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In this article we explore the potential of classical dataflow analysis techniques in removing over-
head in write-invalidate cache coherence protocols for shared-memory multiprocessors. We con-
struct three compiler algorithms with varying degree of sophistication that detect loads followed
by stores to the same address. Such loads are marked and constitute a hint to the cache to obtain
an exclusive copy of the block so that the subsequent store does not introduce access penalties.
The simplest of the three compiler algorithms analyzes the existence of load-store sequences within
each basic block of code whereas the other two analyze load-store sequences across basic blocks at
the intraprocedural level. The algorithms have been incorporated into an optimizing C compiler,
and we have evaluated their efficiencies by compiling and executing seven parallel programs on a
simulated multiprocessor. Our results show that the detection efficiency of the most aggressive
algorithm is 96% or higher for four of the seven programs studied. We also compare the efficiency
of these static algorithms with that of dynamic hardware-based algorithms that reduce owner-
ship overhead. We find that the static analysis using classical dataflow analysis results in similar
performance improvements as dynamic hardware-based approaches.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—cache memories;
C.1.2 [Processor Architectures]: Multiprocessors—multiple-instruction-stream, multiple-data-
stream processors (MIMD); D.3.4 [Programming Languages]: Processors—compilers; opti-
mization

General Terms: Algorithms, Design, Evaluation

Additional Key Words and Phrases: Cache coherence, dataflow analysis, performance evaluation

1. INTRODUCTION

Dataflow analysis techniques are key to many standard optimizations done in state-
of-the-art optimizing compilers. The strength of this algorithmic framework is
that it is simple and well understood. More appealing is that it attacks a quite
general problem that can be stated as follows: given a flow graph of a program,
then establish dependency chains between instructions. What “dependency” means
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is problem specific and is formulated for each dataflow problem at hand. Our
interest in dataflow analysis techniques is in exploring their usefulness in optimizing
cache performance in shared-memory multiprocessors. This article deals specifically
with the effectiveness with which dataflow analysis techniques can remove certain
overheads in maintaining coherence among caches.

A write-invalidate cache protocol [Stenström 1990] is a widely used mechanism
to ensure consistency among private caches in a shared-memory multiprocessor. It
maintains consistency by removing all other cache copies of a memory block, when
a processor modifies its local copy. An intrinsic shortcoming of such protocols, how-
ever, is that ownership of the block has to be obtained before it can be modified.
This ownership acquisition involves sending invalidations to other cached copies
and results in extra network messages. Moreover, it can also lead to substantial
penalties under sequential consistency [Lamport 1979] because the processor must
usually be stalled until ownership has been acquired, and this stall time can encom-
pass hundreds of cycles in machines such as Stanford DASH [Lenoski et al. 1992].
Techniques that can reduce the overhead for ownership acquisition are therefore
important.

A prevalent source of ownership overhead is caused by migratory sharing [Gupta
and Weber 1992] that shows up when data are read and then modified by one pro-
cessor at a time, for instance, when data is accessed in a critical section. Assuming
that different processors access the critical section in turn, each invocation causes a
cache miss followed by an ownership acquisition. Because both of these transactions
are serviced by the cache attached to the processor that entered the critical section
most recently, it is possible to eliminate the ownership overhead by requesting an
exclusive copy at the first (load) access to the block. We will consider this in more
detail in Section 2.

Our approach to invoke this optimization is to use dataflow analysis techniques to
statically detect loads followed by stores to the same address at compile-time. Loads
in such sequences are marked and will be replaced by load-exclusive instructions. A
load-exclusive instruction not only loads a value into a register. It also gives a hint
to the cache to obtain an exclusive copy of the block. In this article we present the
design of three variations of this simple compiler approach. The simplest algorithm
detects load-store sequences within basic blocks of code only, whereas the other two
algorithms analyze load-store sequences across basic blocks at the intraprocedural
level. The latter two variations deal with uncertainties as to which execution path
is taken.

We have incorporated the algorithms into an optimizing C compiler. By compil-
ing seven parallel applications and then running them on a simulated multiproces-
sor, we have studied the efficiency with which they can detect load-store sequences
as well as the impact on the execution time and traffic. While preliminary results of
this evaluation were presented in Skeppstedt and Stenström [1994], we extend the
results in that study by analyzing more application programs as well as analyzing
how much traffic can be reduced. We find that the detection efficiency of the most
aggressive algorithm is 96% or higher for four of the seven applications we have
considered.

Another approach to reduce ownership overhead is to extend the cache coher-
ence protocol to dynamically detect migratory sharing as proposed in Cox and
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 6, November 1996.
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Fig. 1. Generic multiprocessor organization assumed in this study.

Fowler [1993] and Stenström et al. [1993]. To gain further understanding, we com-
pare the compiler algorithms with cache coherence protocol extensions which make
dynamic decisions on when a block should be loaded in exclusive or shared state.
We find that the static analysis using classical dataflow analysis results in similar
performance improvements as the dynamic hardware-based approaches.

The rest of the article is organized as follows. For a background, we review
in Section 2 how ownership overhead shows up in cache-coherent shared-memory
multiprocessors. Section 3 presents the dynamic hardware-based algorithms, and
Section 4 presents the design of the compiler algorithms. We move on to the
experimental methodology in Section 5, and in Section 6 we present our simulation
results. Finally, we relate our findings to work done by others in Section 7 before
we conclude in Section 8.

2. OWNERSHIP OVERHEAD IN SHARED-MEMORY MULTIPROCESSORS

Most shared-memory multiprocessors built today employ caches attached to each
processing element. In systems with a small number of processors, processing ele-
ments are typically connected by a fast common bus as demonstrated by the SGI
Challenge [Galles and Williams 1994] multiprocessor, and the caches primarily help
such systems to reduce the bus traffic. By contrast, larger systems typically use gen-
eral interconnection networks, such as wormhole-routed meshes, to meet a higher
demand for bandwidth, exemplified by the Stanford DASH [Lenoski et al. 1992]
and the M.I.T. Alewife [Agarwal et al. 1995]. The goal of using caches in such sys-
tems is primarily to shield the processors from the large access latencies that stem
from the multihop nature of memory requests.

