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This column consists of selected traffic from the 
comp.arch newsgroup, a forum for discussion of 
computer architecture on In ternetman interna- 
tional computer network. 

As always, the opinions expressed in this column 
are the personal views of the authors, and do not 
necessarily represent the institutions to which 
they are affiliated. 

Text which sets the context of a message appears 
in italics; this is usually text the author has quoted 
from earlier messages. The code-like expressions 
below the authors' names are their addresses on 
Intemet. 

A r c h i t e c t u r a l  P o t h o l e s  
M a r k  R o s e n b a u m  
m j r @ n e t c o m . c o m  

That is an interesting contrast. It seems that with 
the laree caches and the hieh hit rates that most 
SMP systems have that even SMPs mieht  be 
considered logically shared physically-dis- 
tributed. 

That's an interesting topic; l've never fel t  that I 
had the "killer explanation " for  the difference ... 
but I think there's a fundamental difference, in 
practice. So. let me try, and hopefully somebody 
can offer a more succinct version. 

[Note: references would be Lenoski and Weber's 
Scalable Shared-Memory Multiorocessine and 
Greg Pfister's In Search qf  Clusters.] 

1) "SMP-classic" : 

a) CPUs with coherent caches. 

b) UMA shared memory, i.e., with same ac- 
cess time f rom every CPU, and memory ac- 
cess time much longer than cache access 
time. 

2) "CC-NUMA-classic" : 

a) CPUs with coherent caches. 

b) NUMA shared memory, with a more 
complex access time function: 

Local memory access time much longer than 
cache access time. 

Remote memory access time much longer 
than local memory access time. 

and possibly: 

Remote memory access time may or may not 
vary much according to where it is. 

At  some point, if  the remote memory access time 
is much longer than local memory access time, 
people will use the system as 3) message-passing 
system, even if the memory is logically shared, 
simply because the penalty for  acting like every- 
thing has the same access time gets too high. 

Excellent point, any guess as to what the ratio 
might be7 10X? 100X? Also, doesn't the com- 
munications also play a part here. Even if the re- 
mote memory is very close (say 2X away) but 
congest easily wouldn't that force you to treat the 
machine as distributed memory7 

Now, what's different: layout o f  data for  caches 
tends to be a short-term, small-size, dynamic is- 
sue; layout o f  data for  multiple memory systems 
tends to be a long-term, larger-granularity issue 
... and apparently much more difficult in the gen- 
eral case, as evidenced by the relative numbers of  
3rd-party parallelized applications. (I.e., many 
for  SMP, not many for  the extreme case o f  mes- 
sage-passing systems. There's plenty of  data for  
the extreme points, not so much f o r  CC- 
NUMAs, although i f  you look at NCSA's soft- 
ware application pages, there may be some indi- 
cation.) 

While  it is true that the number  of MPP 
(distributed memory) applications is small, I 'm 
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not sure the explanation is that MPP is too hard 
to program. My experience in the industry was 
that the SMP systems were used for multi-user 
t imesharing systems and the MPP systems were 
des igned for a small  number  of  large applica- 
tions. This is highlighted by the fact that on many 
of  the MPP systems (nCUBE, Intel, TMC, ...) 
users could not directly logon to the nodes but 
rather only the host. This would require any ap- 
pl icat ion por ted to these systems to be paral- 
lelized while a simple (non-parallel) port to SNIPs 
could be done without parallelizing the code. The 
non-paral lel  versions for things l ike word pro- 
cessing worked fine. 

This created a software base which  drove sales 
which created a business reason to then go back 
and parallelize the code. As far as I can tell the 
jury is still out on how well  that effort is going. 
A look  at the R D B M S s  yie ld  mixed  results. 
There are still some RDBMSs  that don't  scale 
well  even  on SMPs. On the other hand, there 
was no technical  reason why  MPP could not 
have been used as timesharing machines. Netcom 
(my serv ice  p rov ide r )  uses  a N e t w o r k  Of  
Worksta t ions  (NOW) to provide  U N * X  t ime- 
sharing. Also, I bel ieve that the IBM SPX can 
also do this. Given  the way  things went  one 
would  have to quest ion the business model  that 
these companies were using. 

A point  of  interest  about distr ibuted m e m o r y  
systems is that they can be des igned to be fault 
tolerant (currently, they typically are not). 

For data base applications where  the disk seek 
time will cover  most  latencies, this architecture 
offers some signif icant  advantages.  It will  be 
very interesting to see how the market changes. 

that the SMP systems were used f o r  multi-user 
timesharing systems and the M P P  systems were 
designed for  a small  number  o f  large applica- 
tions. 

