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Abstract  

The use of formal specifications as a basis for specifying func- 
tional tests has been discussed by a numbers of researchers 
with most work focusing on one style of specification or an- 
other separately. But is any single style an adequate basis 
for writing functional tests? The strengths, weaknesses and 
complementary nature of two popular styles of software spec- 
ification, model-based and algebraic, are examined as a basis 
for functional test specification. 
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1 I n t r o d u c t i o n  

The use of formal specifications as a basis for specifying func- 
tional (black-box) tests has been discussed by a number of re- 
searchers. [Amla &~ Ammann], [Hall], [Hayes], [Laycock] and 
[Zweben & Heyn] have looked at the use of model-based spec- 
ifications while others have advocated algebraic specifications 
[Doong g~ Frankl], [Gannon, McMullin & Hamlet] [McMullin 
& Gannon]. Most work to date has focused on the use of one 
or the other separately, but to do a thorough job of specifying 
tests, one may really need aspects of both [Yip &~ Robson]. 
In this paper we will look at the strengths, weaknesses and 
complementary nature of the these two popular styles of spec- 
ification as a basis for functional test specification. 

2 M o d e l - b a s e d  Specif icat ions  as a Basis fo r  Tes t  Spec-  
i f i ca t ion  

The model-based approach to software specification is ar- 
guably the most popular style of formal software specifica- 
tion going today, both VDM and Z being based on this style 
[Hayes, Jones • Nicholis]. A model-based specification pro- 
vides a model of a system's state in terms of a collection of 
state variables. Each state variable models some aspect of the 
system's retained data  as a mathematical  object; Z for ex- 
ample uses sets, relations, functions and sequences. System 
operations are then described in terms of how they modify 
this state model: pre-conditions define valid inputs and start  
states for an operation; post-conditions define outputs and 
the state of the system after operation invocation. State in- 
variants define properties, or constraints, of the system state 
which must always hold and which operations ate obliged to 
preserve. 

Let's illustrate these concepts with an example of modeling 
the operation of allocating devices to users of an operating 
system. We begin with the state variables which describe the 

retained data  of our system: 

D e v i c e s  is the set of all devices in the operating system, e.g. 
disks and printers. 

U s e r s  is the set of users currently logged into the operating 
system. 

F r e e D e v i c e s  is the set of devices which have not yet been 
allocated to a user. 

D e v i c e T a b l e  is a partial (not all devices need be allocated) 
many/one  mapping from D ev ice s  to Use r s ,  i.e. many de- 
vices can be allocated to a single user, but  at most one user 
can have a given device allocated at a time. 

State invariants are described in terms of properties, or con- 
straints, over the state variables: 
FreeDevices C Devices 
FreeDevices U domain (Dev ieeTab le )  = Devices 
FreeDevices f3 domain (Dev iceTab le )  = 

The first invariant states that  F r e e D e v i c e s  is a subset (none, 
some or all) of Dev ices .  The second invariant says all devices 
must be accounted for: the union of free devices and allocated 
devices must equal all the devices on the system. The third 
invariant says that  a device can either be free, or allocated, 
but  not both at the same time: the intersection of free devices 
and allocated devices is empty. 

The initial state of the system - all devices are free and the 
device table is empty - is given by describing the initial values 
of state variables: 
F r e e D e v i c e s  = D ev i ce s  
D e v i c e T a b l e  - Q 

Given the state model we can now define the operation of 
allocating a device to a usere: 

O p e r a t i o n :  allocate device to user 

i n p u t s :  

D? is device being requested 
U? is user requesting device 

p r e - c o n d i t i o n s :  

D? E F r e e D e v i c e s  ! Must be valid, free device 
U? E U s e r s  ! Must be valid user 

p o s t - c o n d i t i o n s :  
D e v i c e T a b l e '  : D e v i c e T a b l e  U { (D?,U?) } 
F r e e D e v i c e s '  : FreeDevices \ { D? } 

The model-based approach has gained much attention as a 
formal basis for functional test specification. Let's briefly look 

eFollowing the style of Z, inputs to the operat ion ( inputs  are t ransient  
data; not par t  of the retained da ta  of the system) are decorated with the 
suffix "? ' .  The suf l~  prime ( ')  indicates the modified (post-conditlon) 
form of a s ta te  variable. The operator  "U" denotes set union. The 
operator "V' denotes set substraetion: $1 \ $2 is equal to the set $1 
with the elements of $2 removed. 
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a t  what  makes it at tractive from a testing standpoint.  

