied to the system. Furthermore, we have 

only considered agent interactions within a single group, future 

work will focus on extending Caprice to analyse interactions 

between multiple groups. 

6. ACKNOWLEDGMENTS 
This work was supported, in part, by SFI grant 10/CE/I1855 (for 

CSET2) to Lero, Microsoft SEIF Award (2011) and the European 

Research Council. 

7. REFERENCES 
[1] I. Omoronyia, L. Pasquale, M. Salehie, G. Doherty, B. 

Nuseibeh. Engineering Adaptive Privacy: A requirements-

driven approach for mitigating mobile privacy threats, 

technical report, Lero-TR-2012-03, 2012.  

[2] C. Mancini, K. Thomas, Y. Rogers, B. Price, L. Jedrzejczyk, 

A. Bandara, A.  Joinson, and B. Nuseibeh. From spaces to 

places: Emerging contexts in mobile privacy. 11th Int. conf. 

on Ubiquitous comp., 2009, Orlando, Florida, USA. 

[3] S. Lahlou, M. Langheinrich and C. Röcker, “Privacy and 

trust issues with invisible computers,” Commun. ACM, vol. 

48, no. 3, pp. 59-60, 2005.  

[4] A. Acquisti, and J. Grossklags, “Privacy and Rationality in 

Individual Decision Making,” IEEE Security and Privacy, 

vol. 3, no. 1, pp. 26-33, 2005.  

[5] A. Barth, A. Datta, J. Mitchell, and Nissenbaum, H., Privacy 

and Contextual Integrity: Framework and Applications. In 

Proc of the IEEE Sym. on Security and Privacy. IEEE 

Computer Society, Washington, DC, USA, 184-198, 2006. 

[6] S. Spiekermann, and L. F. Cranor, Engineering Privacy, Sof.  

Eng., IEEE Trans on,.35(1) 67-82, 2009. 

[7] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, 

Reasoning about Knowledge. MIT Press, 1995. 

[8] C. Nentwich, W. Emmerich, and A. Finkelstein. 2003. 

Consistency management with repair actions. ICSE '03. 

IEEE Computer Society, Washington, DC, USA, 455-464. 

[9] S. Fickas and M. S. Feather, “Requirements Monitoring in 

Dynamic Environments,” 2nd Int. Sym on Req. Eng., 1995 

 