This study is concerned with both kinds of systems by assuming a generic or-
ganization according to Figure 1. In this system organization, each processing
element contains a processor with its private cache and a portion of the globally
shared memory. While the nodes are connected to a number of memory modules
by a generic interconnection network, it is irrelevant for the rest of the discussion
whether the memory modules are distributed equally among nodes. Consistency
among the private caches in the processing nodes is maintained by a write-invalidate
protocol, a prevalent choice of coherence policy. Before a block replicated among
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P1 P2
lock L ... ; P1 locks the critical section,
load A ... ; loads and then
store A ... ; modifies A before it
unlock L ... ; exits the critical section.
... lock L ; P2 does the same and experiences
... load A ; a load miss followed by a
... store A ; an ownership acquisition before it
... unlock L ; exits the critical section.

Fig. 2. Two processors P1 and P2 enter a critical section where they read and modify variable
A.

caches in such a protocol is modified, ownership must be acquired. This ownership
acquisition can stall the processor under sequential consistency, resulting in sig-
nificant write latencies. Moreover, ownership acquisition increases network traffic
which, as a secondary effect, can increase the read and synchronization access laten-
cies because of memory system contention also under relaxed memory consistency
models.

Ownership overhead is especially pronounced under migratory sharing where a
memory block migrates between different processing nodes and where each proces-
sor issues read-write sequences to the block. A typical example of when such a
behavior occurs is when a data structure is read and modified in a critical section.
In Figure 2 we show the coherence actions taking place when two processors P1 and
P2 enter a critical section and read and modify a variable A one after the other.
When P1 has exited from the critical section, the block is modified, and the only
copy of it is located in P1’s cache. When P2 enters the critical section, it will first
experience a cache miss that is serviced by P1’s cache and subsequently an own-
ership acquisition that again is serviced by P1’s cache. We note that not only the
load, but also the store instruction from P2, will cause cache coherence overhead.
This ownership overhead will of course show up for subsequent invocations of the
critical section as well.

An obvious optimization would be to request an exclusive copy at the time of the
load miss if it were known that no other processor will access the block between
the load causing the cache miss and the subsequent store instruction. Then the
ownership acquisition caused by the store instruction is eliminated which removes
the ownership overhead in terms of memory traffic and/or latency. Next we will
study how dynamic hardware-based algorithms can reduce ownership overhead by
detecting which blocks exhibit migratory sharing.

3. DYNAMIC DETECTION OF MIGRATORY SHARING

In Cox and Fowler [1993] and Stenström et al. [1993] extensions to basic write-
invalidate protocols are proposed which dynamically detect migratory sharing and,
for blocks deemed migratory, merge ownership requests with cache-miss requests.

The detection mechanism relies on the fact that the controller of the memory
module that administrates the coherence actions for a block, called the home, re-
ceives cache miss as well as ownership requests. Consequently, home will see a
cache-miss request followed by an ownership request from the same processor, with
no intervening access from another processor, for migratory blocks. To detect this
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 6, November 1996.
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sharing pattern for a block, home records the identity of the processor that most
recently wrote to the block. When home receives an ownership request from a pro-
cessor other than the last one that wrote to the block, and the number of copies is
two, the block is deemed migratory. Cache-miss requests will then obtain an exclu-
sive copy of the block which eliminates the separate ownership request associated
with subsequent stores. These protocols are also capable of switching a migratory
memory block back to normal treatment when its sharing pattern has changed.
When a cache receives a request to give up ownership of a migratory block, and
the cache has not yet written to the block, then the read-write chain is broken,
and the block is classified by the cache as not being migratory. The terms adaptive
protocols and hardware-based approaches refer to the same protocol extensions and
will be used interchangeably throughout this article.

The additional protocol mechanisms to extend a full-map write-invalidate proto-
col with the migratory detection consists of one pointer per memory block which is
needed for identifying the processor that last wrote to the block, two extra memory
states to tag a block as migratory, and an extra cache block state to detect when
migratory sharing ceases.

The reduction of the execution time by removing explicit ownership requests has
been evaluated in Stenström et al. [1993], assuming an architecture similar to the
one in Figure 1. They found that the write stall-time could be reduced by more than
80% under sequential consistency for applications exhibiting migratory sharing and
that the traffic was reduced by more than 20%.

The adaptive protocols have knowledge about recent memory accesses because a
memory controller sees the requests from all processors, and from this information
it tries to predict future behavior. In contrast, our compiler algorithms predict
sharing behavior based on static analysis, and that is the focus of the next section.

4. THE COMPILER ALGORITHMS

In this section we consider three simple compiler algorithms to detect load-store
sequences aiming at removing ownership overhead. We start in Section 4.1 to
present the dataflow problem our algorithms are concerned with and the constraints
encountered by the algorithms. Then in Sections 4.2 and 4.3, we present in detail
how the algorithms are implemented, and finally in Section 4.4 we discuss their
expected limitations which we examine experimentally in Section 6.

4.1 Dataflow Analysis Problem

The purpose of the compiler algorithms is to detect sequences of loads and stores to
the same address. Such load instructions are marked. Marked load instructions can
then be used as hints to the memory system with the purpose of acquiring ownership
of the block at the point of the load. If a marked load misses in the cache, ownership
overhead for the subsequent store instruction can be eliminated. How the ownership
acquisition is implemented is orthogonal to the marking algorithm itself. However,
in Section 6 we will specifically consider the effectiveness of reducing ownership
overhead by replacing marked loads by special load-exclusive instructions. Unlike
an ordinary load instruction, a load-exclusive instruction not only loads data, it
also instructs the cache to acquire an exclusive copy of the corresponding block.

The dataflow algorithm analyzes the intermediate code representation for each
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 6, November 1996.
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Fig. 3. Example flow graphs with load and store instructions to the same address. Conservative
marks loads in cases (a), (b), and (c), while Speculative marks all loads.

process at the intraprocedural level to find load-store sequences that satisfy the
following conditions during run-time:

(1) the load and the store refer to the same address and

(2) if the load is executed then the store is executed as well.

For load-store sequences which satisfy these conditions, the load instruction is
marked. We have evaluated three algorithms that differ in aggressiveness when se-
lecting which loads should be marked. The simplest one—denoted Local—analyzes
the existence of load-store sequences within each single basic block only. Since a
load-store sequence within a basic block by definition satisfies the second condition,
Local is trivially implemented by making sure that the address of the load and the
store is the same.

