
A N E D U C A T I O N A L T O O L F O R T E S T I N G H I E R A R C H I C A L M U L T I L E V E L C A C H E S

J.A. G6mez Pufido, J.M. Sinchez P~rez, J.A. Moreno Zamora
Department of Computer Sciences

University of Extremadura
Av. Universidad, s/n- 10071 Ctceres. Spain

jangomez~ba.unex.es

ABSTRACT.

In this work we present a simulator for a multilevel cache
memory system on a monoprocessor environment. It has
incorporated a full graphic interface operating on a PC-DOS
environment. At first, the simulator was conceived as a tool for
applying it to teaching of cache memories. However, the
potentiality of the developed system has proved its utility on
program analysis and design strategies of memory systems. The
above characteristics enable the simulator to be used for
designing systems that run optimally a determinate kind of
programs and improve the operating mode of a determinate
architecture

KEYWORDS.

Multilevel caches. Performance evaluation. Trace-driven
simulation. Education.

1. INTRODUCTION.

The performance of a computer system is a function of the
speed of the individual functional unit, such as floating-points
units, caches, bus, memory systems, I/O units, and of the
workload presented to the system. It is well known that caches
are a critical component of any performance computer system.
Cache is the simplest cost effect/ve way to achieve high speed
memoxy and its performance is extremely vital for high speed
computers [1]. In this paper we focus our attention on the
developing of a simulator for multilevel cache memory systems
on a monoprocessor environment.

There are well known cache memory simulators working on
a monoprocessor environment [1]. Starting from those works,
we have developed a new simulator, when has been taken into
account new considerations about its multilevel capacity and
analysis of characteristics, interface and portability. The design
considerations have been oriented to satisfy a set of
characteristic with didactic and research goals.

The didactic goal tries to approach to the student the
problematic of cache memories, shown graphically all
knowledge they may acquire in diverse texts [1],[3]. In order to
do that has been necessary to built a friendly interface that
allows to develop all ~nalysis jobs. The research goal is
necessary in order to use the simulator in jobs such analysis of

program locality, behaviour of different architectures,
developing of design strategies, etc.

The weight given to each goal will depend on the simulator
user, the possibility to use other simulators, or the current and
future simulator capabilities.

In the next section of this paper we mention some theoretical
aspects of cache memories. Section 3 presents the different
characteristics the simulator offers to the user. In section 4 are
the restdts found and, finally, conclusions are presented in the
last section.

2. THEORETICAL ASPECTS.

The theoretical considerations are well shown in many
computer architecture books [1],[3], and we will not mention
them here. But for understanding the simulator scope related
with real organizations, we expose some theoretical aspects:

The memory hierarchy has a block organization. From
lowest to highest level (main memory) we consider the block as
the only information unit, that can be referenced on the
transaction between levels. So, the block size in any level does
not change. Moreover, the word width (minimum unit
referenced by programs) does not change also, is the same in all
memory hierarchies. Each line or partition (cache block) has
associated the necessary bits for the management of different
algorithms related with fetching, reading, writing, mapping
operations, etc. These bits constitute the labels, validations,
counts, etc.

At last, all operations and edgortthms are similar to those
found in any computer architecture book. So, the found results
have a very close mapping with the real world.

3. ARCHITECTURE.

In this section the different characteristics that simulator
offers to the user are exposed. They are grouped according to
simulated memory architecture, processing programs, or the
simulator program.

Hardware.

In relation to the hardwa~ organization characteristics on
the memory hierarchy, the simulator offers the following
possibilities:

m l l m

http://crossmark.crossref.org/dialog/?doi=10.1145%2F235688.235690&domain=pdf&date_stamp=1996-09-01

Nmber of cache levels in the
memo~ ~ .
Cache type_

Mapplag.
Replacement p o l i d a .

WrtUng ser~gJes.
C P U W o r d wide.
Words by block
Blocks ia lmsain memory.

block
M a l b u u m main memory, A w .
Mmdmmm nmuber or cache
partttlom~ sets or w a ~
M~t--~mn cache size (esciude4

I~ ferenc~

Up to four cad~ levels.

