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1. INTRODUCTION

Automation control systems form the basis for significant pieces of the US critical in-
frastructure. Time-critical and safety-critical automation systems are at the heart of
essential infrastructures such as oil refineries, automated factories, logistics and power
generation systems. To meet the reliability requirements, automation systems are tra-
ditionally severely constrained along three dimensions, namely, operating resources,
scalability of interconnected systems and flexibility to mode changes. Oil refineries, for
example, are built to operate without interruption for over 25 years and can never be
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shutdown for preventive maintenance or upgrades. They are built with rigid ranges of
operating throughput and require a significant re-haul to adapt to changes in crude oil
quality and market conditions. This rigidity has resulted in systems with limited scope
for re-appropriation of resources during faults and retooling to match design changes
on-demand. For example, automotive assembly lines lose an average of $22,000 per
minute of downtime during system faults [Nielsen Research 2006]. This has created
a culture where the operating engineer is forced to patch a faulty unit in an ad hoc
manner which often necessitates masking certain sensor inputs to let the operation
proceed. This process of unsystematic alteration to the system exacerbates the prob-
lem and makes the assembly line difficult and expensive to operate, maintain and
modify.

Embedded Wireless Sensor-Actuator-Controller (WSAC) networks are emerging
as a practical means to monitor and operate automation systems with lower
setup/maintenance costs. While the physical benefits of wireless, in terms of cable re-
placement, are apparent, plant owners have increasing interest in the logical benefits.
With multi-hop WSAC networks, it is possible to build Wireless Plug-n-Play Automa-
tion Systems which can be swapped in and efficiently reconnect hundreds of I/O lines.
Such modular systems can be dynamically assigned to be primary or backup on the
basis of available resources or availability of the desired calibration. Modularity al-
lows for incremental expansion of the plant and is a major consideration in emerging
economies. WSAC networks allow for runtime configuration where resources can be re-
appropriated on-demand, for example when throughput targets change due to lower
electricity price during off-peak hours or due to seasonal changes in end-to-end de-
mand.

1.1. Challenges with Wireless Control

We identify four primary challenges with the design, analysis and deployment of
WSAC networks:

1. The current approaches of programming motes in the event-triggered paradigm
[Hill et al. 2000] are tedious for control networks. Time-triggered architectures are re-
quired as they naturally integrate communication, computation, and physical aspects
of control networks [Kopetz and Bauer 2003], [Alur et al. 2009].

2. Programming of sensor networks is currently at the physical node-level [Welsh
and Mainland 2004] and is the key reason responsible for the lack of robustness for
higher-level control applications.

3. Design of networked control systems with flexible topologies is hard with physical
node-level programming, as the set of tasks (or responsibility) is associated with the
physical node [Robinson and Kumar 2008].

4. Fault diagnostics, repair and recovery are manual and template-driven for a ma-
jority of networked control systems [Jalote 1994], [Lee and Anderson 1990]. Runtime
adaptation is necessary to maintain the stability and performance of the higher-level
control system.

While several approaches address these challenges for open-loop wireless sensor net-
works (see related work), our focus is on closed-loop wireless controller networks.

1.2. Embedded Virtual Machines

To address actuation in closed-loop wireless control systems there is a strong need
to re-think the communication architectures and protocols for reliability, coordination
and control [Willig et al. 2005]. Current approaches for robust networked control [Hes-
panha et al. 2007] require the underlying network to satisfy a minimal set of require-
ments (e.g. guaranteed packet deliver rate, upper bound on network induced delay)
and reduce the network model to that of a single channel with random delays. In ad-
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Fig. 1. (a) A wireless sensor, actuator and controller network. (b) Algorithm assignment to a set of con-
trollers, each mapped to the respective nodes. (c) Three Virtual Components, each composed of several net-
work elements. (d) Decoupled virtual tasks and physical nodes with runtime task mapping.
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Fig. 2. Task migration for real-time operation (instructions, stack, data & timing/fault tolerance meta-data)
on one physical node to another.

dition, they do not address the spatial aspects of the network, i.e., how changes in the
network topology affect the closed-loop system performance.

As the links, nodes and topology of wireless systems are inherently unreliable, such
time-critical and safety-critical applications require programming abstractions where
the tasks are assigned to the sensors, actuators and controllers as a single component,
rather than statically mapping a set of tasks to a specific physical node at design
time (Figure 1(b)). Such wireless controller grids are composed of many nodes that
share a common sense of the control application but without regard to physical node
boundaries. Our approach, as shown in Figure 1, is to decouple the functionality (i.e.,
tasks) from the inherently unreliable physical substrate (i.e., nodes) and allow tasks
to migrate/adapt (Figure 2) to changes in the topology.

