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Abstract

The use of formal specifications as a basis for specifying func-
tional tests has been discussed by a numbers of researchers
with most work focusing on one style of specification or an-
other separately. But is any single style an adequate basis
for writing functional tests? The strengths, weaknesses and
complementary nature of two popular styles of software spec-
ification, model-based and algebraic, are examined as a basis
for functional test specification.
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1 Introduction

The use of formal specifications as a basis for specifying func-
tional (black-box) tests has been discussed by a number of re-
searchers. [Amla & Ammann], [Hall], [Hayes], [Laycock] and
[Zweben & Heyn] have looked at the use of model-based spec-
ifications while others have advocated algebraic specifications
[Doong & Frankl], [Gannon, McMullin & Hamlet] [McMullin
& Gannon|. Most work to date has focused on the use of one
or the other separately, but to do a thorough job of specifying
tests, one may really need aspects of both [Yip & Robson].
In this paper we will look at the strengths, weaknesses and
complementary nature of the these two popular styles of spec-
ification as a basis for functional test specification.

2 Model-based Specifications as a Basis for Test Spec-
ification

The model-based approach to software specification is ar-
guably the most popular style of formal software specifica-
tion going today, both VDM and Z being based on this style
[Hayes, Jones & Nicholis]. A model-based specification pro-
vides a model of a system’s state in terms of a collection of
state variables. Each state variable models some aspect of the
system’s retained data as a mathematical object; Z for ex-
ample uses sets, relations, functions and sequences. System
operations are then described in terms of how they modify
this state model: pre-conditions define valid inputs and start
states for an operation; post-conditions define outputs and
the state of the system after operation invocation. State in-
variants define properties, or constraints, of the system state
which must always hold and which operations are obliged to
Preserve.

Let’s illustrate these concepts with an example of modeling
the operation of allocating devices to users of an operating
system. We begin with the state variables which describe the
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retained data of our system:

Devices is the set of all devices in the operating system, e.g.
disks and printers.

Users is the set of users currently logged into the operating
system.

FreeDevices is the set of devices which have not yet been
allocated to a user.

DeviceTable is a partial (not all devices need be allocated)
many/one mapping from Devices to Users, i.e. many de-
vices can be allocated to a single user, but at most one user
can have a given device allocated at a time.

State invariants are described in terms of properties, or con-
straints, over the state variables:

FreeDevices C Devices

FreeDevices U domain ( DeviceTable) = Devices
FreeDevices N domain { DeviceTable) = @

The first invariant states that FreeDevices is a subset (none,
some or all) of Devices. The second invariant says all devices
must be accounted for: the union of free devices and allocated
devices must equal all the devices on the system. The third
invariant says that a device can either be free, or allocated,
but not both at the same time: the intersection of free devices
and allocated devices is empty.

The initial state of the system - all devices are free and the
device table is empty - is given by describing the initial values
of state variables:

FreeDevices = Devices

DeviceTable = @

Given the state model we can now define the operation of
allocating a device to a user®:

Operation: allocate device to user

inputs:

D? is device being requested
U? is user requesting device

pre-conditions:

D? € FreeDevices ! Must be valid, free device
U? € Users ! Must be valid user

post-conditions:
DeviceTable’ = DeviceTable U { (D?,U?) }
FreeDevices’ = FreeDevices \ { D? }

The model-based approach has gained much attention as a
formal basis for functional test specification. Let’s briefly look

SFollowing the style of Z, inputs to the operation (inputs are transient
data; not part of the retained data of the system) are decorated with the
suffix “?”. The suffix prime (*) indicates the modified (post-condition)
form of a state variable. The operator “lJ” denotes set union. The
operator “\” denotes set substraction: S1 \ S2 is equal to the set S1
with the elements of $2 removed.
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at what makes it attractive from a testing standpoint.