This may be a matter of viewpoint,  i.e.: 

a) As Mark notes, many SMPs were straightfor- 
wardly used for throughput  of  mul t ip le  single- 
thread programs that were probably derived from 
uniprocessors anyway, and as noted, with vary- 
Lug degrees of success for commercial  DBMS. 

b) On the other  hand, in the technical  world,  
people  were certainly routinely doing small-N- 
way parallelization of codes in the late 1980s and 
early 1990s. Whi le  I 'm not sure how much  of  
this was going on on other vendors '  systems, I 
do know it was happening on SGI PowerSeries  
systems. I was still at MIPS, but over the years 
since I 've talked with lots of  scientists and engi- 
neers who had done this, certainly not to do al- 
gorithms research, but just  to solve their  prob- 
lems faster. I especially recall one who had an 8- 
CPU system: he was running a research job  that 
took weeks ,  and that every  once  in a whi le  
looked at a file to see how many CPUs it should 
be using. When  he went  home, he'd let it have all 
8. When  he came back, he 'd tell it to keep  4, so 
he could have 4 for his interactive work. 

It is also the case that Power  Challenges acquired 
a reasonable number  of  parallelized ISV applica- 
tions fairly quickly during 2H94. 

I /O  P o t h o l e s  
Adrian Cockcroft 

add an.cockcroft @ sun. com 

A r c h i t e c t u r a l  P o t h o l e s  
John Mashey 

mash@sgi .com 

Excel lent  point, any guess as to what  the ratio 
might  be? IOX? IOOX? Also, doesn't  the com- 
munications also play a part  here. Even if  the re- 
mote memory  is very close (say 2X  away) but 
congest easily wouldn't that force you to treat the 
machine as distributed memory ? 

Seems likely. 
While it is true that  the number  o f  M P P  
(distributed memory)  applications is small, I 'm 
not sure the explanation is that M P P  is too hard 
to program. My experience in the industry was 

I'm taken by the fact that nobody has mentioned 
locality o f  l /O adaoters in this-thread. In most  
SMP architectures. -all I / 0  adaoters are about the 
"same distance " f rom all o f  memory---both archi- 
tecturally and in the imolementation. In N U M A  
systems and message-l~ased massively oarallel 
systems, this is not  in eeneral  true. P lacement  
decisions must  try to achieve both locality to the 
processor  and locality to the "'relevant" I / 0  
adapterf s). This is a significant comolication that 
may. in oart. explain why ootimizine for N U M A  
and message based systems seems "'~rder'" than 
SMP.  

I don't think "distance "' f rom the processors in a 
N U M A  system makes very much difference, ex- 
cept f o r  devices that must be stroked at very pre- 
cise timing intervals. Hopefully there aren't many 
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of those left outside of real-time and control sys- 
tems. Why: The latency involved in most I /0  op- 
erations is extremely long compared with the 
memory-to-memory latencies being discussed, so 
much so that the memory-to-memory latency is 
noise in comparison. 

The latency from the CPU to the I/O bus and I/O 
devices needs to be short for good performance. 
The reason is not obvious, but it became clear 
when comparing the performance of some SBus 
I/O cards in desk-top and server systems, that the 
extra latency over the server's backplane (less 
than a microsecond of extra latency) made a big 
difference in performance. The reason is that un- 
fortunately not all I/O devices are as clever or as 
perfect as many people think. There are devices 
that contain uncached memorymgraphics frame 
buffers, some I/O cards that can't tolerate DMA 
latency under load (e.g. to avoid dropping 
Ethernet packets), and all cards that have control 
registers to twiddle. Access to the cards is done 
via "programmed I/O", where the CPU does un- 
cached reads and writes to the I/O space. The 
bulk transfers happen via DMA, and are not la- 
tency sensitive. 

It turns out that very many cards are developed in 
low-latency desktop systems (SBus desktop 
Sparcstations, PCI-bus desktop PC's) and the 
same cards are used on servers. Lower volumes 
for servers mean that only the most popular card 
types are optimized for use on servers, and real 
customers buy many cards from many vendors 
and then wonder why they don't all work so 
well. 

The lesson Sun learned from this was that I/O 
bus latency does make a significant difference. 
The CPU to SBus latency in the Ultra Enterprise 
server range is actually less than the latency in the 
older desktop system, and the programmed I/O 
datapath was carefully optimised. 

