
internet Nuggets

Mark Thorson
eee@netcom.com

June, 1996

This column consists of selected traffic from the
comp.arch newsgroup, a forum for discussion of
computer architecture on In ternetman interna-
tional computer network.

As always, the opinions expressed in this column
are the personal views of the authors, and do not
necessarily represent the institutions to which
they are affiliated.

Text which sets the context of a message appears
in italics; this is usually text the author has quoted
from earlier messages. The code-like expressions
below the authors' names are their addresses on
Intemet.

A r c h i t e c t u r a l P o t h o l e s
M a r k R o s e n b a u m
m j r @ n e t c o m . c o m

That is an interesting contrast. It seems that with
the laree caches and the hieh hit rates that most
SMP systems have that even SMPs mieht be
considered logically shared physically-dis-
tributed.

That's an interesting topic; l've never fel t that I
had the "killer explanation " for the difference ...
but I think there's a fundamental difference, in
practice. So. let me try, and hopefully somebody
can offer a more succinct version.

[Note: references would be Lenoski and Weber's
Scalable Shared-Memory Multiorocessine and
Greg Pfister's In Search qf Clusters.]

1) "SMP-classic" :

a) CPUs with coherent caches.

b) UMA shared memory, i.e., with same ac-
cess time f rom every CPU, and memory ac-
cess time much longer than cache access
time.

2) "CC-NUMA-classic" :

a) CPUs with coherent caches.

b) NUMA shared memory, with a more
complex access time function:

Local memory access time much longer than
cache access time.

Remote memory access time much longer
than local memory access time.

and possibly:

Remote memory access time may or may not
vary much according to where it is.

At some point, if the remote memory access time
is much longer than local memory access time,
people will use the system as 3) message-passing
system, even if the memory is logically shared,
simply because the penalty for acting like every-
thing has the same access time gets too high.

Excellent point, any guess as to what the ratio
might be7 10X? 100X? Also, doesn't the com-
munications also play a part here. Even if the re-
mote memory is very close (say 2X away) but
congest easily wouldn't that force you to treat the
machine as distributed memory7

Now, what's different: layout o f data for caches
tends to be a short-term, small-size, dynamic is-
sue; layout o f data for multiple memory systems
tends to be a long-term, larger-granularity issue
... and apparently much more difficult in the gen-
eral case, as evidenced by the relative numbers of
3rd-party parallelized applications. (I.e., many
for SMP, not many for the extreme case o f mes-
sage-passing systems. There's plenty of data for
the extreme points, not so much f o r CC-
NUMAs, although i f you look at NCSA's soft-
ware application pages, there may be some indi-
cation.)

While it is true that the number of MPP
(distributed memory) applications is small, I 'm

m 17 m

http://crossmark.crossref.org/dialog/?doi=10.1145%2F235688.235692&domain=pdf&date_stamp=1996-09-01

not sure the explanation is that MPP is too hard
to program. My experience in the industry was
that the SMP systems were used for multi-user
t imesharing systems and the MPP systems were
des igned for a small number of large applica-
tions. This is highlighted by the fact that on many
of the MPP systems (nCUBE, Intel, TMC, ...)
users could not directly logon to the nodes but
rather only the host. This would require any ap-
pl icat ion por ted to these systems to be paral-
lelized while a simple (non-parallel) port to SNIPs
could be done without parallelizing the code. The
non-paral lel versions for things l ike word pro-
cessing worked fine.

This created a software base which drove sales
which created a business reason to then go back
and parallelize the code. As far as I can tell the
jury is still out on how well that effort is going.
A look at the R D B M S s yie ld mixed results.
There are still some RDBMSs that don't scale
well even on SMPs. On the other hand, there
was no technical reason why MPP could not
have been used as timesharing machines. Netcom
(my serv ice p rov ide r) uses a N e t w o r k Of
Worksta t ions (NOW) to provide U N * X t ime-
sharing. Also, I bel ieve that the IBM SPX can
also do this. Given the way things went one
would have to quest ion the business model that
these companies were using.

A point of interest about distr ibuted m e m o r y
systems is that they can be des igned to be fault
tolerant (currently, they typically are not).

