
t-t-t-t-t
-t-t-t-t-
t-t-t-t-t
-t-t-t-t-
t-t-t-t-t
-t-t-t-t-
t-t-t-t-t
-t-t-t-t-

A m u n d A a r s t e n ,
D a v i d e B r u g a l i , a n d

G i u s e p p e M e n g a

Designing
Concurrent

and Distrib
Control Syste

After a decade of real-world experiences,
the applicability of the G++ pattern language

is well documented.

T
HE object-oriented paradigm claims to pro-

mote reuse, reduce development time, and

improve software quality. Originally these

properties were considered at the level of components, and were achieved through

the use of libraries of reusable classes organized in hierarchies of inheritance. How-

ever, attention is now being shifted from individual components to the whole architecture

by giving more importance to the fundamental role that patterns of relationships between

the elements have in any design.

50 October 1996/Vol. 39, No. 10 COMMUNICATIONS OF THE ACM

http://crossmark.crossref.org/dialog/?doi=10.1145%2F236156.236168&domain=pdf&date_stamp=1996-10-01

COMMUNICATIONS OF THE ACM October 1996/Vol. 39, No. 10 51

t-
-
t-
-
t-
-t
t-
-

The approach described here is based on the con-
cepts of patterns and pattern language:

• Pattern—A cluster of cooperating objects linked by
certain relationships and the rules that express a
link between a context, the design problem, and its
solution—become the module of a unitary archi-
tectural model.

• Pattern Language—The sequential and organic
structuring of patterns for a specific application

domain—becomes the
method for the devel-
opment process.

This article has two
objectives: to interpret
the pattern language
concept in the
domain of software

engineering, and to show its use in
software architecture design. We do
this by summarizing the G++ pat-
tern language [1], the result of 10
years of experience in developing
concurrent and distributed control

systems, originally in the field of computer-
integrated manufacturing (CIM), and by using it to
describe a recent project involving cooperative
autonomous mobile robots [5].

The G++ Pattern Language
The G++ pattern language addresses the problem of
designing large software control systems, made up of
layers of concurrent control modules installed on a

distributed computer architecture,

by following an evolutionary development process
that derives the final implementation from a proto-
type of the logical design. Patterns in this language
are structured, following Alexander [2], in a tree as
shown in Figure 1; each circle denotes a pattern and
hence a design decision point, and the arcs, which
link patterns, represent the temporal sequence of
decisions. The development process results by follow-
ing the graph from the root to the leaves, as outlined
here.

The language is derived from the “divide and con-
quer” paradigm [6] and deals with issues such as the
organization of control modules in a hierarchy of
inclusion and use relationships, and the visibility
requirements between the control modules, concur-
rency, and distribution.

In addition, in large distributed control architec-
tures, a prototyping phase is mandatory before attempt-
ing to integrate modules of control with the physical
process. The adoption of an evolutionary design
approach, which moves smoothly from a prototype to
the physical implementation, is then the correct solu-
tion; the pattern language takes this into account.

The Application Domain
As an example of the theory outlined in this article, we
consider the problem of developing a control archi-
tecture for cooperative autonomous mobile robots.

The robots are said to belong to an agency,1 which
is able to fulfill a variety of tasks specified by the “Mis-
sion Supervisor.” An “Agency Manager” manages the
robots and provides the Mission Supervisor with a cen-
tralized point of access to the agency. The “Agency
Manager” decomposes tasks into sub-tasks and acti-
vates those robots that may be needed to execute each
sub-task. It also has the responsibility of monitoring
the results in order to verify their correctness.

Mobile robots usually operate in unstructured
environments with little a priori information, where
robustness in front of significant variability of the
operational condition is necessary. Therefore, mobile
robots must have a high degree of autonomy, being

able to employ different strategies and exhibit dif-

uted
ms

A Hierarchy of
Control Layers

Visibility and
Communication
between Control
Modules

Objects and
Concurrency

Services
“waiting for”

Actions
Triggered by
Events

Client/
Server
Service

Implementation
of Control Modules

Interface to
Control Modules

Distribution of
Control Modules

Remote
Control

Prototype
and Reality

10

1

2 3

4 5 6

7 8 9

11

Figure 1. The G++ pattern
language

1Agency—where many simpler things...come together and their
combined actions enable expressive and knowledgable behav-

ior. (Minsky, M. Commun. ACM 37, 7 (July 1994), 54.)