2.1 Testing Inputs

First, as it is generally impossible to test an operation actoss
all possible inputs, techniques such as equivalence partition-
ing and boundary-value analysis [Myers] are typically used to
divide up the input space into test domains from which test
cases are drawn. The model- based style of specification is
a rich source of deriving test domains for inputs. An input
space can be divided into test domains based on:

® properties of the mathematical type an input is modeled
as, e.g. a property of sets is their cardinality, or the fact
that elements of a set are not ordered

e an input’s relation to state variables as documented in the
pre-conditions

¢ constraints placed on the input in the pre-condition

As example, given the pre-condition U? € Users and the
fact that DeviceTable is a partial mapping from Devices
to Users, one partitioning of the input space for U? is:

1. values of U? where U? € range(DeviceTable), which
are users which do not have a device already allocated

2. values of U? where U? € range(DeviceTable), which
are users which already have a device allocated

2.2 Error Handling

Pre-conditions also provide a basis for identifying error han-
dling tests for an operation. The pre-conditions of an oper-
ation are a conjunction of terms describing valid inputs and
start states; negating the pre-conditions yields a disjunction
of error cases that an operation should be tested against; a
simple application of DeMorgan’s Law. As example, given
the pre-condition:

D? € FreeDevices error cases for D? are described by the
negation of the pre-condition:

D? ¢ FreeDevices

Given invariant FreeDevices C Devices one partitioning of
these error values of D? is:

1. values of ?D where D?? ¢ FreeDevices but where D?
€ Devices, which is devices which are already allocated

2. values of ?D where D? ¢ bf FreeDevices and D? ¢ De-
vices, which is to say completely bogus device names

2.3 State Testing

Finally, just as it is typically not possible to test an opera-
tion’s inputs across all possible values, neither is it usually
possible to test an operation in all possible states of the sys-
tem. There are two aspects of the model-based approach to
specification which lend themselves to identifying states that
an operation should be tested in.

2.3.1 State Defined in Terms of Independent State
Variables.
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First, because the system’s state is modeled as a set of inde-
pendent (though related) state variables, an operation’s def-
inition need refer to only those state variables which affect
it, or which it affects. From a testing standpoint this means
we have already greatly reduced the number of system states
which in theory we need to consider testing the operation in.
So, given an entire operating system one is able to describe
thé operation of allocating devices to users by referring to
just those parts of the state model —~ FreeDevices, Users
and DeviceTable - which affect, or are affected by, the op-
eration.

To appreciate the importance of this feature to test specifi-
cation, let’s contrast it with an algebraic specification. An
algebraic specification consists of the signatures of opera-
tions being defined - the syntax - plus a set of axioms which
define the semantics of the operations. A signature consists
of an operation name, the number and type of its arguments
and the type of the operation’s result:

Signature of Operations: initial: — State
allocate: User x Device x State — State
deallocate: User x Device x State — State

Axioms:

1. deallocate(U, D, initial() ) = initial()

2. deallocate{U, D, allocate(U, D, S)) = S

3. deallocate(U1, D, allocate(U2, D, S)) =

allocate(U2, D, S) where Ul # U2

4. allocate(U, D2, allocate( U, D1, S)) =

allocate( U, D1, allocate( U, D2, S)) where D1 # D2.
5. allocate(U, D, allocate(U, D, 8)) = allocate(U, D, S).

The first axiom says no device can be deallocated from the
initial state; trying to do so affects no change on the system
state. In these axioms variables are all universally quantified,
so in the second axiom we have that for all users U, devices D
and states S, operation deallocate undoes the state change ofa
previous operation allocate. The third axiom says that a user
U1 cannot deallocate a device D which has been previously
allocated to another user U2. The fourth axiom states that
given two devices, D1 and D2, a user U can allocate them in
any order. The fifth axiom states that a user U who attempts
to allocate a device D which is already allocated to him or
her will cause no change of state.

The point to be made is that in these axioms the entire state
of the operating system is modeled as a single universally
quantified variable, S. As opposed to the model-based ap-
proach, in the algebraic approach it is not possible to tell
which aspects of the system state are really pertinent to the
axiom at hand. The beauty of the algebraic approach — that
it abstracts away detail about the state [Gannon et.al] —
presents a problem with respect to its use in specifying func-
tional tests: how do we know what states (values of S) are
pertinent to test this axiom in? We’ll return to this problem
later.