2.1 T e s t i n g  I n p u t s  

First, as it is generally impossible to test an operation across 
all possible inputs, techniques such as equivalence parti t ion- 
ing and boundary-value analysis [Myers] are typically used to 
divide up the input space into test domains from which test 
cases are drawn. The model- based style of  specification is 
a rich source of deriving test domains for inputs. An input 
space can be divided into test domains based on: 

• properties of the mathemat ical  type an input is modeled 
as, e.g. a property of sets is their cardinality, or the fact 
tha t  elements of a set are not ordered 

• an input 's  relation to state variables as documented in the 
pre-conditions 

• constraints placed on the input in the pre-condition 

As example, given the pre-condition U? E U s e r s  and the 
fact that  D e v i c e T a b l e  is a partial  mapping from D e v i c e s  
to Use r s ,  one partitioning of the input space for U? is: 

1. values of U? where U? E r a n g e ( D e v i c e T a b l e ) ,  which 
are users which do not have a device already allocated 

2. values of U? where U? E r a n g e ( D e v i c e T a b l e ) ,  which 
are users which already have a device allocated 

2.2 E r r o r  H a n d l i n g  

Pre-conditions also provide a basis for identifying error han- 
dling tests for an operation. The pre-conditions of an oper- 
ation are a conjunction of terms describing valid inputs and 
start  states; negating the pre-conditions yields a disjunction 
of error cases that  an operation should be tested against; a 
simple application of DeMorgan's  Law. As example, given 
the pre-condition: 

D? E F r e e D e v i c e s  error cases for D? are described by the 
negation of the pre-condition: 
D? ~ F r e e D e v i c e s  

Given invariant F r e e D e v i c e s  C_ D e v i c e s  one partitioning of 
these error values of D? is: 

1. values of ?D where D?? ~ F r e e D e v i c e s  but where D? 
E Dev ice s ,  which is devices which are already allocated 

2. values of ?D where D? ~ bf  FreeDevices and D? ~ D e -  
vices ,  which is to say completely bogus device names 

2.3 S t a t e  T e s t i n g  

Finally, just  as it is typically not possible to test an opera- 
tion's inputs across all possible values, neither is it usually 
possible to test an operation in all possible states of the sys- 
tem. There are two aspects of the model-based approach to 
specification which lend themselves to identifying states that  
an operation should be tested in. 

2.3.1 S t a t e  D e f i n e d  in  T e r m s  o f  I n d e p e n d e n t  S t a t e  
V a r i a b l e s .  

First, because the system's  state is modeled as a set of  inde- 
pendent (though related) state variables, an operat ion 's  def- 
inition need refer to only those state variables which affect 
it, or which it affects. From a testing standpoint  this means 
we have already greatly reduced the number of system states 
which in theory we need to consider testing the operation in. 
So, given an entire operating system one is able to describe 
the operation of allocating devices to users by referring to 
jus t  those parts  of the state model - F r e e D e v i c e s ,  U s e r s  
and D e v i c e T a b l e  - which affect, or are affected by, the op- 
eration. 

To appreciate the importance of this feature to test specifi- 
cation, let 's contrast  it with an algebraic specification. An 
algebraic specification consists of  the s i g n a t u r e s  of  opera- 
tions being defined - the syntax - plus a set of a T i o m s  which 
define the semantics of the operations. A signature consists 
of an operation name, the number  and type of its arguments  
and the type of the operat ion's  result: 

S i g n a t u r e  o f  O p e r a t i o n s :  initial: --~ State 
allocate: User x Device x State --* State 
deallocate: User x Device x State --. State 

A x i o m s :  
1. deallocate(U, D, initial() ) = initial() 
2. deallocate(U, D, allocate(U, D, S)) = S 
3. deallocate(U1, D, allocate(U2, D, S)) = 
allocate(U2, D, S) where U1 ~ U2 
4. allocate(U, V2, allocate( U, V l ,  S)) = 
allocate( U, D1, allocate( U, V2, S)) where D1 ~ D2. 
5. allocate(U, D, allocate(U, D, S)) = allocate(U, D, S). 