52 October 1996/Vol. 39, No. 10 COMMUNICATIONS OF THE ACM

ferent behaviors, and adapting themselves to different
environmental conditions.

In an agency, autonomy also implies that the robots
may collaborate and, more importantly, initiate collabo-
ration on their own initiative. Collaboration requires
the robots of the agency to have a common architec-
ture and a common medium, in order to have aware-
ness of each other and to communicate.

As an example, we consider an agency of robots
that have to explore an indoor environment, as
described in [5]. Each robot has its own sensors and
is able to build a description of its surroundings
using sensor information. Every sensor has specific
capabilities and is able to detect specific kinds of
objects in the environment. Therefore, each robot’s
description of the environment may be incomplete.
In order to adequately fulfill its task, each robot
may take advantage of the information represented
in the maps of the other robots, for instance in
planning a collision-free path to reach its destina-
tion in the environment.

Figure 2 shows the analysis model of the robot
agency: a MissionSupervisor assigns a task to the Agency-
Manager, which manages a set of robots. Each robot
maintains a Map of the environment and is able to col-
laborate with the other robots of the agency. Further-
more, each robot has Sensors and a MobilePlatform.

The remainder of this article presents selected pat-
terns from the G++ pattern language, showing how
each pattern was applied in the
robot agency project.

Communication Between
Objects
Any complex system, by its very
nature, follows a development
process where an important
problem is the integration of
the system’s components as
they are finished. Two situa-
tions are possible: building
modules that will be plugged
into a pre-existing architecture,
or building an architecture
that must integrate pre-existing control modules. In
the former case, modules are built having visibility [4]
of the environment in which they will operate, while
in the latter situation this does not happen. The fol-
lowing pattern offers a guideline to solve communica-
tion problems between modules taking into account
the two different situations of visibility.

Pattern: Visibility and Communication between
Control Modules
Each control module performs services, requests services from

other modules or signals events so as to inform other modules
when its state changes.

Context
A complex architecture is decomposed into modules
that communicate with each other in order to coop-
erate, and the way the communication is established
depends on their visibility of each other. Control
modules in communicating can be imperative, as in
the case of a command issued by one module to the
other, or they can be reactive, as in the case of event
monitoring.

Problem
Visibility and communication mechanisms between
control modules must be established for both imper-
ative and reactive communication.

Solution
The two situations have a direct relationship with the
two basic mechanisms of communication between
objects, here called Caller/Provider and Broadcaster/Lis-
teners. The Caller/Provider mechanism is involved
when an object invokes another object method and is
deeply rooted in object-oriented programming, so it
will not be discussed further. The Broadcaster/Listener
mechanism is achieved by giving all the objects of the
framework the capability of broadcasting and listen-
ing to events. The term event is used here to indicate

a broadcast message issued at a certain instant of time
by an object, identified by a symbolic name and with
some data associated with it. There is no redundancy
in these two mechanisms as they imply different visi-
bility relationships between the players involved in
the communication, and the choice between the two
has important consequences on the reusability of the
design. The Broadcaster/Listener communication
mechanism is widely used in object-oriented pro-

t-t-t-t-t-t-t-t-t-t-t-

AgencyManagerMissionSupervisor

RobotMap

MobilePlatformSensorManager

assigns task to

maintains

manages

collaborates with

contains

Figure 2. Mobile robot agency analysis

COMMUNICATIONS OF THE ACM October 1996/Vol. 39, No. 10 53

gramming: for example it is called Observer in [8] and
it corresponds to the changed: update mechanism in
Smalltalk.

Example
In Figure 3, high-level control modules have visibili-
ty of lower-level control modules and communicate
with them using the caller/provider mechanism: the
MissionSupervisor configures the agency or assigns a
task to it, calling the corresponding methods of the
AgencyManager; similarly, the AgencyManager speci-
fies sub-tasks for the robots, which initialize the Sen-
sorManager and assign new goals to the
MobilePlatform.