To this end, we introduce the Embedded Virtual Machine (EVM), a powerful and
flexible programming abstraction where a Virtual Component (VC) and its properties
are maintained across node boundaries, as shown in Figure 1(c). EVMs differ from
classical system virtual machines. In the enterprise or on PCs, one (powerful) physi-
cal machine may be partitioned to host multiple virtual machines for higher resource
utilization. On the other hand, in the embedded domain, an EVM is composed across
multiple physical nodes with the goal to maintain correct and high-fidelity operation
even under changes in the physical composition of the network. The goal of the EVM
is to maintain a set of functional invariants, such as a control law and para-functional
invariants such as timeliness constraints, fault tolerance and safety standards across
a set of controllers given the spatio-temporal changes in the physical network. Thus,
the EVM introduces new degrees of freedom, task migration and routing which facili-
tates, at runtime, the network configuration (operating point, conditions) to meet the
requirements of the networked control algorithms. However, the EVM does not pro-
vide explicit guarantees but only finds the optimal operation configuration in terms of
routing and task assignment.
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1.3. Overview of the EVM Approach

While wireless system engineers optimize the physical, link and network layers to pro-
vide an expected packet error rate, this does not translate accurately to stability of the
control problem at the application layer. For example, planned and unplanned changes
in the network topology with node/link failures are currently not easily captured or
specifiable in the metrics and requirements for control engineers. For a given plant
connected to its set of controllers via wireless links (see Figure 1(a-b)) it is necessary
that the controller process the sensor inputs and perform actuation within a bounded
sampling interval. While one approach is to design specialized wireless control algo-
rithms that are robust to specified range packet errors [Hespanha et al. 2007], [Zhang
et al. 2001], it is non-trivial to design the same for frequent topological changes. Fur-
thermore, it is difficult to extend the current network infrastructure to add/remove
nodes and to redistribute control algorithms to suit environmental changes such as
battery drain for battery-operated nodes, increased production during off-peak elec-
tricity pricing, seasonal production throughput targets and operation mode changes.

The EVM approach is to allow control engineers to use the same network control
algorithms on the wireless network without knowledge of the underlying network pro-
tocols, node-specific operating systems or hardware platforms. The virtual machine
executing on each node (within the VC) instruments the VC to adapt and reconfigure
to changes while ensuring the control algorithm is within its stability constraints. This
approach is complementary to the body of network control algorithms as it provides a
logical abstraction of the underlying physical node topology.

The paper is organized as follows: Section 3 presents the automated design flow from
a control problem specification to binding controller tasks to nodes within a VC. Section
4 describes the architecture of the EVM and mechanisms for parametric and program-
matic control. Given these mechanisms, Sections 5 presents the key task assignment
and scheduling algorithm to optimize operation during network changes, while Sec-
tion 6 presents runtime procedures used to monitor and adapt the execution of control
algorithms. Finally, we describe the implementation on real hardware in Section 7 and
a case study in Section 8.

2. RELATED WORK

There have been several variants of virtual machines, such as Maté [Levis and Culler
2002], Scylla [Stanley-Marbell and Iftode 2000] and SwissQM [Müller et al. 2007], and
flexible operating systems, such as TinyOS [Hill et al. 2000], SOS [Han et al. 2005],
Contiki [Dunkels et al. 2004], Mantis [Bhatti et al. 2005], Pixie [Lorincz et al. 2008]
and LiteOS [Cao et al. 2008], for wireless sensor networks. The primary differences
that set EVM apart from prior work is that it is centered on real-time operation of
controllers and actuators. Within the design of the EVM’s operating system, link pro-
tocol, programming abstractions and operation, timeliness is a first-class citizen and
all operations are synchronized. The EVM does not have a single node-perspective of
mapping operations to one virtualized processor on a particular node but rather main-
tains coordinated operation across a set of controllers within a virtual component. q

One of the first virtual machines (VM) for sensor networks was Maté [Levis and
Culler 2002]. Maté implements a simple, communication-centric VM built on top of the
TinyOS [Hill et al. 2000]. It is designed as a high level interface where code is written
using limited instruction set, defined at design-time, and executed with a FORTH-
like interpreter. EVM utilizes a similar FORTH-like interpreter but is extensible at
runtime and allows for fully preemptive tasks. Scylla is a more conventional system
VM where one physical machine exposes interfaces to a single logical machine. On the
other hand, EVM uses several physical nodes and allows user to consider the virtual
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component as a single logical entity. SOS operating systems for sensor nodes [Han
et al. 2005] was designed to allow flexible operation of nodes in a sensor network. As
TinyOS, it has an event-driven execution of all components, with a difference that com-
ponents can be installed/modified during runtime. EVM is built on the nano-RK sensor
RTOS [nanoRK 2010] and hence all tasks are scheduled by fixed priority scheduling
and are fully preemptable. The Virtual Node Layer [Brown et al. 2007] provides a pro-
gramming abstraction where each virtual node is identified with a particular region
and it is emulated by one of the physical nodes in its region. On the other hand, EVM
uses several physical nodes and allows the user to consider the virtual component as
a single logical entity.

In the last few years, several different systems for macro-programming in WSN have
been developed. [Welsh and Mainland 2004] have defined a set of abstractions repre-
senting local communication between nodes in order to expose control over resource
consumption along with providing feedback on its performance. An extension of these
ideas is used to develop Regiment [Newton et al. 2007], a high-level language based on
the functional reactive programming. Kairos [Gummadi et al. 2005] allows a program-
mer to describe code execution for each of the nodes in a network using a centralized
approach where details about code generation, remote data access and management
along with node interactions are hidden from the programmer. EVM is not a generic
macroprogramming system as it focuses on closed-loop control with native runtime
support for task assignment and migration.