The first axiom says no device can be deal]ocated from the 
initial state; trying to do so affects no change on the system 
state. In these axioms variables are all universally quantified, 
so in the second axiom we have that  for all users U,  devices D 
and states S, operation deallocate undoes the state change of a 
previous operation allocate. The third axiom says that  a user 
U1  cannot deallocate a device D which has been previously 
allocated to another user U2.  The fourth axiom states that  
given two devices, D1  and D2,  a user U can allocate them in 
any order. The fifth axiom states that  a user U who a t tempts  
to allocate a device D which is already allocated to him or 
her will cause no change of state. 

The point to be made is that  in these axioms the entire state 
of  the operating system is modeled as a single universally 
quantified variable, S. As opposed to the model-based ap- 
proach, in the algebraic approach it is not possible to tell 
which aspects of the system state are really pertinent to the 
axiom at hand. The beauty of the algebraic approach - -  that  
it abstracts  away detail about  the state [Gannon et.al.] 
presents a problem with respect to its use in specifying func- 
tional tests: how do we know what  states (values of S) are 
pertinent to test this axiom in? We'll return to this problem 
later. 

2.3.2 A b i l i t y  t o  D i v i d e  S t a t e  S p a c e  i n t o  Tes t  D o m a i n s .  

So a model-based definition of an operation allows one to 
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identify just those aspects of the system state (state variables) 
pertinent to testing the operation. But the possible values of  
a state variable still represent more system states than we are 
typically able to test an operation in. Wha t  we would like to 
do is divide the state space described by a state variable (or 
variables) into test domains from which sample states could 
be selected, jus t  as we did with inputs. This leads us to the 
second aspect of model-based specifications which lends itself 
to identifying states that  an operation should be tested in: 
a concrete definition of the state space. Because each state 
variable is a mathemat ical  description of some retained data,  
we are able to use the same techniques used with inputs to 
build test domains for state variables. The state space can be 
divided into test domains based on: 

• properties of  the mathemat ica l  type a state variable is mod- 
eled as 

• the relationship between multiple state variables as docu- 
mented in a pre-condition 

• the relationship between multiple state variables as de- 
scribed in the retained da ta  model: 

a) a state variable defined in terms of other state vari- 
able(s) 

b) the initial s tate of a state variable defined in terms of 
other state variable(s) 

c) s tate invariants 

• test domains based on comparison of a state variable's pre 
and post-condition form 

As example, given the invariant a parti t ion of this relationship 
between P r e e D e v i c e s  and D e v i c e s  is: 
1. PreeDevices  = QA D e v i c e s  = Q 
2. ~reeDevlces  = OA D e v i c e s  ~ Q 
3. FreeDevices  C D e v i c e s  A D e v i c e s  ~ Q 
4. FreeDevices  = D e v i c e s  A D e v i c e s  ~ Q 

And given these invariants: 
1. FreeDevlees  U domain( DevlceTable  ) = D e v i c e s  
2. FreeDevices  n domain( DeviceTable  ) = Q 

a paxtition of this relationship between F r e e D e v i c e s  and D e -  
v i c e T a b l e  is: 
1. PreeDevlces  = QA domain( D e v i c e T a b l e  ) = D e v i c e s  
2. FreeDeviees  C D e v i c e s  A domain( DeviceTable  ) C De- 
vices 
3. ]~reeDevices = D e v i c e s  A D e v i c e T a b l e  = Q 

3 T h e  A l g e b r a i c  A p p r o a c h  a n d  T e s t  S p e c i f i c a t i o n  

The populari ty of the model-based approach as a basis for 
test specification is clear from the work that  has been done in 
the area:[Amla & Ammann],  [Hall], [Hayes], [Laycock] [Yip & 
Robson] and [Zweben & Heyn]. In this section, however, we'll 
look at  aspects of  the algebraic approach which can be useful 
for test specification, but which the model-based approach 
does not address. 