2.3.2 Ability to Divide State Space into Test Domains.

So a model-based definition of an operation allows one to
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identify just those aspects of the system state (state variables)
pertinent to testing the operation. But the possible values of
a state variable still represent more system states than we are
typically able to test an operation in. What we would like to
do is divide the state space described by a state variable (or
variables) into test domains from which sample states could
be selected, just as we did with inputs. This leads us to the
second aspect of model-based specifications which lends itself
to identifying states that an operation should be tested in:
a concrete definition of the state space. Because each state
variable is a mathematical description of some retained data,
we are able to use the same techniques used with inputs to
build test domains for state variables. The state space can be
divided into test domains based on:

o properties of the mathematical type a state variable is mod-
eled as

o the relationship between multiple state variables as docu-
mented in a pre-condition

o the relationship between multiple state variables as de-
scribed in the retained data model:

a) a state variable defined in terms of other state vari-
able(s)

b) the initial state of a state variable defined in terms of
other state variable(s)

c) state invariants

e test domains based on comparison of a state variable’s pre
and post-condition form

As example, given the invariant a partition of this relationship
between FreeDevices and Devices is:

1. FreeDevices = @A Devices = @

2. FreeDevices = @A Devices # @

3. FreeDevices C Devices A Devices # 0

4. FreeDevices = Devices A Devices # @

And given these invariants:
1. FreeDevices U domain( DeviceTable ) = Devices
2. FreeDevices N domain( DeviceTable ) = @

a partition of this relationship between FreeDevices and De-
viceTable is:

1. FreeDevices = @A domain( DeviceTable ) = Devices

2. FreeDevices C Devices A domain( DeviceTable ) C De-
vices

3. FreeDevices = Devices A DeviceTable = @

3 The Algebraic Approach and Test Specification

The popularity of the model-based approach as a basis for
test specification is clear from the work that has been done in
the area:{Amla & Ammann], [Hall], [Hayes], [Laycock] [Yip &
Robson] and [Zweben & Heyn]. In this section, however, we’ll
look at aspects of the algebraic approach which can be useful
for test specification, but which the model-based approach
does not address.

Let’s begin with a quick comparison to the model-based ap-
proach. The model-based approach advances a model of a sys-
tem’s state in the form of state variables which represent the
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retained data of the system. All the possible values of these
variables, constrained by the invariants over theny; define the
system’s state space. By contrast the algebraic approach of-
fers no model of the retained data of the system; rather state
is modeled in terms of combinations of operations required
to achieve that state. In the model-based approach individ-
ual operations are defined in terms of their effects on the state
model. In the algebraic approach one cannot define operations
individually; rather combinations of operations are defined in
terms of their equivalence (via equations) to other operations
or combinations of operations. As we’ll see, these fundamen-
tal differences are precisely the source of their complementary
nature for use in test specification.

3.1 Specifying How Operations Work in Concert

In terms of state transition testing, [Chow] characterizes 3
types of state transition errors:

e operation error — the state transition goes to the next
state correctly, but produces the wrong output.

o transfer error — the state transition goes to some exist-
ing, valid system state, but its just not the right one for
that state transition.

e missing/extra state error — the system has extra or
missing states

[Chow] states that testing each state transition individually —
what he calls “0 switch testing” — can catch operation errors,
but that for catching transfer errors and missing/extra state
errors one must use tests involving longer sequences of tran-
sitions. Chow’s paper offers theoretical justification for what
one might argue is good testing common sense: you can test
all the operations of a system individually, but at some point
you need to test them in combination. In the model-based
approach each operation represents a single, individual state
transition from one state (described by the pre-conditions) to
another (described by the post-conditions). The model-based
approach to specification provides a good mechanism for spec-
ifying tests for individual operations. What it lacks, however,
is @ mechanism for specifying how operations should be tested
in concert with one another.