The development of control algorithms able to deal with the unreliability of the wire-
less channel for Networked Control Systems (NCSs) is an active area of research in
the control systems community [Hespanha et al. 2007], [Zhang et al. 2001]. Few ef-
forts consider networked control over arbitrary topologies (e.g., [Robinson and Kumar
2008], [Gupta et al. 2009]). Even in these articles, the authors assume the existence of
a single actuation point and a single sensing point on the plant. They show that the
optimal position of the controller is at the actuation point, while ignoring the wireless
channel in the estimation of the plant’s state. The authors show that, in general case,
the problem of assigning the best location of the controller node is very complex. Fi-
nally, Etherware [Graham et al. 2009] presents challenges in software development for
NCSs along with abstractions and architectures used to implement control algorithms
for NCSs. The authors describe a middleware for control systems but do not provide
algorithms which might be used to guarantee that designed middleware satisfies re-
quirements for the control algorithms.

3. EVM DESIGN FLOW

Our focus is on the design and implementation of wireless controllers and in pro-
viding such controllers with runtime mechanisms for robust operation in the face
of spatio-temporal topological changes. We focus exclusively on controllers and not
on sensors or actuators, as the latter are largely physical devices with node-bound
functionality. A three-layered design process is presented to allow control engi-
neers to design wireless control systems in a manner that is both largely plat-
form/protocol/hardware/architecture independent and extensible to different domains
of control systems (in process, discrete, aviation, medical, etc.). This section describes
the design flow from a control problem formulation in Simulink, automatic translation
of control models from Simulink to the platform-independent EVM interpreter-based
code and finally to platform-dependent binaries (see Figure 3). These binaries are as-
signed to physical nodes within a VC using assignment and scheduling algorithms
presented in Section 5. The binaries are executed as Virtual Tasks within the platform
dependent architecture described in Section 4.
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Fig. 3. EVM design flow.

At design time, control systems are usually designed using software tools, such as
Matlab/Simulink, that incorporate both modeling and simulating capabilities. There-
fore, to automatize the design flow the EVM is able to automatically generate func-
tional models from the Simulink control system description. These functional models
define the processes by which input sampled data is manipulated into output data for
feedback and actuation. The models are represented by generated code and meta data
for platform and node independent system description. This allows a system designer
to exclusively focus on the control problem design. Beside the functional description
in the platform-independent and domain specific language (DSL), from the Simulink
model the EVM design flow automatically extracts additional para-functional proper-
ties like timing and inter task dependencies. These properties, along with the func-
tional description are used to define a platform optimized binary for each Virtual Task
(VT).

3.1. Platform Independent Domain Specific Language

To generate functional description of the designed system, the EVM programming lan-
guage is based on FORTH, a structured, stack-based, extensible, interpreter-based
programming language [Conklin and Rather 2007]. Since the goal of the EVM de-
sign is to allow flexibility and designing utilities independent of chosen programming
language, the intermediate programming language is not constrained to the EVM pro-
gramming language. The interpreter used to execute modules described in the EVM
programming language can also execute precompiled binaries. The EVM implemen-
tation, presented in Section 7, executes binaries derived from embedded C code. This
enables execution of code binaries developed in other languages used to describe con-
trol system implementation.

The use of the EVM intermediate programming language enables domain-specific
constructs, where basic programming libraries are related to the type of application
that is being developed. For example, for use in embedded wireless networks for indus-
trial control we developed two predefined libraries, Common EVM and Control EVM
(a full list of API’s is provided in [Pajic and Mangharam 2009]). Common EVM (Fig-
ure 4(b)) is based on the standard FORTH library [Conklin and Rather 2007]. Beside
the : word, used to define new words, all other words can be separated into the fol-
lowing categories: 1) arithmetic operations, 2) logical operations, 3) memory manipu-
lation, 4) sensor and actuator handling, and 5) networking. Control EVM (Figure 4(a))
contains functionalities widely used to develop control applications. First three words
specified in Figure 4(a) are used for Singe-Input-Single-Output (SISO) systems. Al-
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• Arithmetic operations (on 16bit)

• Logical operations

• Comparison and testing

• Controlling programming flow

• Memory manipulation

• Sensor/Actuator handling

– RDSensG ( sensID – n1 ) 

– RDSensL ( sensID – n1 ) 

– WRActG ( value actID – ) 

– WRActL ( value actID – ) 

• Networking

– PktSendG ( addr n nodeID - )

• Task handling

– TaskActivate ( addrTCB actID – ) 

(b) Common-EVM

Fig. 4. EVM platform-independent and domain-specific language for expressing functional and timing de-
scription of Simulink models.

though these words can be described using the LTI word (describing Linear Time In-
variant systems), their wide use in control systems recommended their specific use.

The extensibility of the EVM allows definition of additional domain-specific libraries
such as Automotive EVM, Aviation EVM or Medical EVM libraries, which will contain
functionalities specific to each of these application fields. Using EVM libraries, the code
generator creates a system description from a predefined components, thus creating a
task description file for each of the Virtual Tasks.