A limitation of Local is that it will miss opportunities of marking loads for load-
store sequences that span several basic blocks. Therefore, we also consider two
marking algorithms that rely on dataflow analysis across all basic blocks in a pro-
cedure. To illustrate the issues that then arise, let us consider the example flow
graphs in Figure 3, where the vertices represent basic blocks and the edges repre-
sent the control flow between basic blocks. We assume that the effective addresses
of loads and stores are the contents of their base pointers plus the offset. For
simplicity, we also assume in Figure 3 that all loads and stores use the same base
pointer and the same offset. Moreover, assign refers to the operation of changing
the content of a base pointer.

To start with, we see that the loads in (a), (b), and (c) can be safely marked
because conditions (1) and (2) are satisfied. As for cases (d) and (e), however, there
are uncertainties as to whether a store to the same address will be executed. In
both these cases, the uncertainty is due to conditional execution paths; in (d) the
store may not be executed, and in (e) the base pointer might be changed.

In the first of the two algorithms that consider load-store sequences across basic
blocks, loads are only marked if conditions (1) and (2) are satisfied, resulting in that
only loads corresponding to flow graphs (a) through (c) in Figure 3 are marked.
This algorithm is denoted Conservative.

To get an upper bound on the effectiveness of the marking capability of the
compiler, we also consider an aggressive algorithm denoted Speculative that ignores
uncertainties related to which execution path is taken, as in cases (d) and (e). This
algorithm has a potential to cut more ownership overhead than Conservative, but it
may also introduce invalidations and misses. Note that marking of loads is strictly
a performance issue—excessive marking does not compromise correctness.
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 6, November 1996.
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4.2 Algorithm Overview

Conceptually, our algorithms detect load-store sequences by using dataflow analysis
similar to live-variable analysis [Aho et al. 1986]. Generally, our algorithms decide
whether a store reaches a certain load by propagating stores backward in the flow
graph taking conditions (1) and (2) into account.

We have implemented the algorithms as an optimization pass on the intermediate
code level. Loads and stores are three-address code statements with a symbolic base
pointer and an immediate-value offset for address calculation, denoted bi and oi in
Figure 4, respectively.

All stores with the same base pointer and offset in a procedure form a class
denoted the store class which forms the unit of dataflow. For example, the stores in
basic blocks B2 and B3 in Figure 4 belong to the same store class. A store using a
certain base pointer and offset is said to generate the corresponding store class. A
generated store class propagates backward in the flow graph until either (1) the base
pointer is changed which is said to kill all store classes that use this base pointer
or (2) it is inhibited by Conservative to propagate further. Conservative requires
that, for a store class to propagate to a basic block B from a successor of B, it must
propagate from all successors of B. Thus the difference between Conservative and
Speculative, as we will see in the next section, is that Conservative uses intersection
as a confluence operator, while Speculative uses union. When a store class has
propagated to a load, that load is marked. A store class which has propagated to
a certain point in the flow graph is said to be live at that point.

In Figure 4, the store class generated in B4 can propagate to B1 without being
killed, while the assignment of b1 in B3 kills the store class using b1 which is not
propagated to B1 by Conservative. By contrast, Speculative propagates it from B2.
Consequently, Conservative will mark only the load with b2 as a base pointer while
Speculative will mark both loads.

4.3 Implementation

The algorithm that implements the dataflow analysis and load-instruction marking
consists of the following four passes:

(1) Collect store classes. This pass identifies all store classes that exist in the flow
graph.

(2) Local analysis. This pass operates on each basic block. It creates sets of locally
generated and killed store classes and marks loads for store classes generated
and not killed in the basic block.

(3) Dataflow analysis of store classes. This pass is only applicable to Conservative
and Speculative. It creates sets of store classes that are live at the beginning
and at the end of each basic block through backward analysis.

(4) Global analysis. This pass is only applicable to Conservative and Speculative
and marks loads corresponding to store classes that are live at the end of a
basic block and that are not killed locally.

For Local, it suffices to perform the first two passes, and these passes can then be
merged to a single pass. By contrast, Conservative and Speculative require all four
passes. We next present the detailed implementation of each of the four passes.
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load o1(b1)
load o2(b2)

B1:

store o1(b1)B2:
b1 := ...

store o1(b1)
B3:

store o2(b2)B4:

Fig. 4. Example flow graph.

Collect Store Classes. The purpose of this pass is to identify all store classes
that exist in the flow graph. Recall that each store class is characterized by a base
pointer and an offset. A new store class is inserted by assigning it an index to
simplify dataflow operations.

In this pass each base pointer is associated with a number of indices corresponding
to store classes that use this base pointer. When the content of the base pointer
is changed, all corresponding store classes can then be killed by simply performing
bit operations on the bit vectors used in the dataflow analysis described next.

Local Analysis. The purpose of this pass is to mark loads corresponding to store
classes that are generated and not killed in each basic block. This is done by
establishing two sets of store classes called GEN and KILL.

Assume B is a basic block with two sets GEN and KILL representing the gener-
ated and killed store classes, respectively. Moreover, there is a function—denoted
store classes(b)— which maps a base pointer b to the set of store classes that use
b as a base pointer. The statements of a basic block are scanned in the backward
direction. When a statement is a store with base pointer b and offset o, the store
class with that base pointer and offset, denoted (b, o), is generated and added to
the GEN set and removed from the KILL set:

B.GEN := B.GEN
⋃
{ (b, o) }

B.KILL := B.KILL − { (b, o) }
When the statement is an assignment of a base pointer, all store classes for that
base are killed. This is done by removing them from the GEN set and adding them
to the KILL set:

B.GEN := B.GEN − store classes(b)

B.KILL := B.KILL
⋃
store classes(b)

Finally, when the statement is a load, and there is a store class in GEN with the
same base pointer and offset, the load is marked. For other statements no action
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 6, November 1996.
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is taken. Note that all dataflow operations described above are simply carried out
as bit-vector operations.

Dataflow Analysis of Store Classes. The purpose of the dataflow analysis is to
keep track of which store classes are live at the beginning and at the end of each
basic block by letting store classes generated in one basic block propagate backward
to the preceding basic blocks.

Given a basic block B, the set of store classes that are live at the beginning and
at the end of a basic block are denoted B.IN and B.OUT, respectively. Then for
all immediate successor basic blocks S of B in the flow graph, we can formulate
how store classes that are live at the beginning of each S (S.IN) propagate to B
(B.OUT ). This is done in the following dataflow equation:

B.OUT := op S.IN ∀ immediate successors S of B

For Conservative, it is required that a store class is live at the beginning of all
immediate successor basic blocks, i.e., the operation op is intersection. By contrast,
Speculative only requires that a store class is live in at least one successor basic
block, i.e., op is union.