Specifying how the operations of a system work in concert is
precisely what the algebraic approach to specification is all
about. Algebraic specifications are popular as a formalism
for defining Abstract Data Types (ADT). The definition of
an operation on an ADT is given solely in terms of how it
interacts with other operations to manipulate the ADT. One
simply cannot define an operation in isolation of other oper-
ations on the ADT. If one views the state of a system as an
ADT and defines that ADT via an algebraic specification, the
resulting axioms amount to properties about the state tran-
sitions of the system; properties which we can specify need
to be tested.” There is, however, a critical piece that the al-
gebraic approach does not supply but which we will need to

"This view of ADTs as a model of state and algebraic axioms as a
model of state transitions is discussed in [Roberts].
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adequately specify state transition tests. Recall this axiom
from our earlier operating system example:

deallocate(U, D, allocate(U, D, S) = S

The system’s state is modeled as a single universally quanti-
fied variable, S. The problem is, we cannot test the system
in every possible state, and because the algebraic approach
abstracts away detail about the system state it offers noth-
ing to help us in deciding just what states (values of S) are
pertinent to test the axiom in. But as discussed previously
the model-based approach is quite good at identifying states
that a function should be tested in. Combined the algebraic
and model-based methods give us the two pieces we need to
specify state transition tests; respectively:

e properties (axioms) about state transitions universally
quantified over the system state, S

o and test domains for S based on the model-based specifica-
tion of, in this case, operation allocate()

This is a good illustration of how the two styles of specification
can be used to complement one another in test specification.

3.2 Constructors and State Transition Testing

Fundamental to state transition testing is knowing what op-
erations are needed to reach all possible states of a system
[Beizer]. The algebraic approach makes a useful contribution
in this regard. The algebraic approach categorizes operations
into those that affect state, and those that do not, the latter
being operations which simply observe or query the state.
The model-based method also allows this distinction to be
made, e.g. in Z special notation is used to mark operations
(schemas) as to whether they do, or do not, modify state.
The algebraic approach, however, further categorizes state
modifying operations using an important concept not found
in the model-based approach. From the set of state modi-
fying operations one identifies the set of constructors: the
set of operations which are required to generate all possible
states of the system. All other state modifying operations
are simply modifiers: they modify state, but there is no sys-
tem state which cannot be reached without them.® Notice
that this concept of a set of constructors arises from think-
ing about collections of operations, as the algebraic approach
does, rather than thinking about operations individually in
isolation from others, as in the model-based method. The
significance of the set of constructors to testing is that one
has explicitly identified (and reduced the number and combi-
nation of) the operations that need be considered to reach all
possible states of the system.

Of course the utility of knowing the set of constructors for a
system is only as good as one’s confidence that the set is valid:
that every operation in the set is needed; that all operations

8 Various terms have been applied to these categories of operations.
[Mallgren] calls these inquiry, basic generators and (non-basic) genera-
tors, respectively. [Roberts] calls them observation functions, (non- con-
vertible) constructors and convertible consiructors. [Guttag & Horning]
call them observers, constructors, and eztenders.
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that are needed are included. The algebraic approach gives
us a method for testing this. Recall that in the algebraic
approach a state is defined in terms of the combinations of
operations which were used to reach it. By definition then,
we should be able to define all states in terms of combinations
of constructors. Let’s take an example to illustrate how we
can use this fact to test a set of constructors.

We have a vending machine with the following operations:

Signature of Operations:

initial: — State

deposit_coin: Coin x State — State
deposit_bill: Bill x State — State
select: Product x State — State
coin_return:State — State

We propose a set of constructors for the machine:
{initial, deposit_coin, deposit_bill, select}. Op-
eration coin_return is used to cancel deposits which may
have been made, returning the money to the customer. If a
dollar bill is deposited into the machine, return change will
be given in coins. We tentatively designate it as a modifier
as it seems useful only for returning to a previously exiting
state. So first, how can we convince ourselves that each of the
operations in the set of constructors is really needed? Let’s
consider the case of deposit_coin; we test it as a constructor
by trying to write axioms which compare it against each of
the other constructors. We begin by comparing it against the
initial operation which creates a newly initialized system. If
indeed deposit_coin were not a constructor, which is to say
if it were simply a modifier, we should be able to specify a
right hand side for the axiom expressing a state equivalent to
the one described on the left hand side, but using only the
other constructors:

deposit_coin( C, initial() ) = ?