Unified (or mixed: 1 cache by level).
Separated (instructions and ,l,t=. 2 caches
by l~t).
Direct, Set-Associative. Fully-associative.
P,~ndm=, LFU (Least Frequently Used).
LRU (~ Recently Used). H F O (First-ln,
First-Out).
Direct- Write-Bade.
8, 16~ 32 or 64 bits.
1,2,4, 8, 16,32,64, 128 or 256 winds.
1, 2, 4, S, 16, 32, 64, 128, 256, 512, 1024,
2048~ 4096 or 8192 blocks.
2KB.
16MB.
512.

IMB.

I To memory word&

The different choices selected in the simnlator for
configuring a given architechu© may be stored on a ASCII data
file for a future load, so the need of i n a k ~ g many selections for
configuring the same memory model is avoided.

P r o ~ ' a m s .

For working with the simulator, it is necessary to use data
files with the "calls" and memory addresses demanded by the
CPU during the running of a program: the named memory
traces. These data files (based on din and P D A T S formats [4])
consists o f lines, each one hag tWO numbers, separated by only
one white space:

label_value

• label is a decimaI number that identifies the access memory
operation type demanded by the CPU, in a given time,
according to the instruction program: to capture an
instruction (0), to read a memory data (2) or to write a data
in memory (3).

• value is an hexadecimal number, that indicates the effective
address of memory word to be accessed by the CPU. This
address will be translated by the simulator for locating the
word in the memory system block structure.

As an example, the part of file
of the figure shews a memory
trace with 6 inmu~on captures
o f a dbq~nlrtate progl'lun.
instrucfimm imply data reading,
and one ask for writing in
m~nory. By that~ those 6
instmaiom a~eunting a total
of 10 m m u ~ aczem.

0 1c07
0 Ida4
2 7e.50
0 leO3
0 |fu7
2 7a_51
0 201b
2 7a70
0 2lie
3 78_50

We dispose of a wide set o f these data files for studying
lecafity and better cache organizations for a certain type of
programs. Many of these t r a c ~ come f rom tests performed with
real programs on different architectures on the Parallel
Architecture Research Lab, New Mexico State University.

Simulator .

In this section we show the principal characteristics o f the
simulator. Next table resumes some of its principal descriptors.

P r o g r a m SISMF_~ v 1.0
Executable me size. 370 KB
P i a~o rm. PC - DOS
Processor. h~! 486 or Pm~iun~
Graplde eaviroment. Colour VGA.
Source code. C++
Source code size. 200 KB
Mouse m p o b i a t 7. Yes
Menus. About 20
llut~ns. About 70
Calmldltt 7 t~ load and save data rues. • Yes

For worlang with the simulator, a f r i e n d l y g r a p h i c interfac~
is provided. With this interface, it is possible to perforrr
memory designs according to our specifications, to select trace.,
for checking programs, to view finnl and running t ime result~
(graphically or numerically), to save data files, to see schemes:
etc. All these capabilities make easy a quick f~miliarizatior
with the simulator analysis jobs.

The simulation consists o f the p rogrammed reproduction c~
operations that would be really performed by the circuits ol
multilevel cache memory system. For that, the adequate
computations are performed and, at the same time, the presenl
and aca tmula ted results, are shown. There are possibility oJ
aborting the simulation in any time, for correcting an)
architectonic detail without wait ing the simulation end.

During the simulation, it is also possible to save the essentiaJ
data in order to may perform, afterwards, the same simtdatio~
process without any necessity to do again the same
computations. So, it is achieved a '~ Imed '" simulation whose
reproduction is quicker because it avoids the realization of runny
arithmetic and logic operations indicated by the algorithms used
for performing the simulation.

An abstract o f the options that offers our simulation program
are the following:

• M e m o r y System Design P a r a m e t e r s . These parameters
have a mapping with the architectural system
characteristics, such they were described above (word width,
block size, writ ing strategy, etc.). All parameters are related
between them according to the theoretical models. The
simulator avoids and tips the user made a choice whose
value will be contradictory with the choice for other
parameters.

• S imulat ion E n v i r o n m e n t s (result viewing). This is the
simulator core, because after performing many choices starts
the simulation. The presentation mode of simulation results
can be selected. During the simulation process it is possible
to stop it, in order to do any previous selection in other
menus (we do not have to wait until simulation is finished).
Between the different environments can be found: nnmer/cal
fields and graphics.

m 1 2 m

The nnmerical fields show instruction counters, accesses,
misses, hits, rates, etc. All these values are computed and
shown for each cache and for the global system. These
fields reports a lot of detailed information, useful to
elaborate different stats.

