
Graph-based Implicit Knowledge Discovery from
Architecture Change Logs

Aakash Ahmad, Pooyan Jamshidi,
Muteer Arshad, Claus Pahl

School of Computing, Dublin City University,
Ireland

Lero - the Irish Software Engineering Research
Center

[aaakash|pjamshidi|amuteer|cpahl]@computing.dcu.ie

ABSTRACT
Service architectures continuously evolve as a consequence
of frequent business and technical change cycles. Architec-
ture change log data represents a source of evolution-centric
information in terms of intent, scope and operationalisation
to accommodate changing requirements in existing architec-
ture. We investigate change logs in order to analyse op-
erational representation of architecture change instances to
discover an implicit evolution-centric knowledge that have
been aggregating over time. Change instances from the log
are formalised as a typed attributed graph with its node and
edge attribution capturing change representation on archi-
tecture elements. We exploit graph matching as a knowl-
edge discovery technique in order to i) analyse change op-
erationalisation and its dependencies for ii) discovering re-
current change sequences in the log. We identify potentially
reusable, usage-determined change patterns.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Software Evolution.

General Terms
Patterns, Maintenance & Evolution

Keywords
Service-Driven Architecture, Reuse, Evolution Knowledge

1. INTRODUCTION
Service-Oriented Architecture (SOA) is a business-centric

architectural approach that models business processes as
technical software services. Once deployed, continuous change
in business and technical requirements leads towards fre-
quent evolution cycles [14] also providing a source of op-
erational knowledge [7, 18]. Although architecture-centric

.

maintenance and evolution [6] proved successful in adjust-
ing software structure and behavior at higher abstraction
levels, it lacks any concrete efforts in supporting a reuse-
centered approach to manage architectural change execu-
tion [11]. The need for change reuse is evident in the re-
search taxonomy for SOA maintenance and evolution [14].

We aim at supporting pattern-driven reuse in architecture-
centric evolution for service software [2]. We focus on an
analysis of architecture ‘change history’ [7] to discover an
implicit evolution-centric knowledge that can be shared and
reused to guide architecture evolution. We exploit architec-
ture change logs to provide us with a transparent repository
of fine-granular instances of sequential change. Analysing
sequential composition is particularly significant to opera-
tionalise frequent process-based change patterns [16, 14].

We formalise change instances in the log as a typed at-
tributed graph [10] with its node and edge attribution cap-
turing change operations on architecture elements. This
allows a formal and efficient analysis. We utilise graph
matching to investigate change representation and opera-
tional dependencies formulating foundations and to discover
recurrent change sequences in the log. Analysing sequential
operational compositions, we apply sub-graph mining [8]
- a formlised knowledge discovery technique - to identify
recurring operationalisation that represent reusable, usage-
determined change patterns [1]. A fine granular change rep-
resentation helps in representing the intent and scope of in-
dividual changes explicitly that facilitates:

- Discovering implicit evolution knowledge in terms of oper-
ationalisations and architecture change patterns that sup-
port reuse for common evolution tasks.

- Flexible storage and retrieval of identified pattern instances
as a catalogue framework that enables sharing and reusing
whenever needs for architecture evolution arises.

We formalise change log data in Section 2 to analyse change
operationalisation and its dependencies in Section 3. We ex-
ploit sequential change abstractions to identify architecture
change patterns in Section 4 with an elaboration of pattern
catalogue in Section 5. Related research is presented in Sec-
tion 6, followed by conclusions in Section 7.

2. FORMALISING CHANGE LOG DATA
The primary focus of this research is to utilise graph-based

formalism to investigate evolution-centric knowledge that

exists in the change log as presented in Figure 1. In this
section, we elaborate on the anatomy of change log data
and its formalisation using attributed typed graphs [10], il-
lustrated in Figure 1a). This allows us to discover implicit
knowledge from logs in terms of analysing change represen-
tation and identifying change patterns that can be shared
and reused by querying the pattern catalogue in Figure 1b).

Architecture Change Log

Log Data Classification

Architecture Change Graph

Capturing Change Instances

appliedTo

1..*

has

1..*

Opr

m

Opr

n
root
 leaf

Attributes
 Attributes

AE
 AE

Opr

m

Opr

m

Architecture Change Graph

Pattern Catalogue

Opr

m

Opr

n
root
 leaf

Attributes
 Attributes

AE
 AE

Opr

m

Opr

m

Opr

m

Opr

n
root
 leaf

Attributes
 Attributes

AE
 AE

Opr

m

Opr

m

a) Change Instance
Formalisation
 b) Discovery of Evolution-centric Knowledge

hasorder

hasConstraints

Operation
 Composite
 Atomic
 Composite

Change Data
 Auxiliary Data

InExact
Exact

Change
Operationalisation

Operational Dependencies

Change Patterns Discovery

Commutative
 Dependent

Figure 1: Knowledge Discovery from Change Logs.

2.1 The Anatomy of Change Log Data
An architecture change log [7, 18] is a recorded collection

of changes (addition, removal or modification) applied to
architecture elements. An architecture change log (ACL)
captures a sequential list of individual architecture change
(AC) instances ACL =< AC1, AC2, . . . , ACN >.

- Evolution Knowledge Source - In a collaborative environ-
ment for architectural development, a change log is a trans-
parent and centrally manageable repository to maintain
history of sequential change [7]. It represents a source of
evolution knowledge to facilitate with ‘post-mortem’ anal-
ysis for architectural change instances.