3.2. Control Problem Synthesis: From Simulink to Platform Independent Specification

We now describe the procedure to automatically extract the functional description of a
VT from a Simulink design. Within Simulink, each block (and, thus, the model itself)
is represented as a hierarchical composition of other Simulink blocks, either subsys-
tems or library-defined blocks. This organization of Simulink models allows for a nat-
ural extraction of a structured functional description using predefined words from the
platform-independent EVM DSL dictionary. When a new Simulink block is defined as
a composition of previously defined blocks, a new word is defined for the EVM func-
tional description using previously defined words. The process is repeated until a level
is reached where all words belong to the EVM dictionary.

A VT description is obtained by parsing the Simulink model file. This is done by
searching for new block definitions along with the interconnections between blocks.
In a Simulink model file (i.e., mdl file) blocks are presented as shown in Figure 5(c)
and Figure 5(d) where BlockType parameter describes whether the block is a part of
the Simulink library or a subsystem, consisting other Simulink blocks. To extract the
VT description we require that the task is implemented in a singular, discrete-time
Simulink subsystem, such as the example shown in Figure 6. The synthesis of the
platform-independent specification from the model is carried out in three steps:

(1) Definition of intermediate words and variables: Each block i is associated
with a word Wi from the EVM DSL, where the output of the block is assigned to a
variable vari. To illustrate this consider the extended PID controller from Figure 6.
The outputs of all intermediate blocks are assigned to variables as shown in Figure 6.
For example, the EVM description of block “Sum1” is described with word W8 and
its output with variable var8. As the EVM DSL is stack-based with reversed Polish
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}
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Block{

BlockType SubSystem

Name ”PID controller”

Ports [n, p]

Block specific data · · ·

}

(d) Simulink description of a sub-
system

Line{

SrcBlock ”Simulink Block l”

SrcPort k

DstBlock ”Simulink Block i”

DstPort j

}

(e) Simulink description of a link
between two blocks

Fig. 5. General relations between Simulink blocks.

notation the block is described as:

: W8 R2 out3 ? NEG sum var8 @ ;

where ? and @ are read and write operators respectively. In general case, for a block
presented in Figure 5(a) the parser defines the following word:

: Wi u1 ? u2 ? ...un ? coeffs BlockWord vari1 @ vari2 @ ... varip @ ;

where BlockWord, depending on BlockType, corresponds to either a predefined word
(if a library block is used) or a new word that needs to be defined using the same parser
algorithm (if the block is a subsystem). Variables presented as coeffs are extracted
from the ‘Block Specific’ data in cases when they are contained in the block description
(from Figure 5(c),(d)), along with initial values for variables vari. For example, consider
definition of word W4. Since block PID_controller1 contains coefficients for Kp,Ki and
Kd their values are included in the definition. Finally, in the previous formulation vari-
ables u[1..n] are replaced with appropriate system variables with respect to connections
between blocks. To illustrate this consider a connection (i.e., line) between blocks from
Figure 5(b). Simulink defines the Line as in Figure 5(e). Thus, for Simulink Block i,
in the definition of word Wi each variable ui,j is replaced with appropriate variable
varl,k.

(2) Composing extracted words: The intermediate words are composed to create
functional description of the system (e.g., VTctrl). The parser is recursively executed
for all subsystems till all words are part of the library. The description for the example
from Figure 6 is presented in Step 2, Figure 7. It is worth noting that the interme-
diate words are executed in the blocks’ execution order for the Simulink model. The
order is either specified explicitly in the model or determined implicitly based on block
connectivity and sample time propagation [MathWorks 2010].

(3) DSL code optimization: Intermediate blocks with elementary functions can be
pruned in a single word. For the example from Figure 6 the optimized description is
shown in Step 3, Figure 7. Words W3,W4,W5 and W8,W9,W10 are combined into
a single word (W3 and W8, respectively). Also, instead of word W6 and variable var6,
W1 and var1 are used. The code optimization reduces the number of defined words
and used variables. Currently, the optimization is restricted to a small set of control
system configurations. A more general approach is an avenue for future work.
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Fig. 6. Simulink model of an extended PID controller.

Step 1: Intermediate words/variables

: W1 in1 ? f var1 @ ;

: W2 var1 ? in2 sum out1 @ ;

: W3 out1 ? NEG R1 sum var3 @ ;

: W4 var3 ? Kp1 Ki1 Kd1 PID var4 @ ;

: W5 var4 ? thr SAT out2 @ ;

: W6 in1 ? f var6 @ ;

: W7 var6 ? in3 ? sum out3 @ ;

: W8 R2 out3 ? NEG sum var8 @ ;

: W9 var8 ? Kp2 Ki2 Kd2 PID var8 @ ;

: W10 var9 ? thr SAT out4 @ ;

Step 2: Composition
: Vctrl W1 W2 W3 W4 W5 W6 W7 W8 W9 W10  out1 ? 

out2 ? out3 ? out4 ?

Step 3: Optimization

: W1 in1 ? f var1 @ ;

: W2 var1 ? in2 sum out1 @ ;

: W3 out1 ? NEG R1 sum Kp1 Ki1 Kd1 PID thr SAT out2 @ ;

: W7 var1 ? in3 ? sum out3 @ ;

: W8 R2 out3 ? NEG sum Kp2 Ki2 Kd2 PID thr SAT out4 @ ;

: Vctrl W1 W2 W3 W7 W8 out1 ? out2 ? out3 ? out4 ? ;

Fig. 7. EVM functional description extracted from Simulink model shown in Figure 6.