At the opposite, low-level control modules broad-
cast events, which are monitored by higher level con-
trol modules. Using this mechanism the
SensorManager informs other modules when new
readings are available or the MobilePlatform that the
robots have reached the goal.

The visibility relationships so far explained follow
the classical hierarchy that may be recognized in
application domains such as CIM, but in the robot
architecture presented here, the hierarchy is broken:
two different robots (represented by control modules
at the same level) are entailed to communicate
directly using both mechanisms. In fact, a robot asks
for collaboration from other robots using the
Caller/Provider mechanism and waits for the answer
while monitoring events raised by the partners.

Levels of Granularity in Concurrent Activities
In real systems concurrency occurs at different levels
of granularity. These are usually classified in fine,
medium, and large grain as in [7]; control modules
manage different pools of shared resources and offer

different kinds of concurrent operations to their
clients. The following patterns offer guidelines to rec-
ognize different granularity of concurrency in a com-
plex system and provide features to conveniently
model the concurrent activities according to their
level of granularity.

Pattern: Objects and Concurrency
Control modules in the system perform services concurrently
and concurrency assumes different scales of granularity.

Context
In a complex system, some activities are made up of
simple actions without a predefined order (also called
a weak cohesion); others are operations comprised of
an ordered sequence of actions, having a stronger
cohesion, while yet another group of activities is rep-
resented by control modules operating in parallel,
such as the individual robots. These three examples of
the different levels of granularity were defined as fine,
medium, and large in the previous paragraph.

Problem
It is desirable to adopt the correct model for repre-
senting concurrency at the different granularities.

Solution
For each grain of concurrency, a different type of
object is needed to support the activities. The rela-
tionship between objects and processes supporting
their activities induces the following, generally
accepted, classifications:

• Passive Objects depend on client threads of con-
trol for the execution of their functions and can
be subdivided into sequential or blocking. The

-t-t-t-t-t-t-t-t-t-t-t

MissionSupervisorA
missionSupervisor

A AgencyManager
agencyManager

Robot
robots

A Robot
otherRobots

A

A MobilePlatform
mobilePlatform

A SensorManager
sensorManager

B Map
map

ExploreZone()
ConfigureAgency()

VerifyPath()

ExtendMap()
PlanPath()

ActivateSensors()InsertWall()
FindObstacle(), etc. NewGoal()

NEW READING
ARRIVED

NEW READING

PATH AVAILABLE
OBSTACLE_FOUND

Figure 3. Examples of method calls and events in the robot agency

behavioral semantics of sequential objects are
guaranteed only in the presence of a single thread
of control. Blocking objects maintain their seman-
tics when more than one thread accesses them,
and offer the wait primitive that is the indispens-
able element to block client threads allowing them
to interact.

• Threads of control—ThreadOfControl is the class
whose instances are independent processes. They
simply lend the objects that possess them their
data structure (context) and their capability to sus-
pend the flow of execution (“wait”) of the services
they support.

• Active Objects differ from passive ones because
they possess, create, and internally manage one or
more independent threads of control that govern
the execution of their services. They are the natur-
al candidates to represent modules of controls.

Represent fine-grain activities as event-driven,
atomic actions, which access sequential objects. Make

medium-grain activities run in the context given by a
thread of control, which can share blocking objects.
Large-grain activities are implemented as separate
active objects. These concepts are explained later in
this article.

Example
The highest level of concurrency may be recognized
among the robots belonging to the agency; since they
are autonomous, they are conveniently modeled as
active objects. Other active objects are indicated with
an “A” in Figure 3.

A medium grain of concurrency occurs between the
different activities of the SensorManager when several
sensor devices are available. In fact, it may be modeled
as an active object providing several functionalities,
depending on the capabilities of the sensors.

The robot’s different strategies and behaviors are
modeled as fine-grain concurrency: each sensor event
causes parallel transitions along several paths in the

robot’s decision graph.
The MotionManager has the responsibility to drive

the robot to the specified goal, to react to an unex-
pected change of goal while traveling and to provide
an estimate of the robot real displacement in case of
motion errors. Once again these functions are mod-
eled as medium-grain concurrent activities.

Pattern: Client/Server/Service
Modules of control are objects, which must be able to offer
multiple concurrent services and have the capability to
encapsulate the resources and the services that manipulate
them.