- Architecture Composition - The SOA principles [14] sup-
port composition or association type dependencies in ser-
vice composites. Our architecture meta-model is consis-
tent with the Service Component Architecture that in-
clude typed instances of configurations (CFG) among a
set of service components (CMP) linked through connec-
tors (CON). Components contain ports (POR) to expose
operations (OPT), while connectors provide binding (BIN)
among component endpoints (EPT).

An example of architectural change is a sequence of op-
erations that enable addition of a new component custPay-
ment along with its port custBill and corresponding opera-
tion getBill (op1, op2, op3). The newly added component
custPayment is connected to BillerCRM with addition of a
connector billAmount. It provides endpoint binding (op4,
op5) among the operations of BillerCRM and custPayment
inside Payment configuration. Once sequential architectural
changes are captured, change log data is classified as Auxil-
iary Data (AD) and Change Data (CD) in Figure 2b).

- Auxiliary Data (AD): provides the additional details about
individual change instances in the log. This is expressed

in

billAmount

a) Architectural Change

b) Change Instances in Log

op1

op2

op3

op4

<<Change Data>>
 <<Auxiliary Data>>

getBill
()

custPayment

out
sendBill
()

BillerCRM

op1
:= ADD(
custPayment
 :
CMP
, Payment :
CFG
)

op2
:= ADD(
custBill
("in") :
POR
,
custPayment
 :
CMP
)

op3
:= ADD(
getBill
 : OPT,
custBill
 : PORT)

op4
:= ADD(
billAmount
 :
CON
, Payment :
CFG
)

op5
:= ADD(
billPay
 :
EPT
,
billAmount
 : CON)

{src = "
biller.sendBill
",
trg
 = "
custBill.getBill
"}

op5

-
uID
 :=
aakash
_
ADM1

-
cDate
 := 2012-02-17

-
cTime
 := 13:02:27

-
sysID
 : =
EBPP

Figure 2: Capturing Change Instances in the Log.

as AD =< uID, cDate, cT ime, sId > captured automati-
cally that consists of user id (aakash−ADM1), date, time
(2012−02−17 13 : 02 : 27 UTC) and the system identifier
(EBPP) to which the change is performed. This is partic-
ularly useful for architectural change analysis based on the
source, intent, time of change and facilitates in extracting
specific (time/user-based etc.) change sessions from log.

- Change Data (CD): contains the core information about
individual change instances in the log. This is expressed as
CD =< cID, cDesc,OPR,AE[paramList] > represent-
ing change id, change description, change operation and
the affected architecture elements with its parameter. In
the previous example, op1 represents addition of a new
component custPayment inside Payment configuration.

The source of sample log data are architectural changes
for an Electronic Bill Presentment and Payment (EBPP)
system and an online Tour Reservation System (TRS). We
use the EBPP case study here that involves architectural
evolution of an electronic payment system. During change
operationalisation for EBPP and TRS individual change in-
stances are automatically recorded in the log that currently
comprises of a couple of thousands of changes (AC > 2000).
The granularity of change representation ensures complete-
ness of syntax and semantics for recorded changes.

2.2 Graph-based Modeling of Changes
We formalise change instances in the log as an attributed

graph (AG) with nodes and edges typed over an attributed
typed graph (ATG) [10] with an attributed graph morphism
t : AG → ATG as illustrated in Figure 3. The ATG pro-
vides formal semantics to allow efficient searching and for-
mal analysis of log data. Regarding the granularity of ar-
chitectural changes a unified representation for architectural
evolution views is lacking [13] that satisfies all stakeholder
perspectives. A software developer might be more interested
in analysing the modification of a specific operation signa-
ture, while an architect would be exclusively concerned with
affected component-level interconnections.

- During pattern identification graph lifting [13] is particu-
larly beneficial as it abstracts low-level changes (affecting
port, operations, endpoints, binding) into the evolution of
configuration, components and connectors in architecture.

- Analysing operationalisation and dependencies, graph lift-
ing is not utilised in order to study change representation
and impact propagation across architecture hierarchy.

Creating Change Session Graph: In order to cus-
tomise change view, we provide a utility method as ses-

sionGraph(uID, strTime, endTime) to automatically create
the change graph based on a particular change session in
the log. The change session is determined by the identi-
fication of the user (uID) who applied changes in a spe-
cific time interval (endTime - strTime). For experimen-
tal purposes, we consider all the changes in the log as a
single session to extract the attributes of change instances
that, we generate the lifted change graph (Figure 3a - dot-
ted square) with a concrete represention using the Graph
Modeling Language (.GML) format. The result is a directed
graph representing sequential composition of change opera-
tionalisation, illustrated in Figure 3b. For simplicity, some
additional attributes (like date, time, committer of change
etc.) from the actual graph are hidden to focus on the se-
quencing of operations on architecture elements. The at-
tributed graph morphism t : AG → ATG is defined over
graph nodes with t(MetaData) = ChangeData that results
in t(ChangeOperation) = ADD(), t(ArchitectureElement) =
custPayment, billAmount, BillerCRM, t(hasType) = CMP,
CON in Figure 3 (constructed with example in Figure 2).
We summarise the graph-based formalisation of architec-
tural change instances as:

- Graph Nodes NG = {n(gi)|i = 1, ..., k} represent a set
of change operation as t(NG) = OPR<Add(),Rem(),Mod()>.