As our intention is to map the control problem to a scheduling problem, timing pa-
rameters (i.e., period and worst-case execution time) are also extracted from the model.
We consider only discrete-time controllers as potential VTs. For these, Simulink design
rules force the designer to define a sampling rate for each (discrete-time) block. Cur-
rently we cover cases where the controller is designed in a single clock domain (i.e., all
blocks use the same sampling period). In general case, when a controller contains sev-
eral clock domains, each sub-domain is represented with its respective virtual tasks.
Also, a set of dependencies between the tasks is extracted. Finally, to extract the worst-
case execution time, a simple static analysis is performed using the execution time
measurements for library defined words with respect to the specific platform. (cur-
rently the EVM is implemented on two types of platforms; see Section 7 for details).

4. EVM ARCHITECTURE

We now describe the node-specific architecture which implements the mechanisms for
the virtual machine on each node. The Common-EVM and Control-EVM description
are scoped within Virtual Tasks (VTs) that are mapped at runtime by the Task As-
signment procedure presented in the next section. This description is interpreted by
the Virtual Component Interpreter running on each node. The EVM runtime system is
built as a supertask on top of the nano-RK real-time operating system [nanoRK 2010],
allowing node-specific tasks to execute native and virtual tasks (i.e., those that are dy-
namically coupled with a node) to run within the EVM. The EVM block-level reference
architecture is presented in Figure 8(a). This allows the EVM to maintain node specific
functionalities and be extensible to runtime task evocation of existing or new virtual
tasks.

The interface between nano-RK and all VTs is realized using the Virtual Component
Manager (VCM). The VCM maintains local resource reservations (CPU, network slots,
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Fig. 8. EVM architecture with the Virtual Component Manager running as a supertask alongside native
nano-RK tasks.

memory, etc.) within nano-RK, the local state of the VTs and global mapping of VTs
within the VC. The VCM is responsible for memory and network management for all
VTs-to-physical nodes and presents a mapping between local and remote ports which
is transparent to all local VTs. It includes a FORTH-like interpreter for generic and
domain-specific runtime operations and a Fault/Failure Manager (FFM) for runtime
fault-tolerant operation. The VCM is implemented in a modular form so the inter-
preter, FFM and other specialized modules may be swapped with extensions over time
and for domain-specific applications.

4.1. EVM Extensions to the nano-RK RTOS

nano-RK is a fully preemptive RTOS with multi-hop networking support that runs on
a variety of sensor network platforms (8-bit Atmel-AVR, 16-bit TI-MSP430, Crossbow
motes, FireFly) [nanoRK 2010]. nano-RK uses the RT-Link [Rowe et al. 2008], a real-
time link protocol. It supports fixed-priority preemptive scheduling to ensure that task
deadlines are met, along with support for enforcement of CPU and network bandwidth
reservations. nano-RK had been design as a fully static OS, configured at design time.
Thus, to allow parametric and programmatic runtime code changes nano-RK was re-
designed and extended with several new features:
• Runtime Parametric Control: Support for dynamic change of the sampling rates, run-
time task and peripheral activation/deactivation and runtime modification of the task
utilization was added. These facilities are exposed and executed via the Common-EVM
programmer interface.
• Runtime Programmatic Control: As a part of the EVM design a procedure for dy-
namic task migration was implemented. This requires runtime schedulability analy-
sis, capability checks to migrate a subset of the task data, instructions, required li-
braries and task control block. Based on the procedure presented in Sections 5 and 6,
tasks may be activated or migrated between primary and backup nodes. Such facilities
are triggered by the primary-backup policy implemented on top of the EVM architec-
ture.
• Dynamic Memory Management: Both Best-fit and First-fit memory allocation meth-
ods are supported. In addition, a Garbage Collector (GC) has been designed to reclaim
all memory segments owned by tasks that had been terminated. The GC is scheduled
only when its execution does not influence execution of other tasks.

4.2. Virtual Component Interpreter

The Virtual Component Interpreter provides an interface to define and execute all VTs.
Every VT is defined as a word within the VCM library. When a new VT description is
received over the network, the VCM calls the interpreter that defines a new word using
the description file of the task and existing VC libraries. After a VT is activated, each
execution of the VT is realized as a scheduled activation of the interpreter with the
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VT’s word provided as an input. To allow preemptivity of the tasks, each call of the in-
terpreter uses a VT-specific stack and dedicated memory segments. In addition, during
its execution, each VT is capable of dynamically allocating new memory blocks of fixed
size (currently 128B) using the EVM’s memory manager. Therefore, the interpreter is
designed to use logical addresses in the form (block_index, address_in_block).

Each node maintains a local copy of standard Common-EVM and Control-EVM dic-
tionaries. If a new word needs to be included in the existing library, the interpreter first
checks the global word identifier and revision number to discard obsolete versions.