Context
Modules of control deal with different topics: con-
currency, abstraction, and encapsulation.

Problem
The first requirement of a control module is to offer
concurrency—it should be able to offer more than a
single service in every moment to its clients.

Another requirement is a common representation
of the control modules at the different levels of the
hierarchy for standardization purposes, so as to
enforce reusability and facilitate the task of distribut-
ing the application.

Finally, modules of control should have the capa-
bility to encapsulate the resources and the services
that manipulate them.

Solution
These requirements are satisfied by the Client/Serv-
er/Service model proposed in this pattern and
derived by the programming paradigm of the lan-
guage “Synchronizing Resources SR” [3]. Two classes
are needed to support it: the Service and the Server
(see Figure 4).

The Service
The Service, derived from ThreadOfControl, encapsu-
lates a thread of execution. It maintains a symbolic
value corresponding to its execution state, and broad-
casts events announcing the new state name every
time a state transition occurs. In addition, it can have
internal, thread-local data (sequential objects).

The Server
The Server is the abstract class that defines the com-
mon characteristics of all active objects, and has to be
redefined in order to build concrete servers. It offers
three methods for creating and executing services:
execService(), waitService(), and joinService(), which rep-
resent asynchronous, synchronous, and deferred-syn-
chronous service requests, respectively.

Whenever one of these methods is called, a new
Service is created and set up to execute a private

54 October 1996/Vol. 39, No. 10 COMMUNICATIONS OF THE ACM

t-t-t-t-t-t-t-t-t-t-t-

A ThreadOfControl

delegates to
doService() creates

execService()
joinService()
waitService()
doService()

A Server

A Service

is_a

NEW_STATUS(service)

NEW_STATUS

Figure 4. Client/Server/Service

COMMUNICATIONS OF THE ACM October 1996/Vol. 39, No. 10 55

method of the server. Methods that are executed by
the services in this way are called active methods.

Server also subscribes to state transition events gen-
erated by its services and relays them externally. In
this way, clients can monitor the execution state of
asynchronous and deferred-synchronous requests
without having visibility of, or even knowledge of, the
Services.

The representation of all service behaviors in the
framework as methods of the classes derived by Serv-
er is an alternative design choice to the command
pattern of [8]. Command “objectifies” services, by
modeling them as different “behavior objects”.
Instead, Client/Server/Service uses a pattern which
we would call Delegated Environment: service behav-
iors are methods of the object which offers them, but
they can be executed concurrently thanks to the con-
text delegated from instances of the Service class.
This solution has the double advantage of offering a
protected execution environment for each service
instance, while at the same time allowing all services
inside a server to share the server resources without
visibility problems.

Example
Each Robot is modeled as an active object, performing
simultaneously different activities:

• Monitoring the execution of its own task.
• Cooperating with other robots.
• Managing the mobile platform.

The Robot is therefore structured as a Server offer-
ing different concurrent Services. For instance, when
the robot asks other robots to verify its planned path
according to their local information, the collaborator
Service waits for reply events (or a time-out). The
other robot activities, meanwhile, proceed.

Evolution from Simulation to Reality
Concurrency and distribution add considerably to
the complexity of the task of developing large soft-
ware systems. Simulating some parts of the system can
make testing and debugging (some of the most diffi-
cult aspects) much easier. In some application
domains, simulation becomes a necessity.

Simulation is often employed when the physical
architecture of the final system is distributed. For the
purposes of this article, there are two basic kinds of dis-
tributed systems. One is the distribution of server
objects; the other is objects with remote control. These
two situations are covered by the patterns Distribution
of Control Modules and Remote Control, respectively.

Pattern: From Prototype to Reality
Any complex application requires prototyping and simula-
tion of the different elements that have to be integrated before

an implementation is derived.

Context
Simulation is typically used in two different situations:

• When part of the application’s functionality is in
time-consuming computations, or when the full
functionality is not ready yet.

• When the final system is a distributed system. In
these cases, the simulation is typically done locally
on a single computer; the simulation must then be
evolved to a distributed program.

When parts of the system are simulated, a seamless
evolution to the real system is fundamental; also, the
changes involved must be of a local nature. If we
make changes to the non-simulated components, we
can no longer trust the results obtained by the simu-
lation, and its whole value would be lost.