- Attributed Nodes NA = {n(ai)|i = 1, ..., l} is the set of
attribute nodes that are of two types: i) attribute nodes
with auxiliary data, and ii) attribute nodes representing
architecture elements, where t(NA) = (AE : hasType).

- Graph Edges EG = {e(gi)|i = 1, ..., k − 1} connect
source n(g)src and target n(g)trg nodes as the sequencing
of change operations, where t(EG) = eID(NGisrc , NGitrg).

For example in the context of Figure 3b (graph lifting [13]
for Figure 2), it is safe to ignore the port and operation
level details to argue that the component custPayment used
billAmount for inter-connection to BillerCRM inside Payment
configuration. The graph nodes are linked to each other
using graph edges e(g) as applied sequence of operations.

3. ANALYSING CHANGE INSTANCES
The change session graph enables extraction of a (user-

specifed) subset of all the change instances in the log based

on intent, scope or time of architectural changes. In this
section, we apply graph matching techniques on change ses-
sion graph to analyse operationalisation and dependencies
for change instances. By abstracting individual change in-
stances into sequential operational compositions we apply
sub-graph mining [8] to identify recurring operationalisation
that represent patterns of architectural changes as captured
in change logs over time.

Although a recent emergence of evolution styles [11, 12]
promotes architecture evolution reuse, it falls short of ad-
dressing frequent demand-driven process-centric changes [16]
that are central to maintenance and evolution of SOAs.
This motivates the needs to systematically investigate ar-
chitecture change representation that goes beyond frequent
addition or removal of individual components and connec-
tors to operationalise recurrent process-based architecture
changes [1] (detailed in Section 4).

3.1 Change Operation Classification
Operational classification is vital to enable a fine-granular

change representation that goes beyond the fundamental
change types [7] to provide the necessary syntax, semantics
and composition to operationalise architecture evolution. In
the change log, an overlay of architectural changes results in
a) atomic changes that can be sequentially combined to en-
able b) composite changes. Operational classification allows
i) quantitative assessment to determine the exact number of
change operations required, the cascaded change effects on
dependent elements along with ii) qualitative assessment in
terms of change consistency and structural validity of archi-
tectural hierarchy during evolution.

3.1.1 Atomic Change
It represents the most fundamental unit of architecture

evolution in terms of a single change operation applied to
an individual architecture element represented as an individ-
ual graph node. It builds-up the hierarchical composition of
architecture change operations and allows quantitative as-
sessment in terms of total change operations required to ex-
ecute a specific change. The operational syntax is presented
in Table 1, where OPR represents a given change opera-
tion applied on the given architecture element (parameter
for change operation) and its cascaded impact on other ele-
ments in architectural hierarchy. In Table 1, cID<29> repre-

Integer

Architecture

Element

Add

Component
 1

hasParameter

Integer

order

ADD()

custPayment

totalParam
oprName
 oprName

hasParameter

hasType

Add

Connector
 2

totalParam
oprName

1

hasParameter

order

CON

hasType

billAmount

2

order

CMP

hasType

(
BillerCRM
,

custPayment
)

ADD()

a) ATG for Change Operation Syntax

b) AG for Change Operations typed over ATG

OPT
 BIN

Integer

CMP

hasType

totalOperations

Integer

totalEndPoints
String

returnType

parameterList
 endpointBinding

POR
 EPT

CMP

CFG
 CON

Lifted ATG

nID
 nID
e1

1

order

ADD

MOD

REM

o

p

r
T

y
p

e

1455
 1456

String

Change Operation

ID
 totalParam

eID

hasParameter

ATG

(
typedOver
)

AG

t

Graph Edge
 Node Attribute Edge
 Edge Attribute Edge

Attribute Node <Metadata>
Graph Node <OPR>
 Attribute Node <AE>

Figure 3: Attributed Graph to Formalise Architecture Change Operationalisation.

sents addition a new operation (OPT) getBill to an existing
port (POR) custBill as: ADD(getBill : OPT, custBill : POR).
We identified a total of eight atomic changes summarised
as: OPRatomic := {(Add,Rem)<OPT,POR,BIN,EPT>}. The
generic specification is (OPR) < ArchitectureElement >
that enables addition and removal of component operation,
component port, connector binding and connector endpoints.

cID OPR Parameter Cascading Change
27 Add() custPay ∈ CMP Payment ∈ CFG
28 Add() custBill∈ POR custPay ∈ CMP
29 Add() getBill ∈ OPT custBill∈ POR

Table 1: Operationalising Change Instances

3.1.2 Composite Change
In order to abstract individual change instances into a

sequence of atomic changes, we query the graph based on
the type of change operation and the co-relation among its
parameters. For example, we are specifically interested in se-
quences of change containing only Add operation such that
its parameter elements are co-related in architectural hier-
archy. A partial result of the query is represented as the
extracted sequence in Table 1. The sequence cID<27,28,29>

represents the addition of a new component custPayment
inside the configuration Payment. The addition of a com-
ponent is followed by the addition of corresponding port
custBill and its operation getBill. The syntactical represen-
tation for composite change is identical as presented with
the atomic change; however it combines hierarchy of atomic
changes in a sequential fashion to enable composite archi-
tectural change. This suggests that an exact operational
complexity of adding i components that have j ports each
containing k operations in architectural composition is ex-
pressed as OPR(i∗Composition+j∗Composite+k∗Leaf).
It highlights cascading impact of change operationalisation
that is propagated from top to the bottom of architectural
composition. We identified a total of six composite type
changes OPRcomposite := {(Add,Rem)<CFG,CMP,CON>}.
The composite change is essentially a composition of atomic
changes that enable the addition and removal of compo-
nents, connectors and configurations during evolution and
allows sequential abstraction of individual change instances.