The curve graphics show the evolution of these
parameters respect to the memory accesses. They are
very useful for studying the program locality, the
influence of cache size, etc. Moreover, the simulation
repetitions may, on these graphics, showing information
of, for example, the impact of random substitution
strategy in caches with associative mapping (because in
some curve sections will appear little desviations).

=:, With comparative graphics it 's possible to compare final
values of key parameters (miss and hit rates) in relation
with the block size. This allow to extract conclusions
related with the cache design and according to the
theoretical aspects, such as the existence of a pollution
point, effect in the spatial locality of the block size, etc.

• O t h e r environments . Between other environments, the
simulator can show results we mention:

Schematic visualization of system memory organization
for seeing the different cache levels, CPU and main
memory, with its more important characteristics.
Loading of different files (trace and model selections) for
performing simulations. This is made in a window in
order to made easier a choice quick of simulations. The
files are in the same working directory.

=~ Saving in a file one determinate memory organization.
This allows us to build a database with different memory
organizations, emulating MIPS, Spare, PowerPC and
other architectures.
Saving or loading a file with the numerical results of a
given simulation. As it was mentioned, this may be used
for made simulations without generating operations,
obtaining so more speedup for showing results.

When this simulator will be used in depth, it will be possible
to obtain more analytic information, than we have shown now.

4. EXPERIMENTAL RESULTS F O R CACHES.

For validating the simulation results, we compare our
experimental results with those found by other authors [1], [3],
[5]. We show the found results for a set of determinate
architectures with a set of concrete traces. So, we consider some
traces based on the first thousands of memory accesses of Spice
and some SPEC'92 benchmarks, according real tests made on a
MIPS 112000 system.

At first, we consider a simple architecture of word width of
16 bits, write through and blocks of 32 bytes. On Fig I is shown
the miss rate vs. the cache size (only a cache level), with an
unified cache of direct mapping.

S) i 0,06 m(~12 00,25 n 0,5 n l m2 B4 0 8 D16

 .o-*ILLI LL L
Fig. 1

On Fig. 2 the same assumptions arc considered, except now
we have two cache memories (data + instructions) such as the
add of its size is the size of the unified memory.

The miss rate decreases with the ~ c h e size, as we can see
for all benchmarks, and this indicates that, independently of
different locality grades, all progr-am~ have the same general
behaviour. Also, it may be observed that for great sizes of cache,
the miss rate is stabilised, this shows a type of miss:

13

compulsory. The differences of miss rate for a determinate
increment of cache size indicates the memory addresses are as
near than a little increased of cache size bring about a great
increase of performance. Clearly, this point depends of the
program. From Fig, 2 we can conclude the best results are
found with instructions and data caches, but increasing the
global cache size th i~ advantage, obviously, decreases.

hydro nasa7 cexp md[Jd ear comp wave
Unified c, ad~ ~ Separated ~ d m (he~acfio., data)

i| - -

y axis: Mtm rat~ (0-50 %)
X axis: Cache size (0.03, 0.06, 0.12, 0.25, 0.5, 1, 2, 4, 8, 16 KB)

Fig. 2
For studying the effect of adding more cache levels, we have

used other architecUm: (word width of 32 bits, write-through,
blocks of 64 words). Fig, 3 shows the miss rate, for direct
mapping caches, depending on the considered level number. For
each level, a cache size fixed is assumed, and there may he an
,nif ied or two separated caches. As R could be hoped,
increasing the level number a better miss rate is achieved. So,
the modern processors are designed, as minimum, with two
cache levels. At this point, also can he observed it is better to
use separated caches instead oflmified.

hydro mum7 cexp mdlJd ear comp wave
Unified cache Separated cachm (instmotion, data)

i ' axis: Mi~ rate (o-50 %)
X aais: Carbe levels (1, 2, 3, 4)

\

Cache size level I: I KBCuntfied), 0.5 KB (each separated)
Cache size level 2:2 I¢,,B (unified), I KB (each separated)
Cache size level 3 : 4KB(unified), 2KB(eachseparated)
Cache size level 4 : 8 KB (unified), 4 KB (each separated)