For data base applications where the disk seek
time will cover most latencies, this architecture
offers some signif icant advantages. It will be
very interesting to see how the market changes.

that the SMP systems were used f o r multi-user
timesharing systems and the M P P systems were
designed for a small number o f large applica-
tions.

This may be a matter of viewpoint, i.e.:

a) As Mark notes, many SMPs were straightfor-
wardly used for throughput of mul t ip le single-
thread programs that were probably derived from
uniprocessors anyway, and as noted, with vary-
Lug degrees of success for commercial DBMS.

b) On the other hand, in the technical world,
people were certainly routinely doing small-N-
way parallelization of codes in the late 1980s and
early 1990s. Whi le I 'm not sure how much of
this was going on on other vendors ' systems, I
do know it was happening on SGI PowerSeries
systems. I was still at MIPS, but over the years
since I 've talked with lots of scientists and engi-
neers who had done this, certainly not to do al-
gorithms research, but just to solve their prob-
lems faster. I especially recall one who had an 8-
CPU system: he was running a research job that
took weeks , and that every once in a whi le
looked at a file to see how many CPUs it should
be using. When he went home, he'd let it have all
8. When he came back, he 'd tell it to keep 4, so
he could have 4 for his interactive work.

It is also the case that Power Challenges acquired
a reasonable number of parallelized ISV applica-
tions fairly quickly during 2H94.

I /O P o t h o l e s
Adrian Cockcroft

add an.cockcroft @ sun. com

A r c h i t e c t u r a l P o t h o l e s
John Mashey

mash@sgi .com

Excel lent point, any guess as to what the ratio
might be? IOX? IOOX? Also, doesn't the com-
munications also play a part here. Even if the re-
mote memory is very close (say 2X away) but
congest easily wouldn't that force you to treat the
machine as distributed memory ?

Seems likely.
While it is true that the number o f M P P
(distributed memory) applications is small, I 'm
not sure the explanation is that M P P is too hard
to program. My experience in the industry was

I'm taken by the fact that nobody has mentioned
locality o f l /O adaoters in this-thread. In most
SMP architectures. -all I / 0 adaoters are about the
"same distance " f rom all o f memory---both archi-
tecturally and in the imolementation. In N U M A
systems and message-l~ased massively oarallel
systems, this is not in eeneral true. P lacement
decisions must try to achieve both locality to the
processor and locality to the "'relevant" I / 0
adapterf s). This is a significant comolication that
may. in oart. explain why ootimizine for N U M A
and message based systems seems "'~rder'" than
SMP.

I don't think "distance "' f rom the processors in a
N U M A system makes very much difference, ex-
cept f o r devices that must be stroked at very pre-
cise timing intervals. Hopefully there aren't many

m l S m

of those left outside of real-time and control sys-
tems. Why: The latency involved in most I /0 op-
erations is extremely long compared with the
memory-to-memory latencies being discussed, so
much so that the memory-to-memory latency is
noise in comparison.

The latency from the CPU to the I/O bus and I/O
devices needs to be short for good performance.
The reason is not obvious, but it became clear
when comparing the performance of some SBus
I/O cards in desk-top and server systems, that the
extra latency over the server's backplane (less
than a microsecond of extra latency) made a big
difference in performance. The reason is that un-
fortunately not all I/O devices are as clever or as
perfect as many people think. There are devices
that contain uncached memorymgraphics frame
buffers, some I/O cards that can't tolerate DMA
latency under load (e.g. to avoid dropping
Ethernet packets), and all cards that have control
registers to twiddle. Access to the cards is done
via "programmed I/O", where the CPU does un-
cached reads and writes to the I/O space. The
bulk transfers happen via DMA, and are not la-
tency sensitive.

It turns out that very many cards are developed in
low-latency desktop systems (SBus desktop
Sparcstations, PCI-bus desktop PC's) and the
same cards are used on servers. Lower volumes
for servers mean that only the most popular card
types are optimized for use on servers, and real
customers buy many cards from many vendors
and then wonder why they don't all work so
well.