3.2 Operational Dependencies
Abstracting an individual change into a sequence of changes

(adjacent graph nodes) allow us to discover operational de-
pendencies. These dependencies are vital in analysing the
extent to which architectural change operations are depen-
dent or independent of each other. It is practically benefi-
cial to classify different types of dependencies that allows an
architect to select an appropriate change operationalisation
based on a given evolution scenario. In addition, operational
dependencies allow discovery of ordered and in-ordered re-
curring change sequences as potential change patterns.

3.2.1 Commutative Change
Composite changes by means of change graph lifting [13]

allow traversal of adjacent graph nodes to analyse sequences
of change operations based on user-specified minimum and
maximum sequence length. Sequence length defines the num-
ber of change operations contained in a given sequence. We

utilise structural graph matching among attributed nodes
that highlight variations in the order of operations among
different sequences although the impact of change remains
exactly identical. Continuing with change instance exam-
ple in Figure 3 two components BillerCRM and custPayment
and corresponding connector billAmmount represents (com-
posite changes as) adjacent graph nodes n1, n2, n3 ordering
of change operations can be represented as set OPRadd :
{(n1;n2;n3), (n3;n2;n1), . . . , (n2;n1;n3)}. Such variations
in operational ordering complicate the selection of a given se-
quence that executes a specific pre-defined change. In addi-
tion, it hampers any efforts in discovering sequential change
patterns as bijective matching among the ordered opera-
tions does not reflect true frequency of patterns that may
exist in the log. Therefore, we utilise the concept of oper-
ational commutativity to determine if there exists a causal
relation between consecutive change operations and the re-
sultant impact of change. Commutative change operations
allow sequential composition of changes such that order-
ing of change operations is insignificant. Sequential compo-
sition is of particular interest for the following two reasons:

- Operational Extension: allows extension of the fun-
damental changes Add() and Rem() to define new (modi-
fication related) operations. The Modification Mod() op-
erations include Move Mov(), Rename Ren(), Split Spl(),
Merge Mrg() and Swap Swp() operations. For example,
moving an existing operation getBill from its current port
custBill to a new port custPayment is a sequential compo-
sition (;) as addition and removal of component operation:
Rem(<getBill:OPT,custBill:POR>);

Add(<getBill:OPT,custPayment:POR>)

- Analysing Sequential Abstractions: allow insight
into recurring sequences of composite change that repre-
sents potential change patterns. Graph-based formalisa-
tion of architectural changes allow us to exploit frequent
sub-graph mining to discover sequential change patterns.
Sequential change and it sub-types (exact and in-exact)
with ordered dependencies are elaborated in Section 4.

3.2.2 Dependent Change
If change operations are not commutative, we regard them

as dependent, i.e., the effect of the later change depends
on its preceding change operation. Operational dependency
is vital to preserve the compositional hierarchy of architec-
ture elements. For Example, in Table 1 the change opera-
tions cID<27,28,29> represent instances of dependent change.
More specifically, the addition of a component (27) must fol-
low addition of the corresponding port (28) and its operation
(29). However, only syntactical representation is not suffi-
cient as change semantics must be enforced to preserve the
compositional hierarchy. For example, in Table 2 we extend
the pure syntactical aspects from Table 1 to providing neces-
sary syntax and semantics for hierarchical composition of
change operations. This ensures the compositional hierarchy
of architecture elements is preserved and allows qualitative
change analysis in terms of consistency of change execution
and validity of architectural structure during evolution.

4. CHANGE PATTERNS IDENTIFICATION
A systematic classification for change operationalisation

and dependencies allow us to exploit sequential compositions

Operationalisation ArchitectureElements Constraints

Add(custPaymenT, Payment, [CNS]) custPayment ∈ CMP, Payment ∈ CFG PRE, INV, POST ∈ [CNS]

−Effects on Architecture : adds a new component custPayment into existing configuration Payment.
−Operational Constraints : include a set of preconditions (PRE), invariants (INV) and postconditions (POST) as:
−PRE : ∄custPayment ∈ Payment. The component custPayment do not already exist in Payment configuration.
−INV : ∀CMP ∈ CFG∃hasPOR.OPT . Every instance of component must contains a port and operation.
−POST : ∃custPayment ∈ Payment. custPayment is added into Payment and preserving the compositional hierarchy.

Table 2: Syntax and Semantics for Hierarchical Composition of Change Operationalisation

to identify architecture change patterns. We utilise one of
the classical approaches for graph-based pattern mining with
sub-graph isomorphism [8] that exists among recurring sub-
graphsGP to the change session graphGC , whereGP ⊆ GC .