4.3. Virtual Tasks

Each VT is described using the Virtual Task’s Description Table (VTDT), comprised
of global and local descriptions of a VT. Copies of the table are stored on all mem-
bers of the VC. While this requirement for consistency currently results in an issue of
scalability, a large fraction of the higher-speed control in SCADA systems require net-
works with less than 20 nodes and is hence within the practical limits of the current
approach. Each VT’s global description has information about memory requirements,
stack size and number of used fixed size memory blocks (128B). In addition to the
above meta data, network requirements in terms of number of RT-Link transmit and
receive slots are specified at design time.

The above descriptors are specified within the VCM’s Task Control Block (TCB) for
each task, which is an extension to the native nano-RK TCB (for details see [Pajic and
Mangharam 2009]).

4.4. Virtual Component Manager

The fundamental difference between the native nano-RK and the VCM is that the
scope of nano-RK’s activities is local, node-specific and defined completely at design
time, while the scope of the VCM is the VC that may span multiple physical nodes.
The VCM subcomponents are presented in Figure 8(b). The current set of supported
runtime functionalities is:

4.4.1. Virtual Task handling (controlled by the VT Handler):
4.4.1.1 VC state includes the mapping of VTs to physical nodes and quality of links be-
tween physical nodes. The VCM in each controller node within the VC maintains the
VC state and periodically broadcasts it to keep consistency between all members of the
VC. Currently, a centralized consensus protocol is used, while a distributed consensus
protocol is needed to scale operations.
4.4.1.2 VT migration and activation that can be triggered as a result of a fault/failure
procedure or by a request from either the VT or the VCM. As a part of a task migration,
the task’s VTDT is sent along with all memory blocks utilized by the task. If the VT
is already defined on a Backup node (checked by exchange of hash values), only task
parameters are exchanged. In addition, before migrating a VT to a particular node the
Schedulability Analyzer performs network and CPU schedulability analysis for nodes
that are potential candidates (details are provided in the next section). If the analy-
sis shows that no node can execute the task correctly, an error message is returned.
Finally, after a VT is defined, to activate the task the host node performs a local CPU
and network schedulability analysis to ensure that the task will not adversely affect
correct execution of previously defined VTs.
4.4.1.3 Control of tasks executed on other nodes: For all VTs in the Backup mode, the
VT Handler shadows execution of the VT in the Primary mode. If a departure from the
desired operation is observed (e.g., low battery level, decreased received packet signal
strength), Backup nodes may be assigned to the Primary mode based on the policy.
4.4.1.4 VT Assignment: VT Assignment procedure is activated to assign execution of
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the VTs to specific nodes, when incremental and local re-assignment (described in Sec-
tion 6) fails. The procedure determines the best set of physical controller nodes to
execute VTs given a snapshot of the current network conditions along with the initial
communication and computation schedules for the nodes.

4.4.2. Network Management (performed by the Network Manager):
4.4.2.1 Transparent radio interface: Using the message header which contains infor-
mation about message type, the VCM determines tasks that should be informed about
the message arrival. Messages containing tasks and their parameter definitions are
first processed by the VCM, before the VCM activates the interpreter.
4.4.2.2 Logical-to-physical address mapping: Communication between VTs is done via
the VCM. Since a VT does not have information on which nodes other VTs are de-
ployed, the VCM performs logical-to-physical address mapping. In cases when both
tasks are on the same node, the VCM directly passes a message to the receiving task’s
buffer.

5. VIRTUAL TASK ASSIGNMENT

With the knowledge of the underlying EVM architecture, we now discuss the algorithm
used for the VT Assignment procedure. The procedure determines the initial assign-
ment of the VT’s executions along with the communication and computation schedules.
The criteria for triggering re-assignment calculation is described in Section 6. We de-
rived a general case problem formulation for the VT’s assignment as a binary integer
linear optimization problem which is then solved efficiently using well-known tech-
niques (branch and bound) [Schrijver 1998]. In addition, since standard link protocols
for wireless factory automation, such as WirelessHART [HART 2007], recommend that
only one physical node may transmit in each time slot, we were able to obtain an effi-
cient reformulation of the relaxed assignment problem. In this case, each control loop
(operating across the same physical set of controllers) can be considered separately,
which considerably simplifies tasks assignments, as it allows a compositional system
design.

5.1. General Formulation

To develop an assignment algorithm we considered a multi-hop control network
that corresponds to our model of a VC. The network consists of p ≥ 1 processes
(J = {1, ..., p} denotes set of all processes) and a set of nodes (sensors, actuators and
controllers), where all nodes have a radio transceiver along with memory and com-
puting capabilities (see Figure 9(a)). The nodes communicate using a TDMA based
protocol (i.e., in a time-triggered manner) with frame size FS . The network is de-
scribed with a directed graph G = (V,E) that represents radio connectivity in the
network. Set V = {v1, v2, ..., vm} denotes a set of physical nodes in the network,1 while
E = {(vi, vj)| vi and vj are connected} is a set of all links. In addition, each link e is
described with its link quality LQ(e). To extract a problem formulation it is necessary
to enumerate all paths in the network which should be used for communication be-
tween a node and a sensor (or an actuator).2’3 Thus, the lth path between node vi and
sensor/actuator k is denoted as ψl

i,k.
The goal of the assignment procedure is to determine: (1) An assignment of the

Virtual Tasks (i.e., Control Algorithms - CAs) to the set of nodes V , where each VT