Let 's  begin with a quick comparison to the model-based ap- 
proach. The model-based approach advances a model of a sys- 
tem's  state in the form of state variables which represent the 

retained da ta  of the system. All the possible values of these 
variables, constrained by the invariants over th~nL define the 
system's  state space. By contrast  the algebraic approach of- 
fers no model of the retained da ta  of  the system; rather state 
is modeled in terms of combinations of operations required 
to achieve that  state. In the model-based approach individ- 
ual operations are defined in terms of their effects on the s tate  
model. In the algebraic approach one cannot define operations 
individually; rather  combinations of operations are defined in 
terms of their equivalence (via equations) to other operations 
or combinations of operations. As we'll see, these fundamen- 
tal differences are precisely the source of their complementary 
nature for use in test specification. 

3.1 S p e c i f y i n g  H o w  O p e r a t i o n s  W o r k  in  C o n c e r t  

In terms of state transition testing, [Chow.] characterizes 3 
types of  state transition errors: 

• o p e r a t i o n  e r r o r  - -  the s tate  transition goes to the next 
state correctly, but  produces the wrong output .  

• t r a n s f e r  e r r o r  - -  the state transition goes to some exist- 
ing, valid system state, but  its jus t  not the right one for 
tha t  s tate transition. 

• m i s s i n g / e x t r a  s t a t e  e r r o r  - -  the system has extra  or 
missing states 

[Chow] states that  testing each state transition individually - -  
what  he calls "0 switch testing" - -  can catch operation errors, 
but  tha t  for catching transfer errors and miss ing/extra  s tate  
errors one must  use tests involving longer sequences of tran- 
sitions. Chow's paper  offers theoretical justification for what  
one might argue is good testing common sense: you can test 
all the operations of  a system individually, but at  some point 
you need to test them in combination. In the model-based 
approach each operation represents a single, individual s tate  
transition from one state (described by the pre-conditions) to 
another  (described by the post-conditions). The model-based 
approach to specification provides a good mechanism for spec- 
ifying tests for individual operations. What it lacks, however, 
is a mechanism for specifying how operations should be tested 
in concert with one another. 

Specifying how the operations of  a system work in concert is 
precisely what  the algebraic approach to specification is all 
about .  Algebraic specifications are popular  as a formalism 
for defining Abstract  Da ta  Types  (ADT).  The definition of  
an operation on an A D T  is given solely in terms of how it 
interacts with other operations to manipulate  the ADT.  One 
simply cannot define an operation in isolation of other oper- 
ations on the ADT. I f  one views the state of  a system as an 
A D T  and defines tha t  ADT via an algebraic specification, the 
resulting axioms amount  to properties about  the s tate  tran- 
sitions of  the system; properties which we can specify need 
to be tested. 7 There is, however, a critical piece that  the al- 
gebraic approach does not supply but  which we will need to 

7Thls view of ADTs as a model of state and algebraic axioms as a 
model of state transitions is discussed in [Roberts]. 
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adequately specify state transition tests. Recall this axiom 
from our earlier operating system example: 

deallocate(U, D, allocate(U, D, S) = S 

The system's  state is modeled as a single universally quanti- 
fied variable, S. The problem is, we cannot test the system 
in every possible state, and because the algebraic approach 
abstracts  away detail about  the system state it offers noth- 
ing to help us in deciding just  what states (values of S) are 
pertinent to test the axiom in. But as discussed previously 
the model-based approach is quite good at  identifying states 
that  a function should be tested in. Combined the algebraic 
and model-based methods give us the two pieces we need to 
specify state transition tests; respectively: 

• properties (axioms) about  state transitions universally 
quantified over the system state, S 

• and test domains for S based on the model-based specifica- 
tion of, in this case, operation allocate() 

This is a good illustration of how the two styles of  specification 
can be used to complement one another in test specification. 