4.1 Properties and Types of Change Sequences
As detailed in Section 3, the ordering of change oper-

ationalisation is insignificant in sequential composition as
long as the impact and scope of change remains same. More
specifically, during pattern identification we need to anal-
yse the equivalence or distinction among change sequence
type, length and operational ordering. In a graph matching
context, change sequence properties in Table 3 are vital to
not only identify exact instances, but also inexact matches
and possible variants of a change pattern where only partial
features suffice for pattern identification. We briefly discuss
about the type of change sequences and their properties.
Type Equivalence (TypeEqu) refers to the equiva-

lence of two change operations in a sequence given by util-
ity function TypeEqu(OPR1(aei : AE), OPR2(aej : AE)) :
returns < boolean >. It depends on the type of change
operation and the architecture element for a change opera-
tion to categorised as type equivalent (return true) or type
distinct (returns false).
Length Equivalence (LenEqu) refers to the equiva-

lence of length of two change sequences where length of a
change sequence is defined by the number of change opera-
tion contained in it. It is given by function LenEqu(Sx, Sy) :
returns < integer >. Therefore, the length equivalence of
two change sequences Sx and Sy is determined by the nu-
merical value (0 imples Sx == Sy, -n implies Sx < Sy by n
nodes and +n implies Sx > Sy by n nodes).
Order Equivalence (OrdEqu) refers to the equiva-

lence in the order of change operations of two sequences.
Analysing the change log based on a given change session,
we observed that it is normal for same user to perform
similar changes using different sequencing of change oper-
ations. The semantics and impact of change operation re-
mains the same even if sequencing of change operations is
varied (i.e., commutative change). It is given by the function
OrdEqu(Sx, Sy) : returns < boolean >. We discovered four
different types of change sequences, presented in Table 3.
- Exact Sequence: Two given sequences are exact subse-

quences if they match on operational types, length equiva-
lence and the ordering of the change operations.
- Inexact Sequence: Two given sequences are inexact

matching sequences if their operational types and lengths
are equivalent, but order of change operation varies.
- Partial Exact Sequence: Two given sequences Sx and Sy

are partially exact such that (if n > 0 than Sy ⊂ Sx, or

Sequence Type TypeEqu LenEqu OrdEqu
Exact true 0 true
Inexact true 0 false
Partial Exact true ± n true
Partial Inexact true ± n false

Table 3: The Types of Sequences in the Change Log.

if n < 0 than Sx ⊂ Sy) - however, the types and ordering
of the change operations in the matched sequences must be
equivalent.

- Partial Inexact Sequence: Two given sequences Sx and
Sy are partial and inexact if (if n > 0 than Sy ⊂ Sx, or if
n < 0 than Sx ⊂ Sy); in addition, the operations within
both sequences must be type equivalent, while the order of
change operations in both sequences varies.

4.2 Pattern Identification Process
Based on change sequence properties, our solution enables

automation along with appropriate user intervention and
customisation through parameterisation for change pattern
identification. Additional details about graph-based pattern
identification are provided in [1]. We follow an apriori-based
approach that proceeds in a generate-and-test manner using
a Breadth First Search strategy during each iteration to i)
generate and ii) validate pattern candidates from change
session graph GC and finally, (iii) determine the occurrence
frequency of candidate sequences SC in GC .

Step 1 - CandidateGeneration(). The initial step of
pattern identification generates a set of candidate sequences
SC from change graphGC . A candidate consists of a number
of nodes representing change operationalisation on architec-
ture elements as a potential pattern depending on its occur-
rence frequency Freq(SC) in GC . Input(s) is the change
graph GC and user specified minimum minLen(SC) and
maximum maxLen(SC) candidate sequence lengths. Out-
put(s) is a list of generated candidates List(SC) such that
minLen(SC) ≤ Len(SCi

) ≤ maxLen(SC).
Step 2 - CandidateValidation(). We observed that

during candidate generation, there may exist some false pos-
itives in terms of candidates that violate the structural in-
tegrity (i.e., hierarchical composition) of architecture ele-
ments when identified and applied as patterns. Therefore, it
is vital to eliminate such candidates through validation for
each generated candidate sequence sc against architectural
invariants before pattern matching as:

- Configuration must contain two components and a con-
nector instances: ∀cfgi ∈ CFG ∃coni(cmpi, cmpj).

- Connector must contain source and target endPoints in-

stances: ∀coni ∈ CON∃srcpor ∧ trgpor ∈ EPT .
- Component must be composed of one or more instances

of ports: ∀cmpi,j ∈ CMP∃por<1..n> ∈ POR.
Input(s) is a candidate sc ∈ GC (called from candidate-

Generation(), each time a candidate is generated). Out-
put(s) a boolean value indicating either valid (true) or in-
valid (false) candidate sc.
Step 3 - PatternMatching(). The last step identifies

exact and inexact instances (Table 3) of change patterns
based on a user specified frequency threshold. We utilise
structural matching with sub-graph morphism [8] among
the list of validated candidates vList(SC) to correspond-
ing nodes in GC . Input(s) is a list of (validated) candidates
vList(SC), specified frequency threshold Freq(SC) and GC .
Output(s) is a list of identified patterns consisting of pattern
instance GP and its frequency Freq(GP). The candidate is
an identified pattern (exact or inexact instance) based on
specified frequency threshold: freq(GP) ≥ Freq(CP) ∈ GP .