Fig, 3

Now we study the influence of the cache size as design
parameter on a second level cache. For Spice program, we
consider a first level cache of 1 Kbyte and direct mapping, and a
second level cache, also of direct mapping. Fig, 4 tell us that
increasing the size of the second level cache, decreases the miss

rate, but fi~m a given time this decreasing is much less, because
of the appemance of compulsory misses.

g 0

"° I

70

. l o t l eve l I

Z '° I ="" Jev"l'
!J ,o '°=0 ~ _ __ I__ o,o.I I

20

, o

0 | 0

2 4 II 16 32 64

; lnd L e v e l C a c h e Size (K B y t e)

Fig. 4
Other aspect we have considered is the influence of the

block size. Also for Spice program, using an ,n i f ied and one
level of direct mapping cache, we have gathered the results
shown in Fig. 5. From these results can be observed the
existence of a pollution point, which influence is smaller when
increases the cache size.

18

t B

14

~ n
~ lO
| .

6

I

2

oT
32

I - -m . - - 'XO I
I .a. 4KS I
I = OK='[

I--O--32 Ka[
- - JL

u

T 5" .--
64 128 256

B lock 81ze (KByb t s)

Fig. 5

These results are fully consistent with the theory we can find
in computer arclut~'ture texts: Increasing the block size, to
more word numher in the block, less miss rate, because of
spatial locality since increases the probability, in a near future,
for accessing data nearest to the accessed word. However, from
a given time (pollution point), to more word number in the
block, more stride between some words, so referencing one, the
probability for accessing the more strides decreases. It is dear ,
than more cache capacity, less negative effects when the block
size increases.

Finally, in Fig 6 are gathered some results using the ea r
benchmark. R represents the miss rate versus different mapping
grades (with random replacement strategy for the associative
mapping case). This indicates tbe miss rate improves when tim
associativity grade increases, although the benefits are every
time less signiticants.

14

13

!'
Z

Fig. 6

Environments". Microprocessor and Microprogramming
Journal, July 1994, p. 411-421.

[6]. G6mez Pulido, J.A., S~mchez P~rez, J.M and Moreno
Zamora, J.A. "Designing a Cache System for Teaching
Purposes". Proceedings, 1996 IEEE Mixed Design of
Integrated Circuits and Systems, Lodz, Poland, 30 May-1
June 1996, p. 359-364.

S. CONCLUSIONS.

In this work we have shown the principal characteristics of a
mul~level cache memmy system simulator. It has been
satisfactorily used in our academic environment [6]. Students
have used it as tool for experimenting the differem theoretical
aspects about cache memories learned in the regular courses of
computer structures. Profes~rs have used it because it allows to
znzly~ diffm'ent situations with an easy and modest tool.

At the present, we are working for incorporaling (adding)
new capabilities, such as average access time, miss penalties,
etc. Also, we are modifying the simulator in order to be
applicable to multiprocessor systems, specially for solving
queslions related to cache coherence problem.

At last, in order to contribute to a better knowledge of the
multilevel cache problematic, the simulator is available, with
educational purposes, for universities and research centers, free
of fee. People can contact with the authors.

6. REFERENCES.

• [I]. Hennesy, J.L. and Patterson, D.A. Computer
Architecture A Quantitative Approach. Morgan
Kauffnmnn. 1996.

• [2]. Hill, M.D. and Smith, A.J. "Evaluating Associativity
in CPU caches", mEE Transactions on Computers, C-38,
12, December 1989, p. 1612-1630.

• [3]. Patterson, D.A. and Hennesy, J.L. Computer
Organization and Design. The Hardware/Software Interface.
Morgan Kanf~nann. 1993.

• [4]. Johnson, E.E. and Ha, J. "'Lossless Addreaa Trace
Compression For Reducing File Size And Access Time".
Proceedings, 1994 IEEE International Phoenix Conference
on Computers and Communications, p. 213-219.

• [5]. Obaidat, M.S., Khalid, H. and Sad/q, K. '~l
Methodology for Evaluating the Performance of CISC
Computer Systema under Simple and Two Cache

15