Problem
How can we ensure a seamless evolution from the
simulation to the final implementation?

Solution
For any object that needs to be simulated, maintain
two coexisting versions:

• The simulated or emulated time prototype, which simu-
lates or emulates the object behavior.

• The reality object, which embeds the physical reality.

The reality object could interface to a hardware
device driver, encapsulate an external functionality
like a relational database, or act as a surrogate or
proxy for a remote object as described in the pattern
Distribution of Control Modules.

When going from simulation to reality, replace the
prototype object with the object (e.g., device driver)
that interfaces to the reality. Consistency in this tran-
sition can be obtained by inheriting the two imple-
mentations from a common base class which defines
their interface. Alternatively, by using separate inter-
face and implementation objects, the new implemen-
tation object can be substituted in the interface
object’s use relationship.

Example
The robot control project benefits particularly from
simulation, since the major part of the implementa-
tion of the control architecture resides with the
robots that not only are distributed but are also mov-
ing around.

Pattern: Distribution of Control Modules
Control modules can reside on remote computers or peripher-
al devices, interconnected through a common communica-

-t-t-t-t-t-t-t-t-t-t-t

tion network. These modules define the physical architecture
that must be realized by the final distributed system.

Context
Some of the objects in the simulation will be moved
to remote nodes (i.e., the final system involves dis-
tributing first-class objects).

Problem
When going from a nondistributed simulation to the
distributed reality, the objects that are moved to
remote nodes are no longer part of the original pro-
gram; they must become independent programs in
their own right. The rest of the system should not be
affected by moving some objects to a remote node.

Moving objects to remote nodes should be relatively
easy in order to not prevent the system from chang-
ing with the physical architecture; that is, we want to
exploit an evolutionary approach.

Solution
Divide the distributed objects into two
parts: an interface proxy and the imple-
mentation. In the original system, replace
the objects that have been moved to
other nodes with the proxy objects. The
proxies have the same interface as the
object they replace, and forward each
request over the network or communica-
tion link to the remote object they repre-
sent. The functionality of the proxy
object corresponds to that of the CORBA
stub [11]. In the program on the remote
node where the implementation object
resides, support must be added for listen-
ing for requests coming over the commu-
nication network and forwarding them to
the correct object. This functionality corresponds to
that of the server skeleton and the object adapter of
the OMG CORBA reference model [11].

Example
In the simulation, the AgencyManager has a collection
of Robot objects. In the final system, this collection is
replaced by a collection of RobotProxy objects, which

encapsulate the communication with the physical
robots, as shown in Figure 5.

Pattern: Remote Control
Reality can be a remote device, and possibly part of a reac-
tive, event-driven system.

Context
Often, not all the components of the final distributed
architecture are first-class objects. For instance, intel-
ligent peripheral devices such as the MobilePlatform
are not accessed by method calls. These components
can usually be viewed as part of a reactive, event-dri-
ven system.

Event-driven systems, for the purposes of this arti-
cle, maintain a
state and interact
with the outside
world through
events. The system
state can usually
be read, either
directly or indi-
rectly, through
events carrying
information.

A common char-
acteristic of event-driven systems is the presence of
active data [10], variables that generate events when
their value changes. This is useful for, among other
things, implementing constraints between related
values.

Problem
In the simulation, the control of a peripheral device
uses variables and events. In the real system, the device
does not have variables in the program’s address space.

56 October 1996/Vol. 39, No. 10 COMMUNICATIONS OF THE ACM

-t-t-t-t-t-t-t-t-t-t-t

INCA AgencyManager
agencyManager

INCA AgencyManager
agencyManager

DistributedProxy

A RobotProxy
robots

A RobotProxy
robots

becomes

for each subscriber s
 call s->notify(ev)
end

Object

ev.declare()

callCbacks(Symbol& ev)
callCbacks(Event& ev)

Event

name
owner

raise()
notify()

raise external event
owner-> raiseEvent(name)

owner-> raiseEvent(name)

Figure 5. Robot distribution

Figure 6. External/logical event bridge

COMMUNICATIONS OF THE ACM October 1996/Vol. 39, No. 10 57

Furthermore, the G++ logical events are just a commu-
nication mechanism; they are not first-class objects as
the events in the real system.