5. CHANGE PATTERN CATALOGUE
Analysing sequential composition (Section 4) allows us to

define change pattern as a generic, first class abstraction
(that can be operationalised and parameterised) to support
potential reuse in architectural change execution. A change
pattern as a generic solution could be i) identified as recur-
rent, ii) specified once and iii) instantiated multiple times to
support reuse in evolution. In order to facilitate sharing and
possible reuse of identified pattern instances, we follow on
the concept of “evolution shelf” [12], that provides storage
and search space to more accurately locate potential pro-
cess matches in a given evolution context. Therefore, we
maintain pattern catalogue as a repository infrastructure
enabling a continuous incremental acquisition of identified
recurring operationalisations. In addition a query-based re-
trieval facilitates in utilising the existing patterns to guide
architecture evolution. From a functional perspective, we
primarily focus on two different aspects:

- Knowledge Sharing: In this context, change pattern cat-
alogue is characterised as an updated collection of iden-
tified pattern instances that enables sharing and reusing
(the problem-solution view as) constrained composition of
change operationalisation for common evolution tasks.

- Operational Support: From an operational and manage-
ment perspective, pattern catalogue is a sequential nested
graph. Each node represents an individual pattern with
its composites (operations, constraints and architecture el-
ements). Each edge establishes a directed link among two
adjacent patterns in the catalogue, illustrated in Figure 4.

We focus on supporting a flexible specification, classifica-
tion and retrieval to utilise the existing pattern instances as
reusable asset [11] during evolution.

5.1 Pattern Specification
We model pattern-based change specification as 5-tuple

PatEvol =< CAT, PAT,OPR,CNS, SArch >. In addi-
tion to a syntactical specification, the hierarchical relation-
ship among the pattern elements in a catalogue is presented
in Figure 4a. Pattern specification is a semi-automated pro-
cess that facilitates the user with classification and storage
of pattern hierarchy inside catalogue structure. In order to

specify patterns, we utilise a graph-database Neo4j1 where
a Graph (Catalogue) models Nodes (Patterns) and Rela-
tionships (PatternLink). Both nodes and relationships have
Properties (Attributes) while edges provide a semantic rela-
tionship among nodes and properties, in Figure 4b.

Constrains

CatalogueFramework

ChangePattern

Operators
 Constraints

ArchitectureModel

hasClassification
 1..
*

ComposedOf
 ConstrainedBy

AppliedTo

1..*
 1..*

1..
1

1..*

Catalogue

Properties

Relationships
Patterns

organise

<<graph>>

<<nodes>>
 <<patternlink>>

a) Meta-model for Change Pattern Specification

b) Graph-based Pattern Storage

Figure 4: Pattern Specification in the Catalogue.

- Structural Perspective: For each pattern instance (PAT),
change operationalisation (OPR), constraints (CNS) and
the affected architecture elements (SArch) are visualised.
This allows user to view the overall impact of change on
existing sub-architecture before (preconditions) and after
(postconditions of) change operationalisation with an ap-
propriate name and intent of specified pattern.

- Semantical Perspective: A pre-defined Pattern Classifica-
tion types CLS =< Inclusion,Exclusion,Replacement >
provides a representation of individual patterns based on
their impact (integration, decomposition, replacement type
changes etc.) on architectural elements. It allows change
categorisation among patterns for efficient retrieval and
is a fundamental step towards building semantic relation-
ships among patterns that exist in the catalogue (addi-
tional details are out of the scope for this paper).

An individual instance is specified as PAT<id, name> :

PRE(aem ∈ AE)
INV (OPRn(aem∈AE))
−−−−−−−−−−−−−−−→ POST (ae′m ∈ AE).

Explicit constraints on operationalisation ensures structural
integrity of architecture during pattern-based evolution.

5.2 Pattern Retrieval
Reusing specified pattern instances requires a query-based

mechanism to retrieve appropriate pattern instances in a
given evolution context. From an operational perspective,
an inherent benefit while utilising Neo4j lies with exploiting
Cypher - a declarative graph query language - that allows
expressive and efficient querying of the catalogue to retrieve
part or the whole pattern structure. For the evolution sce-
narios from the EBPP case, this requires the integration of
a newly added components billType into the existing archi-
tecture, as illustrated in Figure 6. The intent of change is to
allow customers a billing type option (monthly or weekly)
for their payment in addition to the existing advance billing
option. We follow a three step approach that enables the
user to specify change intent and constraints that supports
querying the catalogue to retrieve the appropriate pattern
instance, see Table 4.

i) Change Intent: allows a declarative specification for
syntactical context of architectural change that contains the
architecture elements (AE) that need to be added, removed
or modified in the existing architectural structure SArch

1Neo4j Graph Database: http://www.neo4j.org

Integr(SArch, [CNS], < billType,BillerApp, custBill >)
PRE (preConditions)
∃(BillerApp, custBill ∈ CMP) ⊆ SArch
∃billingData(BillerApp, custBill) ∈ CON ⊆ SArch

POST (postConditions)
∃(BillerApp, custBill, billType ∈ CMP) ⊆ SArch
∃billTypeData(BillerApp, billType) ∈ CON ⊆ SArch
∃getType(billType, custBill) ∈ CON ⊆ SArch
< PAT > retrievePattern(PRE,POST)

∀pati ∈ PAT∃pati.PRE ∧ pati.DEF ∧ pati.POST
(pati.PRE ≡ PRE ∧ pati.POST ≡ POST) ∈ CAT
return(pati.DEF)