Finally, the dataflow equation to establish B.IN uses the two sets B.GEN and
B.KILL as follows:

B.IN := (B.OUT
⋃
B.GEN) − B.KILL

i.e., store classes live at the beginning of B are defined by the store classes live at
the end of B plus store classes generated in B minus store classes that are killed
locally in B.

The above operations applied to each basic block are repeated until no changes
occur as in other iterative dataflow analyzes [Aho et al. 1986].

Global Analysis. The last step in Conservative and Speculative marks loads
whose associated store classes belong to the OUT set of the basic block and are
not killed locally. Thus given a basic block B, each load in B is marked for which
the following conditions are true:

(1) there is a store class in B.OUT with the same base and offset and
(2) the store class is not killed locally in B at a point after the load.

4.4 Performance Issues

Although the marking algorithms are simple, their potential to remove ownership
overhead can be limited due to the following issues:

—aliasing,
—word versus block addresses, and
—intervening accesses by other processors.

Aliasing is a problem for any dataflow analysis, and in our case it can occur if a
load and a store reference the same address using different base pointers. This is not
dealt with by our algorithms and may limit the detection efficiency. In Section 6,
we will investigate to what extent aliasing limits the detection efficiency for the
evaluated applications.
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Ref. P1 P2 Comment

T0: Load Cold miss

T1: Load+ INV Miss and invalidation

T2: Load Useless miss

T3: Store

Fig. 5. Reference trace for two processors P1 and P2 to the same data item. The load by P2 at
T2 experiences a useless miss due to the marked load (Load+) at T1.

The second issue stems from the fact that the compiler algorithms detect load-
store sequences based on word addresses rather than block addresses. A trivial
extension to incorporate this would be to align data structures on cache-block
boundaries and then treat the offset in a store class as a block address. However,
whereas load-store sequences to the same word has an intuitive explanation (e.g.,
read-modify-write operations on the same data), load-store sequences to different
words in the same block seem less natural from a program behavioral point of view.
Therefore, one may expect small additional gains by incorporating such block-level
analysis in the algorithms. In Section 6, however, we will study how much this fact
limits the gains of the compiler algorithms.

The last issue stems from the fact that the algorithms analyze the code of a single
processor and lack information of how other processors’ loads and stores interfere.
Therefore, marked loads can actually increase the number of invalidations and
misses. To illustrate the problem, consider the trace of loads and stores to the
same address by two processors P1 and P2 in Figure 5. In that trace, P2 first
issues a load that results in a cold miss. Because of the load-store sequence of P1,
the load at T1 is marked (Load+) and results in an invalidation of the block in
P2’s cache. As a result, P2 will experience a useless miss [Dubois et al. 1995] at
T2. An interesting observation is that such intervening accesses come from two
sources: data races (interference at the word level) and false sharing (interference
at the block level). Data races show up if two processors issue accesses to the same
address and if at least one of them is a store. For example, in the trace of Figure 5,
the Load at T2 and the Store at T3 result in a data race. However, properly labeled
programs [Gharachorloo et al. 1990] do not have any data races because competing
accesses are separated by a synchronization. Thus, if a load-store sequence is not
separated by a synchronization in between, and the program is properly labeled,
extra invalidations and misses are not introduced given that there is no false sharing.
We will study these effects later in Section 6.

5. EXPERIMENTAL METHODOLOGY

First we present the compiler and benchmarks we have used. Next we define metrics
of detection efficiency for the different compiler and hardware algorithms. Finally
we present the multiprocessor architectures we have simulated to evaluate effects
on execution time and traffic.

5.1 Compiler and Benchmark Programs

We have incorporated the compiler algorithms in an optimizing C compiler [Skeppstedt
1990] which compiles parallel applications using the ANL macros [Boyle et al. 1987]
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 6, November 1996.



Using Dataflow Analysis Techniques to Reduce Ownership Overhead · 669

Table I. Benchmark Programs and Data Set Sizes Used
Benchmark Description and Data Sets

Water N-body water molecular dynamics simulation
288 molecules, 4 time steps

Cholesky Cholesky factorization of a sparse matrix
matrix bcsstk14

MP3D 3D particle-based wind-tunnel simulator
10,000 particles, 10 time steps

LU LU-decomposition of a dense matrix
200 x 200 matrix

Ocean Ocean basin simulator
128 x 128 grid, tolerance 10−7

Barnes-Hut 128 bodies

PTHOR RISC circuit

and generates code for shared-memory multiprocessors based on SPARC processors.
Even though our compiler performs many standard optimizations [Aho et al. 1986;
Chow and Hennessy 1990], it becomes important to understand how the results
compare to code compiled with other compilers. We have compared some key pa-
rameters with gcc (version 2.1) with optimization level O2. We have found that
the numbers of loads and stores to shared memory typically differ by less than 1%
between our compiler and gcc.

We have used a set of seven applications developed at Stanford University,
five of which are part of the SPLASH-1 suite [Singh et al. 1992] (MP3D, Water,
Cholesky, Barnes-Hut, and PTHOR). We used the data set sizes that are shown
in Table I. MP3D, Water, and Cholesky have a fair amount of migratory shar-
ing [Cox and Fowler 1993; Gupta and Weber 1992; Stenström et al. 1993], and we
expect to see significant gains by the static as well as the dynamic techniques. By
contrast, the remaining four applications (LU, Ocean, Barnes-Hut, and PTHOR)
also exhibit other types of sharing patterns such as producer-consumer sharing.
The mixed behavior of these applications is interesting in order to find out whether
the compiler algorithms we study make bad decisions that can hurt performance
when there is little room for improvements.

5.2 Metrics of Detection Efficiency

To understand how close to optimum the detection efficiency of the static and dy-
namic algorithms are, we have developed an optimal omniscient algorithm that
removes all ownership overhead associated with load-store sequences. This algo-
rithm (1) predicts whether further improvements would have been possible and (2)
detects any wrong decisions made by the algorithms that can degrade performance.

For each load miss, the optimal algorithm decides whether or not an exclusive
copy should be fetched. An exclusive copy is fetched if the following conditions are
satisfied:

(1) the processor will later store to any word of the block and
(2) no other processor will make an intervening access to the block between the

load and the store.