1In the remainder of the paper, V will also denote the set that contains nodes’ indexes {1, 2, ...,m}.
2A path is represented as a directed path connecting the sender with exactly one receiver.
3Including all paths could significantly increase complexity of the optimization problem. Therefore, the user
might opt to enumerate only selected paths with best characteristics (e.g., a small number of hops, high
packet delivery ratio).
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Fig. 9. (a) Reference model of a multi-hop wireless network used for control. The network consists of mul-
tiple sensors (S), actuators (A) and controllers (vi ’s). The VC includes multiple physical controller nodes; (b)
An example stability region for such a network. T is a controller sampling period, while τ is the network
induced delay.

is assigned to one node in the Primary mode and to R nodes in the Backup mode.
(2) A communication schedule that determines active links at each time slot. (3) A
computational schedule that determines in which time slot each VT is executed. In
addition, to define the problem as an optimization problem, the following assumptions
were made:

A.1 For each process j, the Primary and all Backup nodes assigned with the jth virtual
task are scheduled in the same time slot(s).

A.2 Virtual Tasks are mutually independent.
A.3 A process i (for all i) will remain stable if its sampling period is less than some

predefined value Ti. Therefore, we require FS ≤ min(T1, T2, ..., Tp).

The first assumption simplifies the problem formulation and allows for an easier
schedulability analysis scheme. The second assumption is reasonable since a signif-
icant class of process controllers execute a large number of simple and independent
control loops. As an avenue of future work, this assumption will be relaxed to consider
dependencies between tasks. To justify the last assumption we use the approach de-
scribed in [Zhang et al. 2001]. For example, consider a closed-loop control of a plant
modeled with continuous-time Linear-Time Invariant (LTI) dynamics:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t).

The controller employs a discrete-time state feedback control with u(kT ) = −Kx(kT ),
where T denotes the plant’s sampling period. If network induced delay τk is less than
one sampling period,4 the control feedback has the following form:

u(t+) = −Kx(kT ), t ∈ [kT + τk, (k + 1)T + τk+1).

Thus, u(t) is a piecewise continuous function that changes values only at time in-
stances kT+τk. The EVM utilizes fully synchronous networks, which allows scheduling
the actuators to apply new input values at the same time, after the messages were de-
livered to all of them. This guarantees the same delay for all plant’s inputs at each
sampling period (τk = τ, ∀k). Using the methods based on simulation, as in [Zhang
et al. 2001], the stability region can be determined with respect to sampling period T
and the induced delay τ . The region is used to establish the maximal sampling period
for which the system maintains stability if a network delay is less than the period
( τ
T
≤ 1, an example is shown in Figure 9(b)).

To formulate the problem, the following decision variables are used:

4A similar approach can be used even if the delay is longer than the sampling period.
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— 2mp binary assignment variables, xsti,j ∈ {0, 1}, where i ∈ V, j ∈ J, st ∈ {a, b} and

xai,j =

{

1, vi is the Primary for jth VT
0, otherwise

, xbi,j =

{

1, vi is a Backup for jth VT
0, otherwise

— Routing binary variables yli,k ∈ {0, 1}, where:

yli,k =

{

1, lth path between node vi and sensor/actuator kth is used
0, otherwise

— Communication schedule binary variables ηl,ni,k ∈ {0, 1}, where n ∈ {1, ...Fs} and:

ηl,ni,k =

{

1, lth path between node vi and sensor/actuator k is active in nth slot
0, otherwise

— Computation schedule binary variables µn
i ∈ {0, 1}, where n ∈ {1, ...F s} and: µn

j =
{

1, jth VT is scheduled for execution in nth time slot
0, otherwise

Our goal is to describe the assignment problem in the form:

min f(x,y, η, µ), subject to x,y, η, µ ∈ SC

where vectors x, y, η, µ contain the aforementioned decision variables and SC describes
a set that satisfies all constraints, ensuring desired system’s behavior. The constraints
take into account the requirements for control problem along with dependencies be-
tween communication and computation schedules. In the remaining of this section the
imposed set of constraints is described.

5.1.1. Assignment of the Control Algorithms. Each VT has to be assigned to exactly one
node in the Primary mode and R additional Backup nodes (different from the Primary
node for the CA). These constraints are described as:

m
∑

i=1

xai,j = 1,

m
∑

i=1

xbi,j = R, and xai,j + xbi,j ≤ 1, ∀j ∈ J, ∀i ∈ V.

5.1.2. Requirements for robust design. Additional sets of constraints are introduced to
improve performance of the closed-loop system. Link reliability constraints require
that only links with quality above a given threshold are considered, which reduces
complexity of the problem formulation. Logical pruning of graph G results in a graph
GT = (V,ET ), where ET = {(vi, vj) ∈ E|LQ(vi, vj) ≥ THR)}.

The Routing constraints describe a means to increase system robustness to the link
failures with the use of different paths for data routing. For example, WirelessHART
recommends that each node can use at least two separate paths to route data [Alur
et al. 2009]. Thus, we require that the Primary node for each VT uses two different
paths to deliver information to all actuators related to the process’ control. In addition,
the Primary and all Backup nodes have to be connected with all sensors related to the
VT.5 Denoting as Aj and Sj the sets of actuators and sensors respectively, related to
the jth process, these constraints are described as:

∑

∀l

yli,ka
= 2xai,j ,

∑

∀l

yli,ks
= xai,j + xbi,j , ∀j ∈ J, ka ∈ Aj , ks ∈ Sj , ∀i ∈ V.