The lesson Sun learned from this was that I/O
bus latency does make a significant difference.
The CPU to SBus latency in the Ultra Enterprise
server range is actually less than the latency in the
older desktop system, and the programmed I/O
datapath was carefully optimised.

If you are looking at a NUMA system, try to fig-
ure out which CPU is going to run the device
driver code. Then start to worry about how many
round trip PIO's are required to setup each data
transfer. It can actually take longer to set up a
DMA access (which involves a tiny amount of
control data transfer) than the DMA of the bulk
data itself.

IIO Potholes
Zahir Ebrahim

zahir.ebrahim@ sun.corn

In addition to the "programmed I/O" latency
considerations that Adrian Cockcroft mentioned,
there is one other "subtle" consideration that dic-
tates location of I/O in a distributed server that
may not be visible to folks who don't actually
build these systems for a living but only use them
(for a living). This is the memory model consid-
eration.

So consider this as a brief prelude to the subject
that only points out some of the related issues.

Memory model mainly has two dimensions:

1) as seen by the FO device doing DMA, and

2) as visible to PIO from the issuing and viewing
processors.

For 1), it is the race between "last DMA transfer"
and "completion notification" (notification to a
local processor vs. remote processor, DMA to
local memory vs. remote memory).

Aspects of this are managed in system hardware
(not the I/O device), and other aspects are bound
in the I/O device driver. The issue definately has
an impact on the system design consideration for
I/O.

For 2), it is a) the "side effects" of PIO opera-
tions on the I/O device, b) ordering of any
semaphore updates in main memory with respect
to last PIO transfer to a shared I/O device, and c)
ordering of PIO transfers between I/O devices.

By ordering, I mean at least 2 things: i) the order
in which the effects of the PIO from a processor
becomes visible to other distributed processors
(if one sees X then Y, then all see X then Y, not
that some see Y then X), and ii) the order in
which the I/O device sees the PIO transactions
from the issuing processor.

Again, some aspects of this are managed in the
system hardware (not the I/O device), other as-
pects are managed in the device driver interface to
the kernel, and some others are handled in that
I/O device driver.

Where the boundary is determines the perfor-
mance vs. complexity tradeoff for supporting I/O
devices exhibiting those characteristics in that
system.

As one can observe, the global order considera-
tions for PIO can be somewhat stricter than for
memory, with the additional complication that I/O
devices (registers) have side affects, and that la-
tency of PIO have at least four additional perfor-

19

mance - re l a t ed impacts that warrant consid-
erations:

1) it effect ively throttles the processor doing a
PIO "load" to a remote device thus wasting pro-
cessor cycles,

2) under memory models weaker than sequential
consistency, the processor may have to interject
barrier instructions thus throttling throughput,

3) the PIO thread may even have to be bound to a
certain processor thus l imit ing its relocatabil i ty
(which may or may not be such a bad thing), and

4) for PIO streaming devices such as frame buf-
fers and other memory-mapped devices/interfa,'es
which may be non-cached and "store intensive"
rather than " load intensive", PIO throughput is
important.

Although system software folks generally wrestle
with these issues, they are also important for the
application software as they determine the effec-
t ive sys tem throughput , C P U util ization, and
overall perceived quali ty of the application run-
ning on that product.

In many of these cases, s imply the proper place-
ment of the device driver and the applicat ion
thread (as opposed to the I/O device) can some-
times help improve the situation. But that needs
system software assist.

And f inal ly one can eas i ly imagine all of the
above necess i ta t ing special ha rdware des ign
characterist ics for I /O in a distributed N U M A
cluster to even approach symmetric big-iron I/O
performance, especial ly if there is also some is-
sue with software compatibil i ty (have your exist-
ing device drivers written for big-iron also mn on
distributed servers without change), and i f there
is some marke t ing story to tell that your IO-
ops/sec is ac tua l ly h ighe r (i f not downr ight
lower) in your distributed product family than in
your symmetric product family (and Adrian pro-
vided a good example of how it can subtly de-
grade going even from a desktop to a big-iron
server, let alone going to a fundamental ly differ-
ent architecture).