If you are looking at a NUMA system, try to fig- 
ure out which CPU is going to run the device 
driver code. Then start to worry about how many 
round trip PIO's are required to setup each data 
transfer. It can actually take longer to set up a 
DMA access (which involves a tiny amount of 
control data transfer) than the DMA of the bulk 
data itself. 

IIO Potholes 
Zahir Ebrahim 

zahir.ebrahim@ sun.corn 

In addition to the "programmed I/O" latency 
considerations that Adrian Cockcroft mentioned, 
there is one other "subtle" consideration that dic- 
tates location of I/O in a distributed server that 
may not be visible to folks who don't actually 
build these systems for a living but only use them 
(for a living). This is the memory model consid- 
eration. 

So consider this as a brief prelude to the subject 
that only points out some of the related issues. 

Memory model mainly has two dimensions: 

1) as seen by the FO device doing DMA, and 

2) as visible to PIO from the issuing and viewing 
processors. 

For 1), it is the race between "last DMA transfer" 
and "completion notification" (notification to a 
local processor vs. remote processor, DMA to 
local memory vs. remote memory). 

Aspects of this are managed in system hardware 
(not the I/O device), and other aspects are bound 
in the I/O device driver. The issue definately has 
an impact on the system design consideration for 
I/O. 

For 2), it is a) the "side effects" of PIO opera- 
tions on the I/O device, b) ordering of any 
semaphore updates in main memory with respect 
to last PIO transfer to a shared I/O device, and c) 
ordering of PIO transfers between I/O devices. 

By ordering, I mean at least 2 things: i) the order 
in which the effects of the PIO from a processor 
becomes visible to other distributed processors 
(if one sees X then Y, then all see X then Y, not 
that some see Y then X), and ii) the order in 
which the I/O device sees the PIO transactions 
from the issuing processor. 

Again, some aspects of this are managed in the 
system hardware (not the I/O device), other as- 
pects are managed in the device driver interface to 
the kernel, and some others are handled in that 
I/O device driver. 

Where the boundary is determines the perfor- 
mance vs. complexity tradeoff for supporting I/O 
devices exhibiting those characteristics in that 
system. 

As one can observe, the global order considera- 
tions for PIO can be somewhat stricter than for 
memory, with the additional complication that I/O 
devices (registers) have side affects, and that la- 
tency of PIO have at least four additional perfor- 

19 



mance - re l a t ed  impacts  that  warrant  consid-  
erations: 

1) it effect ively throttles the processor doing a 
PIO "load" to a remote device thus wasting pro- 
cessor cycles, 

2) under memory  models weaker than sequential 
consistency, the processor may have to interject 
barrier instructions thus throttling throughput, 

3) the PIO thread may even have to be bound to a 
certain processor thus l imit ing its relocatabil i ty 
(which may or may not be such a bad thing), and 

4) for PIO streaming devices such as frame buf- 
fers and other memory-mapped devices/interfa,'es 
which may be non-cached and "store intensive" 
rather than " load intensive",  PIO throughput is 
important. 

Although system software folks generally wrestle 
with these issues, they are also important for the 
application software as they determine the effec- 
t ive sys tem throughput ,  C P U  util ization,  and 
overall perceived quali ty of  the application run- 
ning on that product. 

In many  of  these cases, s imply the proper place- 
ment  of  the device driver and the applicat ion 
thread (as opposed to the I/O device) can some- 
times help improve the situation. But  that needs 
system software assist. 

And f inal ly  one can eas i ly  imagine  all of  the 
above necess i ta t ing  special  ha rdware  des ign  
characterist ics for I /O in a distributed N U M A  
cluster to even approach symmetric  big-iron I/O 
performance,  especial ly if  there is also some is- 
sue with software compatibil i ty (have your exist- 
ing device drivers written for big-iron also mn  on 
distributed servers without  change), and i f  there 
is some marke t ing  story to tell that your  IO- 
ops/sec is ac tua l ly  h ighe r  ( i f  not  downr ight  
lower) in your  distributed product family than in 
your symmetric  product family (and Adrian pro- 
vided a good example of  how it can subtly de- 
grade going even from a desktop to a big-iron 
server, let alone going to a fundamental ly differ- 
ent architecture). 