Table 4: Specifying Change Intent and Constraints

such that AE ∈ SArch. Contrary to obtaining informa-
tion about all the patterns that exist in the catalogue, this
approach facilitates a user to focus on problem definition (in-
tended change and structural constraints) view, while cat-
alogue provides a list of appropriate change patterns. For
example, in the context of existing architecture user intends
integration of a new component billType among the existing
BillerApp and CustBill components in SArch.
ii) Constraints Enforcement: consists of specifying the

preconditions (PRE) and postconditions (POST) that must
be satisfied to preserve the structural integrity of the over-
all architecture and individual elements during change ex-
ecution. In addition, the constraints allow a matching cri-
teria in the pattern hierarchy inside catalogue to retrieve
an appropriate list in a given evolution context. The pre-
condition(s) represent the context of architectural structure
before change execution. The postcondition(s) specify the
context of evolved architectural elements as a consequence
of the change execution. For example, change preconditions
in Table 4 specifies that BillApp and custBill components are
connected using the billingData connector. The postcondi-
tions ensure that newly added component billType is inte-
grated among the existing components BillerApp and cust-
Bill, while removing the connector billingData.
iii) Pattern Retrieval: once the intent and constraints of

architectural change are specified, the catalogue is queried
with change pre-conditions and post-conditions to retrieve
the appropriate pattern instances that exist in the catalogue
(concrete syntax as Cypher query language omitted here).
Figure 5 illustrates the retrieved instance of Linear Inclu-
sion pattern that aims at ‘integration of a mediator among
two or more directly connected service components’. In ad-
dition, pattern instantiation involves labeling of generic
elements in specification with labels of concrete architecture
elements presented in change specification. For example, in
Figure 5a (partial architectural view) the connector instance
billingData missing in the change post-conditions is removed.
The newly added instance(s) of component billType and con-
nector billTypeData, getType are the candidates for addition
into SArch to obtain evolved architecture in Figure 5c

5.3 Experimental Analysis and Evaluation
Change operationalisation and pattern identification from

potentially large change logs requires an efficient solution.
Experimental analysis and illustration of identified pattern
instances are presented in our previous work [1].

- Algorithmic Complexity: In our trials, we observed that

BillerApp
 custBill

consInvoice
 accMgmt

billingData

generateInvoice

BillerApp
 custBill

consInvoice
 accMgmt

generateInvoice
 adjustAccount

billType

billiTypeData
 getType

billType

BillerApp
 custBill

billiTypeData
 getType

2

4

1

3

a) Preconditions
 c
)
Postconditions

b
)
Change
Operationalisation

Component

Ports

in
 out

connector

adjustAccount

billingData

Figure 5: Instance of Linear Inclusion Pattern.

preprocessing for a significant graph size (i.e, GC .size() =
AC ≥ 2278) remains constant with average complexity
time = 888.9 ms. We customise the input parameters as:
minLen(SC) = 2,maxLen(SC) = 9 with total change op-
erations: GC .size() = 2278. In addition, we increase the
pattern frequency threshold Freq(SC) by 2 in each trial,
where T ime ∝ Freq(SC) and Freq(SC) ∝ 1/Instances.
The difference between the exact and inexact pattern se-
quences is detailed in Section 4. The summary of compar-
ison (on average): time (exact : inexact) in milliseconds =
T(564:1214) ms and identified patterns instances (exact :
inexact) = I(21:38), for GC .size() = 2278.

- Tool Support: In order to model change instances as an
attributed graph, we utilise the .GML (Graph Modeling
Language) format. After pattern identification, we pro-
vide the Pat-Lib repository for change pattern specification
using Neo4j graph database. This allows us a continuation
in the development of Pat-Evol (Pattern Evolution Frame-
work) as an integrated tool-chain to empower an architect
in modeling and executing reusable evolution.

Change instances in the log correspond to the architec-
tural meta-model, i.e. composition only supports association
or composition type (structural) dependencies among ser-
vice composites. Applying this knowledge in a more general
evolution perspective is not guaranteed. For conventional
object-oriented systems, type inheritance and aggregation
type dependencies and their impact could not be analysed
with proposed solution. An interesting identification is the
emergence of change anti-patterns resulting from counter-
productive pattern-based evolution. This leads us to believe
that change patterns do not necessarily support an optimal
solution; instead they promote an alternative and poten-
tially reusable operationalisation for evolution. Experimen-
tal identification of potential anti-patterns and their resolu-
tion is vital for reliable architecture evolution.

6. RELATED WORK
We follow on the taxonomy of software evolution [7] with

graph-based formalisation of architectural change instances
in the log to discover recurring operationalisation and pat-
terns that can be shared and reused to guide architectecture-
centric evolution. The authors in [18] focus on analysing
architecture revision history to perform fine grained analy-
sis to detect the evolutionary coupling between architecture
elements. In contrast, we utilise architecture change logs to
perform the ‘post-mortem’ analysis in analysing architecture

change representation that aggregates over time. This pro-
vides us with an empirical foundation to abstract sequential
operational composition to identify architecture change pat-
terns. The pattern identification process is guided by [15]
that propose a (modular) algorithmic solution for mining
sequential patterns from a database of customer sales trans-
actions. Graph-based formalisation facilitates in leveraging
the frequent sub-graph mining approaches [8] to discover re-
current operationalisation as potential change patterns.
Although solutions like the“evolution shelf” [12] provide a

generic infrastructure to achieve for-reuse and by-reuse tech-
niques for software architecture evolution. It aims at sup-
porting refactoring patterns (i.e., add a component, move
a component etc.) that can be composed into further ad-
vanced evolution styles (add a client, move a client etc.).
In contrast to the evolution styles [12, 11] for more con-
ventional component architectures, we observe that opera-
tionalisation of changes in the log exhibits process-centric
patterns of change unlike the frequent addition or removal
of individual components and connectors. It is vital to men-
tion about a catalog of process change patterns [16] that
guides changes in process-aware information systems. In
contrast to the process aspects of software, we exclusively
focus on change operationalisation at architectural abstrac-
tion levels accommodating patterns to guide structural evo-
lution. While mining process-based changes abstracting se-
quential composition is particularly significant to go beyond
the more conventional primitive architectural changes to op-
erationalise frequent process based changes that are central
to maintenance and evolution of service architectures.