3 . 2  C o n s t r u c t o r s  a n d  S t a t e  T r a n s i t i o n  T e s t i n g  

Fundamental  to state transition testing is knowing what op- 
erations are needed to reach all possible states of a system 
[Beizer]. The algebraic approach makes a useful contribution 
in this regard. The algebraic approach categorizes operations 
into those that  affect state, and those that  do not, the lat ter  
being operations which simply o b s e r v e  or q u e r y  the state. 
The model-based method also allows this distinction to be 
made, e.g. in Z special notation is used to mark  operations 
( schemas)  as to whether they do, or do not, modify state. 
The algebraic approach, however, further categorizes state 
modifying operations using an important  concept not found 
in the model-based approach. From the set of s tate modi- 
fying operations one identifies the set of c o n s t r u c t o r s :  the 
set of operations which are required to generate all possible 
states of the system. All other state modifying operations 
are simply m o d i f i e r s :  they modify state, but  there is no sys- 
tem state which cannot be reached without them. s Notice 
tha t  this concept of a set of  constructors arises from think- 
ing about  collections of operations, as the algebraic approach 
does, rather than thinking about  operations individually in 
isolation from others, as in the model-based method.  The  
significance of the set of constructors to testing is that  one 
has explicitly identified (and reduced the number and combi- 
nation of) the operations that  need be considered to reach all 
possible states of the system. 

Of  course the utility of knowing the set of constructors for a 
system is only as good as one's confidence that  the set is valid: 
that  every operation in the set is needed; that  all operations 

a Various terms have been applied to these categories of operations. 
[Ma]lgren] calls these inquiry, basic gcnenators and (non-basic) genera- 
to~*, respectively. [Roberts] calls them observation functiona, (non- con- 
~crtible) constructors and convertible constructors. [Guttag & Hornlng] 
call them ob#ervers, constructors, and eztenders. 

that  are needed are included. The algebraic approach gives 
us a method for testing this. Recall that  in the algebraic 
approach a state is defined in terms of the combinations of 
operations which were used to reach it. By definition then, 
we should be able to define all s tates in terms of combinations 
of constructors. Let 's  take an example to illustrate how we 
can use this fact to test a set of  constructors. 

We have a vending machine with the following operations: 

S i g n a t u r e  o f  O p e r a t i o n s :  
initial: --4 State 
d e p o s i t _ c o i n :  Coin x S t a t e  --, State 
deposit_bill: Bill x State-~ State 
s e l e c t  : P r o d u c t  x S t a t e  -* State 
c o i n _ r e t u r n :  S t a t e  -~ State 

We propose a set of constructors for the machine: 
{initial, deposit_coin, deposit_bill, select}. Op- 
eration c o i n _ r e t u r n  is used to cancel deposits which may 
have been made, returning the money to the customer. I f  a 
dollar bill is deposited into the machine, return change will 
be given in coins. We tentatively designate it as a modifier 
as it seems useful only for returning to a previously exiting 
state. So first, how can we convince ourselves that  each of the 
operations in the set of constructors is really needed? Let 's  
consider the case of d e p o s i t _ c o i n ;  we test it as a constructor 
by trying to write axioms which compare it against each of 
the other constructors. We begin by comparing it against the 
initial operation which creates a newly initialized system. I f  
indeed d e p o s i t _ c o i n  were not a constructor, which is to say 
if it were simply a modifier, we should be able to specify a 
right hand side for the axiom expressing a state equivalent to 
the one described on the left hand side, but using only the 
other constructors: 

deposit_coin( C, initial() ) = ? 

As we are unable to write the right hand side for this axiom, 
d e p o s i t _ c o i n  must make a unique contribution to defining 
s tate  of  the system: it is indeed a constructor. 

It  is one thing to err by mistaking a modifier as a constructor: 
at  least we won' t  miss any states this way. It  is more serious to 
err by mistaking a constructor as a modifier; this will cause 
us to miss states. In this case we would like to convince 
ourselves that  c o i n _ r e t u r n  is simply a modifier, and does 
not contribute to any unique states. We do this in a fashion 
similar to above. If  c o i n _ z e t u x n  is just  a modifier, we should 
be able to write a set of axioms each of which has a left hand 
side comparing c o i n _ r e t u r n  with a constructor; the right 
hand side of each axiom should express a state equivalent to 
the one described on the left hand side, but using only the 
proposed constructors. 