Also, program objects that subscribe to the simulation
object’s logical events should continue to receive those
logical events in the final system. This means a bridge is
needed between the logical and the external events.

Solution
Virtualize the data used by the component simula-
tion to access the peripheral state via a proxy class.
Make a class Event to encapsulate external events as
shown in Figure 6. Event knows the logical event it
corresponds to (name) and the program object that
should raise the logical event when the external
event occurs.

Overload the method used to broadcast logical
events (in G++ called callCbacks) with a new method
taking an Event as a parameter, as shown in the lower
part of Figure 6. For each external event that must be
translated to and from logical events, declare an
Event instance with the same identifier as the desired
logical event in the scope of the class in question, and
associate the Event with the logical event by setting
the Event’s name. Calls to callCbacks will bind to the
new method (since the global event identifier is hid-
den by the Event object declared in class scope,)
ensuring that the logical event is relayed as an exter-
nal event.

Example
The robot’s interaction with the sensors and the
mobile platform is an example of remote control. We
model the sensor measurements as active data. The
mobile platform is controlled by events, and the
move progress is also reported back through events.

In the real robot, the object that represented the
mobile platform in the simulation is replaced by one
that wraps the needed events for communication
with the external mobile platform (Figure 7).

Comparison with the “Design Pattern Catalog”
In order to compare the patterns presented here with

those described in the literature [8], they are subdi-
vided and classified as elemental, basic design, and
domain dependent. Elemental patterns determine
the language (elements of the architecture) in which
the whole application has to be written. Of the pat-
terns presented here, Visibility and Communication
between Control Modules and Objects and Concur-
rency fall into this category. Basic design patterns,
similar to those discussed in [8] and with the same
level of abstraction, propose intermediary design
building blocks such as Client/Server/Service and
Prototype and Reality, which by their nature are fair-
ly application independent. Distribution of Control
Modules and Remote Control are domain dependent
and are similar in concepts to [9]. They provide
guidelines on using the framework’s classes to solve
specific problems. They obviously exploit in turn
basic design patterns for their implementation.

Conclusion
We have presented a summary of the G++ pattern lan-
guage for concurrent and distributed systems, the
result of experience acquired from real-world pro-
jects over the last 10 years.

While there is currently a great interest in individ-
ual patterns, we believe that pattern languages have
not yet received the attention they deserve, and that
they will have an important role in many domains.

The existence of design patterns is often very valu-
able for solving isolated design problems. In our
experience, a domain-specific pattern language does
the same to a whole development project. Typically,
engineers without experience with object-oriented
programming or concurrent/distributed systems are
able to develop systems of significant complexity after
a period of three months.

References
1. Aarsten, A. Elia, G. and Menga, G. G++: A pattern language for

computer integrated manufacturing. In Pattern Languages of
Program Design. Addison-Wesley, NY, 1995.

2. Alexander C. A Pattern Language: Towns, Buildings, Construction.
Oxford University Press, New York, 1977.

3. Andrews, G.R. An overview of the SR language and implementation.
ACM Trans. Programming Languages and Systems 10, 1 (1988), 51–86.

C

t-t-t-t-t-t-t-t-t-t-t-

NEW READING
ARRIVED

becomes
A MobilePlatform

mobilePlatform
A MobilePlatform

mobilePlatform

Symbol
NEW POSITION

Symbol
ARRIVED

Event
NEW POSITION

Event
ARRIVED

Event
moveCommand

Symbol
NEW POSITION

Symbol
ARRIVED

Symbol
moveCommand

Figure 7. MobilePlatform prototype and reality

4. Booch, G. Object Oriented Design with Applications.
Benjamin/Cummings, 1991.

5. Borghi, G. and Brugali, D. Autonomous map learning for a
multi-sensor mobile robot using diktiometric representation
and negotiation mechanism. In Proceedings of ICAR’95 (Sant
Feliu de Guixols, Spain, Sept. 20–22, 1995), pp. 521–528.

6. Brooks, R.A. A Robust layered control system for a mobile
robot. IEEE J. Robotics and Automation, RA-2, 1 (Mar. 1986).