I n t e r p r e t i n g  B e n c h m a r k s  
Brad Carlile 

bradc@cray.com 

The paper  is "'STING: A CC-NUMA Computer 
System f o r  the Commercial  Marke tp lace"  by 
Lovett  and Clapp. I've been told that much the 

same data as in the p a p e r  is avai lable at 
http ://www.sequent. com 
Ipub lic/solution/humaq/1 

Background: St iNG is based on the Intel S I t V  
Pentium Pro 4-way SNIP, with a N U M A  inter- 
connect based on SCI. 

Here 's  the question: They talk about  getting 
traces on an (UMA) SMP to drive their simula- 
tion. But  the tabulated simulation parameters  
make it seem like the code was modi f ied  f o r  
NUMA-s ty le  locality, or something else was 
done to increase local i ty-- l ike  s imply assume 
particular levels o f  locality. Which was it? This 
wasn't  discussed. 

I 've also looked at this paper. The  two main  
workloads they looked at were TPC-B (since all 
the transactions are simple and isolated you don't 
need to increase locality). And TPC-D Query 6 is 
embarrassingly separable as well (as long as your 
tables are well partitioned). 

Both of  these are very s imple workloads.  You 
can avoid the part i t ioned problems that affect 
N U M A s  and MPPs in real workloads. 

For  others who don' t  have that paper,  some 
sample results f r o m  their simulation: 12-13X 
speedup on a 32-way system f o r  TPC-B (yes, 
B); nearly 20X for  TPC-D Query 6. (Neither is a 
bad result, in my opinion.) 

But I don't  think either of  these speak well  for 
NUMA.  They  should be seeing near  l inear  on 
these simple problems. On a 40-CPU U M A  SNIP 
sys t em we 've  demons t r a t ed  3 9 X  fas ter  on 
queries using Oracle. 

So why do you want  to go to a N U M A  that of- 
fers only 20X out of  327!7 Sequent  talks about 
going to hundreds of processors, but at this seal- 
ability rate you'll never be able to use them. 

The N U M A  architecture is an improvement  on 
the MPP architecture because it added coherency. 
But  to get good performance you still have to 
performance tune it l ike an MPP.  The latencies 
make you partition your  database onto different 
local nodes - - t h i s  is a pain. This  is a database 
performance tuner's nightmare.  Look  a t  the la- 
tencies below .... 

m average L2 miss latency around 2 us f o r  TPC- 
B 

within that, 

average local latency 200-300 ns (from text) 

average remote latency 10 us (33X-50X local) 
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- -  average L2 miss latency around 1.2 us for  
TPC-D 

within that, 

- -  average local latency 200-300 ns (from text) 

average remote latency 5-6 us (17X-30X 
local) 

Will NUMA die before it is born7 

Register  Windows  
David Chase 

chase @ centerline.com 

Having compiled f o r  SPARC in a previous life- 
time, I appreciate how these fixed-size register 
windows can help with procedure calls. But I 
never did like the fac t  that you got a fixed-size 
chunk o f  registers whether you needed them or 
not. I haven't looked at any detailed study to 
back my claim--but  looking at C+ + code, there 
seems to be a large variance in the number o f  
registers used. Besides, the usage seems clus- 
tered towards the lower end--there's  a better 
chance I use <8 registers than the contrary. 

If  you're willing to pony up for the compiler 
work, register windows can still end up a win in 
these situations. 

First of all, you don't have to use the save/restore 
instructions; the ABI does not really require it. 
There's a little hair involving setjmp and longjmp 
and their common (ab)use, but I think that was 
getting fixed around the time I left Sun in late 
1993. Given that you've paid the hardware cost 
of register windows, it doesn't often pay to avoid 
using them, unless the procedure in question is 
part of a deep call chain. This is doubly true on 
Spare version 9 (e.g., UltraSparc), where (if I 
remember correctly, i f  the plans worked out 
properly) the trap model was cleaned up to allow 
much faster usual-case response to register-win- 
dow overflow. 

Second, if you can see who calls whom (that is, 
if  you are able to form a call-graph, not always 
possible with calls through procedure pointers) 
then it is possible to do interprocedural register 
allocation, in the style proposed by Tom Murtagh 
many years ago (POPL 1984, also TOPLAS of 
July 1991). 

Third, there's a number of low-level tricks that 
can be used to avx)id use of a register window. 
There's shrink-wrapping (Fred Chow, PLDI 
1988), and there's aggressive use of  tail-call and 
leaf-routine optimizations (compilers for Spare 
tend to be good at these) that help avoid excess 
thrashing of register windows. 