Below we have an a t t empt  at such a set of axioms: 

coin_return(initial()) - in i t ia l ( )  
c o i n _ r e t u r n (  d e p o s i t _ c o i n ( C ,  { \ b f  S}))  = 
c o i n _ r e t u r n ( { \ b f  S}) 
coin_return( select(P, {\bf S})) = select(P, {\bf 

S}) 
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c o i n _ r e t u r n (  deposit_bill(B, { \ b f  S}))  = * 

Notice with the last axiom we are unable to express the state 
c o i n _ r e t u r n ( d e p o s i t _ b i l l ( B ,  { \ b f  S}))  in terms of our 
initially proposed set of constructors. This is because our 
problem statement was that  return change is always given via 
coins: if a ¢o i z t_ze tu rn ( )  operation is performed after a bill 
has been deposited in the machine, the state will change such 
that  the number of bills in incremented, and the number of 
coins is decremented. Our inability to express this new state 
with the initially proposed set of constructors indicates that  
co i~a_re tuzn()  is itself a constructor of system state when 
used in conjunction with d e p o s i t _ b i l l ( ) .  

3.3 Us ing  t h e  S y s t e m  as I t s  O w n  Orac l e  

We now look at a virtue of the algebraic approach for test 
specification that  was first discussed by [Gannon et.al.]. Tra- 
ditional oracle-based testing relies on supplying a function 
with inputs then having an "oracle" test to see that  the out- 
put  is correct. Draw-backs to this form of testing are: 

• For each test case, expected outputs must be generated by 
the oracle, and recorded for each input. 

• As the "oracle" is usually a human, generating expected 
outputs is subject to error. 

These drawbacks are magnified when oracle-based testing is 
used as a basis for regression testing: inputs along with ex- 
pected outputs must be stored in a test library; changes to, 
or additions of, an input require corresponding re-calculation 
of expected output  and subsequent update of the test library. 

[Gannon et.al.] states that  testing with algebraic oriented test 
cases avoids the need for an oracle, and hence all the problems 
which stem from an oracle's use. An alternate view of this is 
that  with the algebraic oriented test cases, we are letting the 
system itself act as its own oracle! Either way you view it, 
the result is that  test cases can now be written in which one 
worries only about inputs. 

Let's take an axiom from our earlier operating system exam- 
ple: 

allocate( U, D2,  allocate( U, D1,  S)) : allocate( U, D1,  
allocate( U, D2,  S)) where D1 ~ D2 

Recall the axiom states that  given two devices, D1 and D2,  
a user U can allocate them in any order. From a testing 
standpoint, the right and left hand sides of the axiom both 
represent test cases, replete with inputs, with each side serv- 
ing as the expected output  of the other. By letting the system 
itself compute both the left and right hand sides dynamically 
at test time, the system acts as its own oracle, and eliminates 
the need for pre-test-time calculated, and stored, expected 
outputs. 

4 C o n c l u s i o n  

The utility of complementary styles in software specification 
is not new [Hoare]. "Structured Analysis" has employed 
the concept of modeling systems from different perspectives 

since the mid-70s [DeMarco] and more recently multiple, 
complementary, perspectives have been advocated for object- 
oriented modeling, e.g. [Coleman, et.al.] [Rumbaugh, et.~l.]. 

In formal test specification, however, most work has focused 
on the use of one specification method or another. This pa- 
per has examined the strengths and weaknesses of two popular 
specification styles with respect to their use in test specifica- 
tion to motivate the argument that  a single method may not 
always be adequate. 

Finally, other methods of axiomatic specification have been 
proposed which address problems associated with the alge- 
braic style, notably Bartussek & Parnas t r a c e  spec i f ica-  
t i o n s  with normal forms [goffman &~ Snodgrass] [Lamb]. In 
the context of testing discussed in this paper, the strengths, 
weaknesses and complementary nature with respect to the 
model-based approach of specification are, I believe, equally 
valid for trace specifications. I chose algebraic specifications 
for comparison because of their popularity and history of use 
in testing by [Gannon, McMullin & Hamlet]. 
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