7. Chin, R.S. and Chanson, S.T. Distributed object-based pro-
gramming system. ACM Comput. Surveys 23 (Mar. 1991), 91–124.

8. E., Helm, R., Johnson, R., Villisides, J. Design Patterns: Elements
of Reusable Object Oriented Software. Addison-Wesley, NY, 1994.

9. Johnson, R. Documenting frameworks using patterns. In Pro-
ceedings of OOPSLA ‘92 (Vancouver, B.C., Oct. 1992).

10. Minoura, T., Pargaonkar, S., Rehfuss, K. Structural active
object systems for simulation. In Proceedings of OOPSLA ‘93
(Washington D.C., Oct. 1993).

11. Object Management Group. The Common Object Request Broker:
Architecture and Specification. September 1992.

AMUND AARSTEN is a Ph.D. candidate at the Politecnico di Tori-
no in Torino, Italy; email: amund@polito.it
DAVIDE BRUGALI is a Ph.D. candidate at the Politecnico di Tori-
no in Torino, Italy; email: brugali@polito.it
GIUSEPPE MENGA is a professor and chair of Automatic Con-
trols at the Politecnico di Tornino in Torino, Italy; email:
menga@polito.it

Permission to make digital/hard copy of part or all of this work for person-
al or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that copying
is by permission of ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or a
fee.

© ACM 0002-0782/96/1000 $3.50

58 October 1996/Vol. 39, No. 10 COMMUNICATIONS OF THE ACM

I
N today’s rapidly changing busi-
ness environment, adaptability is a
critical weapon for survival. Busi-
nesses must be adaptable in order
to meet increasingly narrow mar-

ket windows. This need for adapt-
ability at the business level has
changed the focus in many business-
es from efficiency to opportunity,
from reducing costs to generating
revenue. For example, an efficient
but inflexible system might reduce
costs, but might also make it impos-
sible for the business to engage in a
new revenue-generating opportuni-
ty. Those businesses that desire this
adaptability are redoubling their
efforts to make their underlying peo-
ple- and software-systems adaptable,
particularly for those systems that
could inhibit business-level adapt-
ability.

Because of these forces, software
developers need to deal with change
like never before. This need for
adaptable software systems is driving
the move toward object-oriented
(OO) technology in many circles.
Certainly one of the promises of OO
has been its ability to make software
more adaptable.

Using OO, however, does not
guarantee that the resulting software
will be adaptable. Adaptability must
be explicitly engineered into the
software, even with OO. Further-
more, adaptability is not a generic
quality of the software system as a
whole: Software systems are adapt-
able in specific, designated ways, if at
all. Therefore the adaptability must
not only be explicitly engineered
into the software, it must be engi-
neered into the software in places
where it will do the most good to the
business.

It is no longer acceptable if a soft-
ware system is correct and solves the
problem for which it was designed.
Ideally the system will be able to
grow and change to solve slightly dif-
ferent problems over time. This cor-
responds to the three stages of the
evolution of software development:
Build the right thing, build the thing
right, and support the next thing.

Build the right thing corresponds to
validation. The requirements must
be accurately understood. There
continues to be a great deal of effort
spent trying to figure out what the

right thing really is. In today’s
world, however, the definition of
“right” changes between the time
when the perceived sponsor says
what they want and the time the
software is delivered.

Because the notion of “the right
thing” is a moving target, the only
way to satisfy the sponsor’s desires is
to make the software adaptable.
Only if the software is adaptable will
it be reasonable to change the thing
that gets built (which will be
“wrong” by then) into the thing that
the sponsor wants at that time.

Build the thing right corresponds to
verification, correctness, and defect
rate. Although everyone has always
been concerned with reliability and
faithful translation of the require-
ments into a solution, the market
was not always willing to pay a lot of
extra money for reliability.
Although there still is not a general
willingness to pay extra for low
defect rates, there seems to be an
increasing intolerance for defects.
In cases where standards have creat-
ed a level playing field, customers
today appear to have less brand loy-

Aspects of Software Adaptability

M o h a m e d F a y a d a n d M a r s h a l l P. C l i n e

-t-t-t-t-t-t-t-t-t-t-t