I n t e r p r e t i n g B e n c h m a r k s
Brad Carlile

bradc@cray.com

The paper is "'STING: A CC-NUMA Computer
System f o r the Commercial Marke tp lace" by
Lovett and Clapp. I've been told that much the

same data as in the p a p e r is avai lable at
http ://www.sequent. com
Ipub lic/solution/humaq/1

Background: St iNG is based on the Intel S I t V
Pentium Pro 4-way SNIP, with a N U M A inter-
connect based on SCI.

Here 's the question: They talk about getting
traces on an (UMA) SMP to drive their simula-
tion. But the tabulated simulation parameters
make it seem like the code was modi f ied f o r
NUMA-s ty le locality, or something else was
done to increase local i ty-- l ike s imply assume
particular levels o f locality. Which was it? This
wasn't discussed.

I 've also looked at this paper. The two main
workloads they looked at were TPC-B (since all
the transactions are simple and isolated you don't
need to increase locality). And TPC-D Query 6 is
embarrassingly separable as well (as long as your
tables are well partitioned).

Both of these are very s imple workloads. You
can avoid the part i t ioned problems that affect
N U M A s and MPPs in real workloads.

For others who don' t have that paper, some
sample results f r o m their simulation: 12-13X
speedup on a 32-way system f o r TPC-B (yes,
B); nearly 20X for TPC-D Query 6. (Neither is a
bad result, in my opinion.)

But I don't think either of these speak well for
NUMA. They should be seeing near l inear on
these simple problems. On a 40-CPU U M A SNIP
sys t em we 've demons t r a t ed 3 9 X fas ter on
queries using Oracle.

So why do you want to go to a N U M A that of-
fers only 20X out of 327!7 Sequent talks about
going to hundreds of processors, but at this seal-
ability rate you'll never be able to use them.

The N U M A architecture is an improvement on
the MPP architecture because it added coherency.
But to get good performance you still have to
performance tune it l ike an MPP. The latencies
make you partition your database onto different
local nodes - - t h i s is a pain. This is a database
performance tuner's nightmare. Look a t the la-
tencies below

m average L2 miss latency around 2 us f o r TPC-
B

within that,

average local latency 200-300 ns (from text)

average remote latency 10 us (33X-50X local)

B 20

- - average L2 miss latency around 1.2 us for
TPC-D

within that,

- - average local latency 200-300 ns (from text)

average remote latency 5-6 us (17X-30X
local)

Will NUMA die before it is born7

Register Windows
David Chase

chase @ centerline.com

Having compiled f o r SPARC in a previous life-
time, I appreciate how these fixed-size register
windows can help with procedure calls. But I
never did like the fac t that you got a fixed-size
chunk o f registers whether you needed them or
not. I haven't looked at any detailed study to
back my claim--but looking at C+ + code, there
seems to be a large variance in the number o f
registers used. Besides, the usage seems clus-
tered towards the lower end--there's a better
chance I use <8 registers than the contrary.

If you're willing to pony up for the compiler
work, register windows can still end up a win in
these situations.

First of all, you don't have to use the save/restore
instructions; the ABI does not really require it.
There's a little hair involving setjmp and longjmp
and their common (ab)use, but I think that was
getting fixed around the time I left Sun in late
1993. Given that you've paid the hardware cost
of register windows, it doesn't often pay to avoid
using them, unless the procedure in question is
part of a deep call chain. This is doubly true on
Spare version 9 (e.g., UltraSparc), where (if I
remember correctly, i f the plans worked out
properly) the trap model was cleaned up to allow
much faster usual-case response to register-win-
dow overflow.

Second, if you can see who calls whom (that is,
if you are able to form a call-graph, not always
possible with calls through procedure pointers)
then it is possible to do interprocedural register
allocation, in the style proposed by Tom Murtagh
many years ago (POPL 1984, also TOPLAS of
July 1991).

Third, there's a number of low-level tricks that
can be used to avx)id use of a register window.
There's shrink-wrapping (Fred Chow, PLDI
1988), and there's aggressive use of tail-call and
leaf-routine optimizations (compilers for Spare
tend to be good at these) that help avoid excess
thrashing of register windows.