The optimal algorithm uses as input the global shared-memory reference trace
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 6, November 1996.
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of a program. This trace has been derived by first compiling the program by an
optimizing C compiler that contains our algorithms. Then the program is exe-
cuted on a simulated multiprocessor with an organization according to Figure 1.
This multiprocessor implements a write-invalidate protocol and assumes infinite
caches. Each memory reference—be it a cache hit or cache miss—encounters
unit-cycle delays. This simulation model is built on top of the CacheMire Test
Bench [Brorsson et al. 1993]: a simulation and programming development platform
consisting of simulated SPARC processors.

To compare how many load misses that are correctly handled by each algorithm,
we define the set of loads that fetch exclusive copies according to the optimal
algorithm as the set of optimal loads. With coverage for a certain algorithm we mean
the fraction of optimal loads which are also handled correctly by that algorithm.

In order to capture load misses acquiring exclusive copies that potentially can
cause more invalidations and misses, we also count these loads, which we call bad
loads. A bad load is a load miss that acquires an exclusive copy such that another
processor will access the block before it is written to. To contrast the number of
bad loads for a certain algorithm with the number of optimal loads contained in
the trace, we define the degree of bad loads to be the number of bad loads divided
by the total number of optimal loads. Note that a 100% degree of bad loads means
that an algorithm generates as many bad loads as the optimal algorithm generates
optimal loads.

5.3 Simulated Multiprocessor Architectures

We have developed three detailed architectural simulation models: (1) a basic write-
invalidate protocol which constitutes the baseline architecture, (2) the baseline
extended with functionality to handle compiler-generated, coalesced read and own-
ership requests, and (3) two adaptive cache coherence protocols. These models are
described in detail below. The simulation platform consists of a functional simula-
tor of SPARC processors which generate memory references to an attached memory
system architectural simulator with a detailed timing model. Since the executing
processors are delayed according to the latencies encountered by each memory ref-
erence, the same interleaving of memory references will be encountered as in the
target architecture.

Baseline Architecture. The overall organization of the baseline architecture is
shown in Figure 1. It consists of 16 processing nodes. Apart from the local portion
of the shared memory, each processing node also contains a two-level cache hierarchy
whose organization is shown in Figure 6. It consists of a write-through, direct-
mapped first-level cache (denoted FLC) with an associated first-level write buffer
denoted FLWB. In the baseline, the FLWB buffers store requests to a copy-back,
second-level cache (SLC), and there is full inclusion between the FLC and the SLC.

System-level cache coherence between the second-level caches is maintained by a
Censier and Feautrier write-invalidate protocol which associates a bit vector with
each memory block [Censier and Feautrier 1978]. Virtual pages are 4KB and are
mapped to physical memory modules using a round-robin policy that interprets the
four least significant bits of the virtual page number as the node identity. The node
in which a certain page is mapped is called the home of all blocks in that page.
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Fig. 6. The two-level cache hierarchy in each processing node.

Loads that miss in the FLC and the SLC cause a miss request to be sent to
home. If the copy is present at home, and if home is the local node, the miss is
serviced locally. Otherwise, two or four node-to-node traversals are required to fill
the cache.

Stores are written through the FLC by buffering them in the FLWB. If the SLC
copy is exclusive, the store can be carried out locally. Otherwise, ownership has
to be acquired. The baseline protocol, as well as the other protocols we evalu-
ate, implements sequential consistency by stalling the processor until ownership is
granted. Depending on the location of home and whether another node has an ex-
clusive copy, ownership acquisition may encounter zero, two, or four node-to-node
traversals.

In Figure 6, a write buffer is also associated with the SLC, denoted SLWB. Since
the processor is stalled on every global store, this buffer is not needed in the baseline
architecture.

Support for the Compiler Algorithms. We evaluate the effectiveness of our com-
piler algorithms by replacing marked loads by special instructions denoted load-
exclusive. Unlike ordinary load instructions, they also act as hints to the cache to
obtain an exclusive copy of the associated block. While we could have evaluated
the heuristic of disregarding ownership acquisition for load-exclusive instructions to
blocks that are present but shared, we decided to let the cache acquire ownership
of the block also when it is present in the cache.

The actions taken by the cache hierarchy when a load-exclusive request is issued
are as follows. If the block is present in the FLC, the data are returned to the
processor, and an ownership request is buffered in the FLWB. Since ownership
acquisition is nonbinding [Mowry and Gupta 1991], the processor may proceed until
the next store and does not have to await ownership to be granted. If the block is
not present in the FLC, however, the processor has to stall, and a load-exclusive
request is buffered in the FLWB. If the SLC has an exclusive copy, no action is
taken besides filling the FLC. Conversely, if the block in the SLC is in a shared
state, an ownership request is buffered in the SLWB and handled in the same way
as a store to a shared SLC block in the baseline architecture. Finally, if the block
is not present in the SLC, an exclusive copy is requested, and the processor has to
stall until the block is filled in FLC. This includes as many network traversals as if
ownership is requested in the baseline architecture.

Finally, if an ownership request is buffered in the SLWB when a store reaches
the SLC, the SLC and the processor are stalled until ownership is granted. Note
that the cache hierarchy mechanisms needed in this case include an SLWB. In our
simulations we assume that the FLWB and the SLWB contain 8 and 16 entries,
respectively.
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Adaptive Cache Coherence Protocol Extensions. The adaptive cache coherence
protocol we evaluate, according to Stenström et al. [1993] and Cox and Fowler
[1993], extend the baseline write-invalidate protocol with a pointer of size log2 16 = 4
bits per memory block and an extra cache state. We have evaluated two variants
of the adaptive cache coherence protocols. The first one, denoted default-shared,
initially tags each memory block as not being migratory, while the second, denoted
default-migratory, by default tags all memory blocks as being migratory.

The architectural parameters we assume for all three architecture variations
are as follows. Each node contains a SPARC processor clocked at 100MHz, that
is 1 pclock = 10ns. We model a 4KB FLC and an infinite SLC, both with a block
size of 32 bytes. FLC, SLC, and local memory access times are 1, 6, and 30 pclocks,
respectively. The nodes are interconnected with a contention-free network with a
uniform node-to-node latency of 54 pclocks. Each control message is 5 bytes, and
each data message is 37 bytes.

6. SIMULATION RESULTS

We first show the detection efficiency of the different algorithms against an optimal
algorithm and then as a case study present simulated execution times and traffic.