As we are unable to write the right hand side for this axiom,
deposit_coin must make a unique contribution to defining
state of the system: it is indeed a constructor.

It is one thing to err by mistaking a modifier as a constructor:
at least we won’t miss any states this way. It is more serious to
err by mistaking a constructor as a modifier; this will cause
us to miss states. In this case we would like to convince
ourselves that coin_return is simply a modifier, and does
not contribute to any unique states. We do this in a fashion
similar to above. If coin_returnis just a modifier, we should
be able to write a set of axioms each of which has a left hand
side comparing coin_return with a constructor; the right
hand side of each axiom should express a state equivalent to
the one described on the left hand side, but using only the
proposed constructors.

Below we have an attempt at such a set of axioms:

coin_return( initial()) = initial()
coin_return( deposit_coin(C, {\bf S})) =
coin_return({\bf 5})

coin_return( select(P, {\bf S})) =
sh

select(P, {\bf
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coin_return( deposit_bill(B, {\bf S})) = ?

Notice with the last axiom we are unable to express the state
coin_return(deposit_bill(B, {\bf S})) in terms of our
initially proposed set of constructors. This is because our
problem statement was that return change is always given via
coins: if a coin_return() operation is performed after a bill
has been deposited in the machine, the state will change such
that the number of bills in incremented, and the number of
coins is decremented. Our inability to express this new state
with the initially proposed set of constructors indicates that
coin_return() is itself a comstructor of system state when
used in conjunction with deposit_bill().

3.8 Using the System as Its Own Oracle

We now look at a virtue of the algebraic approach for test
specification that was first discussed by [Gannon et.al.]. Tra-
ditional oracle-based testing relies on supplying a function
with inputs then having an “oracle” test to see that the out-
put is correct. Draw-backs to this form of testing are:

e For each test case, expected outputs must be generated by
the oracle, and recorded for each input.

® As the “oracle” is usually a human, generating expected
outputs is subject to error.

These drawbacks are magnified when oracle-based testing is
used as a basis for regression testing: inputs along with ex-
pected outputs must be stored in a test library; changes to,
or additions of, an input require corresponding re-calculation
of expected output and subsequent update of the test library.

[Gannon et.al.] states that testing with algebraic oriented test
cases avoids the need for an oracle, and hence all the problems
which stem from an oracle’s use. An alternate view of this is
that with the algebraic oriented test cases, we are letting the
system itself act as its own oracle! Either way you view it,
the result is that test cases can now be written in which one
worries only about inputs.

Let’s take an axiom from our earlier operating system exam-
ple:

allocate( U, D2, allocate( U, D1, S)) = allocate( U, D1,
allocate( U, D2, S)) where D1 # D2

Recall the axiom states that given two devices, D1 and D2,
a user U can allocate them in any order. From a testing
standpoint, the right and left hand sides of the axiom both
represent test cases, replete with inputs, with each side serv-
ing as the expected output of the other. By letting the system
itself compute both the left and right hand sides dynamically
at test time, the system acts as its own oracle, and eliminates
the need for pre-test-time calculated, and stored, expected
outputs.

4 Conclusion

The utility of complementary styles in software specification
is not new [Hoare]. “Structured Analysis” has employed
the concept of modeling systems from different perspectives
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since the mid-70s [DeMarco] and more recently multiple,
complementary, perspectives have been advocated for object-
oriented modeling, e.g. [Coleman, et.al.] [Rumbaugh, et.al.].

In formal test specification, however, most work has focused
on the use of one specification method or another. This pa-
per has examined the strengths and weaknesses of two popular
specification styles with respect to their use in test specifica-
tion to motivate the argument that a single method may not
always be adequate.

Finally, other methods of axiomatic specification have been
proposed which address problems associated with the alge-
braic style, notably Bartussek & Parnas trace specifica-
tions with normal forms [Hoffman & Snodgrass] [Lamb]. In
thé context of testing discussed in this paper, the strengths,
weaknesses and complementary nature with respect to the
model-based approach of specification are, I believe, equally
valid for trace specifications. I chose algebraic specifications
for comparison because of their popularity and history of use
in testing by [Gannon, McMullin & Hamlet].
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