In the case of clearly recursive routines, you can 
perform inlining along the recursive call-- that  is, 
replace 

fib(x) = x < 2 ? x : fib(x-l) + fib(x-2) 

with 

fib(x) = x < 2 ? x : (x-i < 2 ? fib(x-2) + 

fib(x-3)) + (x-2 < 2 ? fib(x-3) + fib(x-4)) 

This cuts the call chain depth in half. (To my 
knowledge, this was more or less simultaneously 
observed by people working at Sun, and Mary 
Wolcott Hall and Anne Holler, who were respec- 
tively working on dissertations related to inlin- 
ing.) Note, too, that since "f ib"  is clearly 
(provably) functional, this notoriously inefficient 
implementation of fibonacci numbers could be 
slightly improved by caching the conditionally 
common subexpression "fib(x-3)". 

Register Windows  and Delay Slots 
Paul W. DeMone 

pdemone @tundra.com 

In the specific case o f  delay slots, I've been 
dealing with high-end proce, ssors and for  those 
l 'd have to say delay slots have become both aw- 
fu l  and useless. With wide-issue processors not 
only do you need more than one delay instruc- 
tion, but you need a variable number depending 
on where the branch happened to fal l  in the issue 
window. For example, with 4-wide issue and a 
single delay cycle (i.e., 1-cycle i-cache) you need 
anywhere f rom 4 to 7 delay instructions depend- 
ing on where the branch was. So the solution is 
usually to add pc prediction hardware which re- 
moves the need for  delay slots in the f irs t  place. 
The awful part  has been already mentioned. 
Delay slots add a great deal o f  special cases 
which must be designed and tested. And like ev- 
erything else, it gets worse as more buzzwords 
such as speculative execution are thrown in. 

Yes, branch delay is a trick that works well for 
simple pipelines but makes life difficult for more 
aggressive implementations. And it also increases 
average code size because a NOP will have to be 
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stuffed in after a branch i f  the compiler  cannot 
otherwise flU the slot with a useful instruction. 

The Alpha  derives a lot from the MIPS architec- 
ture but  D E C  architects  avoided its de layed 
branches  to help  " fu ture-proof"  Alpha.  The 
P O W E R  and PowerPC architectures also avoid 
branch delay slots because of  the distinct and al- 
most  autonomous nature of  its branch unit (it's 
actually on a separate chip from the integer and 
FP execu t ion  p ipe l ines  in the P O W E R  and 
POWER2 implementations). 

The same k ind  of  idea applies for processors 
wi th  non- in te r locked  load delay  slots (ear ly  
MIPS).  Average  code size gocs up and if  future 
processors get rid of the delay slot then programs 
either can't  take advantage of  it or axe not back- 
wardly compatible. 

In regards to the discussion o f  register windows 
and their status as "pothole '" or win, it's nice to 
see that they can be useful, because they are cer- 
tainly a pain to implement, especially on a specu- 
lative execution machine with register renaming. 
I f  nothing else there are many pages in the Sparc 
version 9 architecture manual  referring to win- 
dows, window control registers, window traps, 
etc., which all have to be designed and tested and 
which other architectures don't  need. Whether 
windows appear to be a win or lose seems to de- 
p e n d  a lot  on w h i c h  s ide o f  the hard-  
ware~software fence you primarily inhabit. 

Hard to say. Register  windows occupy extra sili- 
con area and slow down context switches on one 
hand. On the other, automatic integer parameter  
passing via window overlap can reduce the fre- 
quency of  loads and stores in the code. Clever  
circuit  des ign  and layout  (e.g. U l t r a S P A R C )  
seems to be able to reduce the silicon penalty to a 
minor  issue while  the use of  powerful  compilers 
with interprocedural register allocation can reduce 
the cost of not having register windows.  I think 
the pros/cons balance fairly well  and it becomes 
more of an religious issue. 

Here's something I haven't seen mentioned yet: 

Storing 2 single-precision floating-point values in 
I double-precisionfloating-point register. 

This will  bugger  up most  RISC compiler  regis- 
ter-based parameter  pass ing convent ions .  Also 
forces extra logic and routing in the F P U  to ex- 
tract the single-precision value f rom the upper or 
lower ha l f  of the 64-bit physical  register. In my 
opinion, the Alpha handles this best by  stretching 
out s ingle-precision values into a double-preci-  
sion compatible format when in the floating-point 
registers. 

The single-precision load and store instructions 
handle the t ransformation and its inverse  so it's 
essentially invisible to the programmer.  The FPU 
datapaths can be made more regular and therefore 
faster. 
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