6.1 Detection Efficiency

The diagrams of Figure 7 show the coverages (top) and degrees of bad loads (bot-
tom) for the applications we have studied. For each application we show five bars
that from left to right correspond to Local (L), Conservative (C), Speculative (S),
default-shared (DS), and default-migratory (DM). Beneath each application, we
also show the fraction of all cache misses issued by the processors that become
optimal loads under the optimal algorithm. There are two distinct groups of ap-
plications; those with many optimal loads (Water, Cholesky, and MP3D) and the
remaining four with few optimal loads.

We will first look at the applications with many optimal loads, namely, Water,
Cholesky, and MP3D. Because of the migratory-sharing dominance in these appli-
cations, more than 80% of all cache misses are optimal loads in these applications.

The high coverages in Water and Cholesky indicate that the compiler optimiza-
tions and the DM protocol do very well as compared to the optimal algorithm—they
eliminate 96% or more of all explicit ownership requests by merging them with the
preceding load-miss requests. L does surprisingly well for Water and Cholesky, indi-
cating that most load-store sequences in these applications are contained in certain
basic blocks. By contrast, in the other applications there is a clear difference in
coverage between S on one hand and L and C on the other. The coverage for S
in MP3D is 97% whereas the coverages for L and C are only 72% and 73%. We
analyzed which misses that L and C did not cover and found that they are due to
a single load-store sequence in the procedure move single that spans several basic
blocks and which includes a conditional pointer assignment; C is unable to cover
this case as opposed to S that marks the load in this situation. For Cholesky, DS
is less effective with a coverage of 85%. We analyzed the optimal loads which were
not covered by DS and found that the missing ones were due to data structures
which were modified once and then read only for the rest of the execution. We also
analyzed why the compiler algorithm was unable to reach a coverage of 100% and
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 6, November 1996.
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Fig. 7. Coverage (top) and degree of bad loads (bottom) in percent for the seven benchmarks.

found that they were due to a loop-carried load-store sequence which our compiler
algorithms currently are unable to cover.

Let us now consider the degrees of bad loads by looking at the bottom diagram of
Figure 7. We note that virtually no bad loads are generated by any optimization for
Water and Cholesky. Moving on to MP3D, however, we note that all optimizations
generate at least 1% bad loads, and S generated 3% bad loads. We have found that
these bad loads are due to data races in the data structure denoted Cells. MP3D
can execute correctly without protecting competing accesses with locks. To test
whether the bad loads disappeared if data races are removed, we also ran MP3D
with the locking option which eliminates all data races. The degree of bad loads
now became 0.1%, and the remaining bad loads are attributable to false sharing
in Cells. This experiment suggests that most of the bad loads are due to data
races which means that if programs are properly labeled and if there is no false
sharing, intervening accesses by other processors do not limit the effectiveness of
the compiler algorithms.

The four applications to the right have a lower fraction of optimal loads ranging
from 10% to 36% as shown in Figure 7, and there is not so much to gain for any
of the algorithms. The detection accuracy for these applications is interesting,
however, because bad loads can reverse the performance for these applications.

Starting with LU, L and C cover more than 80% of the optimal loads and do not
generate any bad loads. By contrast, although S shows a higher coverage, the degree
of bad loads is higher (5%) as well. We traced these bad loads to the WAITPAUSE
synchronization primitive. These bad loads are related to a conditional execution
path where the load was marked, but the related store is not always executed. In
LU, most of the memory blocks are modified once and then become read only for
the rest of the execution. In DM, all blocks are first fetched in exclusive mode
which results in a high coverage. After a block has been modified, other processors
will fetch it for reading. The first of these read-fetches of a block, however, will be
granted an exclusive copy. This is the reason why we see a high degree of bad for
DM in LU.
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Continuing with Ocean, L and C were unable to obtain a high coverage although
22% of the cache misses should load a block in the exclusive state (see Figure 7).
By contrast, S manages to achieve a coverage of 48%. We have found that this
difference mainly stems from the count variable in the barrier synchronizations
that cannot be covered by L and C. While S covers such occurrences, we found that
S was limited by the fact that it looks for load-store sequences to the same word
address; in Ocean, most undetected loads were in a code which in a simplied form
is

for (j = L; j < U; j += 2)
v[j] = v[j-1] + v[j+1];

The loop-carried load-store sequence in this code is at the block level because at
least one of the vector elements (v[j-1] or v[j+1]) belongs to the same cache block
as v[j]. This is a case where it would have paid off to let the compiler explore
load-store sequences at the block level instead of at the word level. In Ocean, DS
and DM have both high coverages and high degrees of bad. We speculate that the
bad loads in the adaptive protocols are due to false sharing which trigger frequent
reclassifications of whether a block is migratory or not.

Barnes-Hut and PTHOR are two applications with irregular data structures. For
Barnes-Hut, the coverages of L and C were limited by conditional execution paths
and load-store sequences at the block level, and the latter also limited S. L generates
virtually no bad loads. C has a degree of bad loads of 3%, while for S it is as much
as 47%. Almost all of the bad loads were generated in a code where a pointer is first
read and then conditionally modified, and this occurs in the procedure loadtree.
In C syntax, the code is in the following form:

if (*qptr == NULL)
*qptr = (nodeptr) p;

While DS and DM have coverages (65% and 72%) similar to S, their degrees of bad
(18% and 34%) are less.

Finally, none of the compiler algorithms was able to achieve a high coverage for
PTHOR. Due to many load-store sequences at the block level and with conditional
branches, the coverage of each algorithm was limited to 37% for L and C, and 52%
for S. While both L and C generated a degree of bad loads of 3%, S generated a
degree of bad loads as high as 77%. The majority of the bad loads for S are generated
in the procedure xeval where one variable (glob->DeadCount) is frequently read
without being modified. Since there are execution paths from these loads to stores
for this variable, S uses load exclusive here. DS and DM have higher coverages
(75% and 84%) than the compiler algorithms, and their degrees of bad (12% and
25%) are much less than that for S.