In the case of clearly recursive routines, you can
perform inlining along the recursive call-- that is,
replace

fib(x) = x < 2 ? x : fib(x-l) + fib(x-2)

with

fib(x) = x < 2 ? x : (x-i < 2 ? fib(x-2) +

fib(x-3)) + (x-2 < 2 ? fib(x-3) + fib(x-4))

This cuts the call chain depth in half. (To my
knowledge, this was more or less simultaneously
observed by people working at Sun, and Mary
Wolcott Hall and Anne Holler, who were respec-
tively working on dissertations related to inlin-
ing.) Note, too, that since "f ib" is clearly
(provably) functional, this notoriously inefficient
implementation of fibonacci numbers could be
slightly improved by caching the conditionally
common subexpression "fib(x-3)".

Register Windows and Delay Slots
Paul W. DeMone

pdemone @tundra.com

In the specific case o f delay slots, I've been
dealing with high-end proce, ssors and for those
l 'd have to say delay slots have become both aw-
fu l and useless. With wide-issue processors not
only do you need more than one delay instruc-
tion, but you need a variable number depending
on where the branch happened to fal l in the issue
window. For example, with 4-wide issue and a
single delay cycle (i.e., 1-cycle i-cache) you need
anywhere f rom 4 to 7 delay instructions depend-
ing on where the branch was. So the solution is
usually to add pc prediction hardware which re-
moves the need for delay slots in the f irs t place.
The awful part has been already mentioned.
Delay slots add a great deal o f special cases
which must be designed and tested. And like ev-
erything else, it gets worse as more buzzwords
such as speculative execution are thrown in.

Yes, branch delay is a trick that works well for
simple pipelines but makes life difficult for more
aggressive implementations. And it also increases
average code size because a NOP will have to be

21

stuffed in after a branch i f the compiler cannot
otherwise flU the slot with a useful instruction.

The Alpha derives a lot from the MIPS architec-
ture but D E C architects avoided its de layed
branches to help " fu ture-proof" Alpha. The
P O W E R and PowerPC architectures also avoid
branch delay slots because of the distinct and al-
most autonomous nature of its branch unit (it's
actually on a separate chip from the integer and
FP execu t ion p ipe l ines in the P O W E R and
POWER2 implementations).

The same k ind of idea applies for processors
wi th non- in te r locked load delay slots (ear ly
MIPS). Average code size gocs up and if future
processors get rid of the delay slot then programs
either can't take advantage of it or axe not back-
wardly compatible.

In regards to the discussion o f register windows
and their status as "pothole '" or win, it's nice to
see that they can be useful, because they are cer-
tainly a pain to implement, especially on a specu-
lative execution machine with register renaming.
I f nothing else there are many pages in the Sparc
version 9 architecture manual referring to win-
dows, window control registers, window traps,
etc., which all have to be designed and tested and
which other architectures don't need. Whether
windows appear to be a win or lose seems to de-
p e n d a lot on w h i c h s ide o f the hard-
ware~software fence you primarily inhabit.

Hard to say. Register windows occupy extra sili-
con area and slow down context switches on one
hand. On the other, automatic integer parameter
passing via window overlap can reduce the fre-
quency of loads and stores in the code. Clever
circuit des ign and layout (e.g. U l t r a S P A R C)
seems to be able to reduce the silicon penalty to a
minor issue while the use of powerful compilers
with interprocedural register allocation can reduce
the cost of not having register windows. I think
the pros/cons balance fairly well and it becomes
more of an religious issue.

Here's something I haven't seen mentioned yet:

Storing 2 single-precision floating-point values in
I double-precisionfloating-point register.

This will bugger up most RISC compiler regis-
ter-based parameter pass ing convent ions . Also
forces extra logic and routing in the F P U to ex-
tract the single-precision value f rom the upper or
lower ha l f of the 64-bit physical register. In my
opinion, the Alpha handles this best by stretching
out s ingle-precision values into a double-preci-
sion compatible format when in the floating-point
registers.

The single-precision load and store instructions
handle the t ransformation and its inverse so it's
essentially invisible to the programmer. The FPU
datapaths can be made more regular and therefore
faster.

m 2 2 m