7. CONCLUSIONS AND OUTLOOK
The primary focus of the proposed research was an em-

pirical investigation into the history of sequential changes
to analyse the operational aspects of architecture evolution.
This enables exploiting sequential change patterns to sup-
port reuse for process-based changes at an architectural level
of abstraction. In a knowledge sharing context, a pattern
catalogue provides an updated collection of identified pat-
tern instances to enable sharing and reusing a constrained
composition of change operations for common evolution tasks.
Future work is concerned with guiding architectectural

transformation by means of instantiating change patterns.
In [2], we argue that the notion of ‘build-once, use-often’
philosophy could enhance the role of an architect to model
and execute generic and potentially reusable solutions to re-
curring architecture evolution problems. Currently, we are
working on the development of a graph-transformation sys-
tem to support architecture evolution guided by change pat-
terns. The tool and the generated data shall form the basis
for practitioners (software architects) for a survey and us-
ability based analysis to evaluate the adequacy and applica-
bility of the proposed solution in a practical context.

8. REFERENCES
[1] A. Ahmad, P. Jamshidi, and C. Pahl. Graph-based

Pattern Identification from Architecture Change Logs.
In International Workshop on System/Software
Architectures, 2012.

[2] A. Ahmad, P. Jamshidi, and C. Pahl. Pattern-driven
Reuse in Architecture-centric Evolution for Service
Software. In 7th International Conference on Software
Paradigm Trends (ICSOFT), 2012.

[3] M. Javed, Y.M. Abgaz, C. Pahl. A pattern-based
framework of change operators for ontology evolution.
In: On the Move to Meaningful Internet Systems:
OTM Workshops, LNCS, vol. 5872. 2009.

[4] V. Gruhn, C. Pahl, and M. Wever. Data Model
Evolution as Basis of Business Process Management.
In 14th International Conference on Object-Oriented
and Entity Relationship Modelling O-O ER’95.
Springer-Verlag (LNCS Series), 1995.

[5] V. Gacitua-Decar and C. Pahl. Pattern-based
Business-Driven Analysis and Design of Service
Architectures. 3rd International Conference on
Software and Data Technologies ICSOFT’2008. 2008.

[6] H. P. Breivold, I. Crnkovic, and M. Larsson. A
Systematic Review of Software Architecture Evolution
Research. Information and Software Technology,
54(1):16–40, 2012.

[7] J. Buckley, T. Mens, M. Zenger, A. Rashid, and
G. Kniesel. Towards a Taxonomy of Software Change.
Journal of Software Maintenance and Evolution,
17:309–332, 2005.

[8] C. Jiang and F. Coenen and M. Zito. A Survey of
Frequent Subgraph Mining Algorithms. 2004.

[9] C. Pahl. A Formal Composition and Interaction Model
for a Web Component Platform. In ICALP’2002
Workshop on Formal Methods and Component
Interaction. ENTCS. 2002.

[10] H. Ehrig, U. Prange, and G. Taentzer. Fundamental
Theory for Typed Attributed Graph Transformation.
In Graph Transformations, pages 161–177. 2004.

[11] D. Garlan, J. Barnes, B. Schmerl, and O. Celiku.
Evolution Styles: Foundations and Tool Support for
Software Architecture Evolution. In Proc. Working
IEEE/IFIP Conf on Software Architecture, 2009.

[12] O. L. Goaer, D. Tamzalit, M. Oussalah, and A. D.
Seriai. Evolution Styles to the Rescue of Architectural
Evolution Knowledge. In Intl Workshop on Sharing
and Reusing Architectural Knowledge, 2008.

[13] H. Fahmy and R.C. Holt. Using Graph Rewriting to
Specify Software Architectural Transformations. In
Intl Conf on Automated Software Engineering, 2000.

[14] G. Lewis and D. Smith. Service-Oriented Architecture
and its Implications for Software Maintenance and
Evolution. In Frontiers of Software Maintenance, 2008.

[15] R. Agrawal and R. Srikant. Mining Sequential
Patterns. In 11th Intl. Conference on Data
Engineering, 1995.

[16] B. Weber, S. Rinderle, and M. Reichert. Change
Patterns and Change Support Features in
Process-Aware Information Systems. In Intl. Conf. on
Advanced Information Systems Engineering, 2007.

[17] R. Barrett, L. M. Patcas, J. Murphy, and C. Pahl.
Model Driven Distribution Pattern Design for
Dynamic Web Service Compositions. In Intl Conf on
Web Engineering ICWE’06. ACM. 2006.

[18] T. Zimmermann, S. Diehl, and A. Zeller. How History
Justifies System Architecture (or not). In Intl
Workshop on Principles of Software Evolution, 2003.