In summary, the compiler algorithms manage to cover a vast majority of all
optimal loads for the three applications that exhibit migratory sharing. The limiting
factors of even higher coverage were attributable to load-store sequences at the
block level. Contrary to our beliefs, however, aliasing did not appear to be a
limitation for any application based on the fact that the uncovered optimal loads
are due to other reasons. As for intervening accesses, they only showed up to
some extent in a synchronization primitive in LU for S. Moreover, our experiments
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Fig. 8. Normalized execution times for the applications with migratory sharing. B stands for
baseline. L, C, and S stand for the Local, Conservative, and the Speculative compiler algorithms,
respectively. DS and DM stand for the default-shared and default-migratory adaptive cache
coherence protocols, respectively.

with MP3D suggest that properly labeled programs with little false sharing would
eliminate the impact of intervening accesses completely. Finally, the high coverages
reached for applications with a fair amount of migratory sharing suggest that further
improvements of our algorithms would have a minor effect on their efficiencies.
One of the compiler algorithms, S, generated high degrees of bad loads for two
applications (Barnes-Hut and PTHOR) while the adaptive protocols generated high
degrees of bad loads for one application (Ocean). We will now study the effects of
coverage and degree of bad loads on the execution time and traffic.

6.2 Effects on Execution Time

In this section we present the execution times for the applications for our three
compiler algorithms and the two adaptive cache coherence protocols. In Figures 8
through 10, B denotes the normalized execution time for the baseline, and L, C,
and S represent Local, Conservative, and Speculative, respectively. Finally, DS and
DM stand for the default-shared and default-migratory adaptive cache coherence
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Fig. 9. Normalized execution times for LU and Ocean.

protocols, respectively. The normalized execution time for each scheme in Figures 8
through 10 is broken down into the following components from the bottom to the
top: the busy time, the synchronization stall-time, the read stall-time, and the
write stall-time.

We start by looking at the applications with most migratory sharing: Water,
Cholesky, and MP3D. Based on the high coverages and high fractions of optimal
loads in these applications, we expect to see significant reductions in the write stall-
times. The write stall-times for B range from 2% in Water, 24% in Cholesky, to
40% in MP3D. When considering the compiler algorithms (L, C, and S) and the
adaptive cache coherence protocols (DS and DM) we see that the write stall-times
are almost completely eliminated.

Looking at the gains of the adaptive cache coherence protocols first, we would
expect DM to be most effective because migratory sharing dominates in these ap-
plications. In fact, DM manages to remove all write stall-time in Water and most of
the write stall-times in Cholesky and MP3D. Although DS is not as efficient as DM,
it rapidly detects migratory sharing and achieves nearly identical improvements of
the execution times compared to DM. The reduction of explicit ownership requests
made by these schemes also helps cutting part of the synchronization time because
of less contention to locks and memory. This effect is especially pronounced in
MP3D, where the synchronization stall-time is reduced from 11% to 7% for DS and
8% for DM. Overall, the adaptive cache coherence protocols manage to cut at least
67% (Cholesky) of the write stall-time resulting in a reduction of the execution
time by as much as 40% in MP3D. These results conform qualitatively with those
presented in Stenström et al. [1993].

Continuing with the effectiveness of the compiler algorithms, we see that L and C
are as effective in cutting the write stall-times in Water and Cholesky as DM—the
ACM Transactions on Programming Languages and Systems, Vol. 18, No. 6, November 1996.
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Fig. 10. Normalized execution times for Barnes-Hut and PTHOR.

adaptive cache coherence protocol that performs best. Although L and C also cut
most of the write stall-time in MP3D (67%), S does even better and is virtually as
effective as DM for all three applications.

We will now consider the applications with little or no migratory sharing: LU,
Ocean, PTHOR, and Barnes-Hut in Figures 9 and 10. While neither our compiler
algorithms nor the hardware-based mechanism are expected to improve the per-
formance much, we are interested in seeing the effects of the degrees of bad loads
that we observed in Figure 7. We make the following observations. The adaptive
algorithms increase the read stall-time by more than 40% for Ocean. Neither L nor
C have any significant effect on the execution times; however, S more than doubles
the read stall-time in PTHOR due to useless invalidations, and this results in an
increased execution time.

In summary, we note that removing the ownership overhead has a dramatic
impact on the execution times for two of the seven applications. Our most aggressive
compiler algorithm (S) does better or the same as both adaptive cache coherence
protocols for six of the seven applications, but for one (PTHOR) it increases the
execution time significantly. This suggests that L and C seem to be the best choice
across the applications studied.

6.3 Effects on Traffic

We present in this section how memory traffic is affected for each algorithm. A
reduction in traffic comes from reducing the number of control messages while an
increase is due to additional cache misses created by useless invalidations. Recall
that a control message is 5 bytes, and a data message is 37 bytes.

Figure 11 shows the traffic for each application and algorithm normalized to that
of the baseline system (100%). Starting with Water, Cholesky, and MP3D, we see a
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significant reduction in traffic for all five algorithms. Since the degrees of bad loads
in these applications are low, and there are more than 80% optimal loads, we can
see traffic reductions that correspond to the coverages. For Water, the compiler
algorithms reduce the traffic by 15% and the adaptive protocols by 16%. The lower
coverage of DS for Cholesky results in a traffic reduction of 14% while C, S, and
DM reduces the traffic by 17%, and L reduces it by 18%. Finally for MP3D, the
lower coverages of L and C result in traffic reductions of 13% only while S and DM
reduce the traffic by 18% and DS by 17%.

Continuing with the applications with little migratory sharing (LU, Ocean, Barnes-
Hut, and PTHOR), we find that S, DS, and DM each increase the traffic by more
than 20% for one application: S by 57% for PTHOR, DS by 22%, and DM by 23%
for Ocean. The additional traffic is due to the high degrees of bad loads as observed
in Section 6.1. The impact of the increased traffic on the execution time depends
on the bandwidth provided by the interconnection network—for instance, the per-
formance of bus-based multiprocessors could be hurt because it is often limited by
the bandwidth of the bus. Although we have measured the total traffic over the
application execution (and not the bandwidth requirements), our measurements
show that only L and C generate traffic that is either below or only marginally
above that generated by the baseline; C increases the traffic for Barnes-Hut by 1%
and for PTHOR by 2%.

7. DISCUSSION AND RELATED WORK

The success of static analysis by the compiler is of course dependent on the pro-
gramming style in an application. We do not know how representative our set of
application programs are in respect to actually helping the compiler to do accurate
dataflow analysis, but for these applications it is clear that standard intraprocedu-
ral dataflow analysis indeed is very useful. Since we have used parallel applications
that are not annotated with primitives that reveal expected use of data, we feel that
annotations such as those proposed in Cooperative shared memory [Hill et al. 1992]
are not needed to reduce ownership overhead effectively using static analysis.

In Mowry et al. [1992], a compiler algorithm for nonbinding prefetching based
on locality analysis is presented, and Mowry extended it for shared-memory mul-
tiprocessors by taking synchronizations into account when computing the localized
iteration space of a loop [Mowry 1994]. Their algorithm does nonbinding prefetch-
ing in read-only or read-exclusive mode. These algorithms are very effective in
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hiding the memory latency for array references that are linear functions of the
loop indices, since for such references it is possible to calculate the address and
issue prefetch instruction sufficiently ahead of time through software pipelining. In
the general case, however, it can be difficult for the compiler to determine which
references will miss in the cache.

Compared with Mowry’s work on compiler-controlled software prefetching, this
article focuses on a related but separate problem. A shared-memory multiprocessor
with support for nonbinding software-controlled prefetching should, in our opinion,
also support a load instruction capable of acquiring ownership. Our argument
is that in codes where the compiler is unable to determine whether a reference to
shared memory will create a cache miss or not, it is necessary to restrict prefetching
in order to avoid instruction overhead should the reference hit without a prefetch.
Our algorithms do not add any instruction overhead, and this article focuses on (1)
the problem of determining which load instructions should be marked as ownership
requests and (2) the effects on the execution time and traffic of this optimization.
Marking of loads also should be restricted because otherwise the compiler would
create additional invalidations and misses which would degrade performance. The
local and conservative compiler algorithms consistently improved performance by
reducing ownership overhead while only marginally creating useless cache misses.

We studied the impact of removing ownership overhead on the execution time and
traffic using a detailed architectural simulator and found its effect to be dramatic in
some cases. A limitation of the simulations presented in this article, however, stems
from the lack of variation of key architectural choices such as memory consistency
model, latency numbers, as well as cache parameters. Based on available data
from other studies combined with some key observations in this study, it is possible
to predict how the results would have been affected by variations in such design
choices.

To start with, if a relaxed memory consistency model would have been used,
the gains of the algorithms seem at first glance nullified because the write latency
can then be completely hidden [Gharachorloo et al. 1991]. However, the traffic
reductions we have observed in this study can cut the read and synchronization
penalties under relaxed memory consistency models because of less contention in
the memory system.

Continuing with the effect of varying the memory system latencies, we first note
that the latency assumptions in this study are similar to those found in machines
such as the DASH [Lenoski et al. 1992], although DASH services cache misses in
three node-to-node traversals in situations where our protocol handles them in four.
However, if we were to consider more aggressive processors than we have assumed
in this study such as the DEC Alpha, the impact of ownership overhead reduction
on the execution time would be more dramatic than our numbers suggest.

Cox and Fowler [1993] studied the effect of cache parameters on the effectiveness
of the adaptive techniques. Overall they found that if false sharing becomes dom-
inant when the block size increases, the effectiveness of the detection goes down.
We have reasons to believe that this is true for our compiler algorithms as well
because they do not take into account intervening accesses from other processors.
Considering limited caches, replacements can reduce the latency of each individual
cache operation because blocks are more often uncached in the home node. In Cox

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 6, November 1996.



680 · Jonas Skeppstedt and Per Stenström

and Fowler [1993] it was found that the relative efficiency of the adaptive tech-
niques was smaller for limited caches, and we expect this to hold for our compiler
algorithms as well.

Finally, in Dahlgren et al. [1995] the speculative compiler algorithm was evalu-
ated in the context of a bus-based multiprocessor. It was found that the number
of busy bus cycles could be reduced by 31% for Water, 33% for Cholesky, 29%
for MP3D, and 3% for Ocean. Based on the measurements in this article, we ex-
pect that the local and conservative algorithms are robust techniques to reduce the
number of busy bus cycles in bus-based multiprocessors.

While this article focuses on reducing ownership overhead and write stall-time,
in another work we have studied the potential of using classic dataflow techniques
in a compiler algorithm to reduce read stall-time [Skeppstedt and Stenström 1995].
That work extends the concept of store-classes to the cache block level and studies
compiler-inserted memory update instructions for irregular data structutes. The
evaluation in that paper shows that the read stall-time could be reduced signifi-
cantly for applications with migratory sharing.

8. CONCLUSIONS

In this article we have presented the design and evaluation of three compiler algo-
rithms that aim at reducing the ownership overhead associated with write-invalidate
cache coherence protocols. These algorithms use dataflow analysis techniques to
detect load-store sequences using the same address. Loads belonging to such se-
quences are marked and provide a hint to the cache to acquire an exclusive copy
of the block. Thus if a marked load misses in the cache, the ownership acquisition
can be coalesced with the request for the missing block.

The simplest algorithm detects load-store sequences within each basic block only,
whereas the two other algorithms analyze the existence of such sequences across
basic blocks at the intraprocedural level. While the second algorithm conserva-
tively requires that the subsequent store is executed, the third algorithm relaxes
this condition by only requiring that one possible execution path contains the store.
The advantages of the algorithms are that they are based on classic intraprocedu-
ral dataflow analysis similar to live-variable analysis; they add very little to the
complexity of the analysis already done in optimizing compilers.

In our evaluation of the detection efficiency of the compiler algorithms, we have
found that the compiler algorithms detected a clear majority of the load-store se-
quences that gave rise to ownership overhead in applications with migratory sharing.
Our data suggest that dataflow analysis techniques can advantageously be used to
reduce coherence overhead found in state-of-the-art multiprocessors systems. While
the most aggressive algorithm consistently has a higher coverage than the other al-
gorithms, it can fail and generate more cache misses in some cases. It increased the
execution time for one application. We envision that branch-profiling information
can be used to reduce the degree of bad for the most aggresive algorithm; however,
we believe that the performance effects of this algorithm without improvement are
unstable.

To gain further understanding about the usefulness of static compiler algorithms,
we compared them with a dynamic hardware-based mechanism and found that they
achieve similar performance improvements. We found that the dynamic mechanisms
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increased the read stall-time for one application, which shows that they are not able
to handle all application sharing behaviors effectively.

Of the five algorithms we evaluated, both hardware and software, it was the local
and conservative compiler algorithms that showed the most consistent performance
improvements. This indicates that classic dataflow analysis is a suitable technique
to reduce ownership overhead in cache coherent multiprocessors.
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