Finally, a set of Monitoring constraints is imposed, where all Backup nodes moni-
tor the execution of a VT on the Primary node. Thus, to alleviate the system design
and VT migration when the Primary node fails, constraints are enforced that all R

5It is worth noting here that a different routing policy could be used. However, even if that is the case these
constraints could be expressed in a similar way.
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Backup nodes have to be 1-hop neighbors of the Primary node. Denoting as Ni set of
all neighbors of node vi, these constraints are described as:

∑

k∈Ni

xbk,j ≥ R · xai,j , ∀j ∈ J, ∀i ∈ V.

5.1.3. Computation schedule constraints. From assumptions A.3 and A.1, we require
that computations of each VT on the Primary and Backup nodes have to be scheduled
exactly once in a frame. This implies that all VTs have the same sampling rate and
could result in a more frequent computation of a VT. In most automation systems
the increase of the sampling rate can not endanger the closed-loop system stability.
On the contrary, it can increase the performance of the implemented controller if the
optimal discrete-time controller is used [Cervin et al. 2002].6 Thus, the constraints are
expressed as:

∑FS

n=1 µ
n
j = 1, ∀j ∈ J.7

5.1.4. Communication schedule constraints. From assumption A.3, closed-loop system
stability is guaranteed if the end-to-end communication delay (i.e., delay from the sen-
sors to the assigned controller and from the controller to the actuators) along with the
time needed for the controllers’ computation is less than FS . Thus, the first require-
ments for the communication schedule is that only used paths are scheduled and that
the number of slots assigned to the used path is exactly equal to the path’s length (i.e.,
number of hops on the path):

ηl,ni,k ≤ yli,k, ∀n, 1 ≤ n ≤ FS ,

FS
∑

n=1

ηl,ni,k = yli,k · d(ψ
l
i,k), ∀i, k ∈ V, ∀l.

Additionally, the schedule has to be collision free (i.e., two interfering nodes cannot
transmit in the same time slot). To express these constraints, for each path ψl

i,k where
k is a sensor, all links are enumerated in increasing order starting from the link with
origin at sensor k and ending with the link with the destination at node i. Similarly,
for each path ψl

i,k where k is an actuator, enumeration starts at node i and ends at
actuator k. This is used to create the interference links table for each pair of paths
(ψl1

i1,k1
, ψl2

i2,k2
). An element (n1, n2) is a member of the (ψl1

i1,k1
, ψl2

i2,k2
) interference table

(IT) if transmissions over the n1
st link of the path ψl1

i1,k1
interferes with transmissions

over the n2
nd link of the path ψl2

i2,k2
. Constraints for interference-free schedule can be

described as: For all n, 1 ≤ n ≤ Fs, ∀i1, i2 ∈ V,

|

n
∑

n0=1

ηl1,n0

i1,k1
− n1|+ |

n
∑

n0=1

ηl2,n0

i2,k2
− n2| ≥ 1, ∀k1, k2 ∈ S ∪ A, (n1, n2) ∈ IT (ψl1

i1,k1
, ψl2

i2,k2
)

5.1.5. Dependencies between the schedules. Communication and computation sched-
ules must be aligned, meaning that measured data (i.e., data from sensors) is routed
to the controller prior to the VT’s activation. Also, data designated to the actuators are

6Future extensions of this work will allow CAs to have different sampling periods.
7In the constraint formulation we assume that each VT can be executed in one time slot. In general this
might not be the case. However, it would just require a formulation change where instead of 1, execution
time necessary for execution of the jth VT (i.e., ej) is placed. Even more general, if the network contains
nodes with different computational power, the previous term should be expressed as

∑m
i=1

(xa
i,j ·e

a
j +xb

i,j ·e
b
j).

To simplify the notation, we decided to use the aforementioned assumption.
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forwarded after the computation of the VT: For all n, 1 ≤ n ≤ Fs

ηl,ni,ks
≤ (1−

n
∑

n0=1

µn0

j ), ηl,ni,ka
≤ (

n−1
∑

n0=1

µn0

j ), ∀j ∈ J, ∀i ∈ V, ∀l, ks ∈ Sj , ka ∈ Aj ,

5.1.6. Objective function. The goal of the assignment procedure is to minimize the ag-
gregate number of used links while maximizing the aggregate link quality. In addition,
we want to maximize the use of disjoint routing. Thus, a cost for sharing links is intro-
duced, both in paths from sensors to controllers and from the Primary controller to the
actuators. As can be seen, the objective function (i.e., cost) does not depend on utilized
scheduling. Therefore, it is defined as a weighted sum f(x,y) = w1fLN+w2fLQ+w3fSL,
where weights w1, w2 and w3 are used to emphasize impacts of the following cost func-
tions:

(1) Aggregate number of used links: fLN(x,y) =
∑p

j=1(
∑

l,k,i y
l
i,k · d(ψl

i,k))j , where

d(ψl
i,k) is a distance (i.e., length, number of hops) of path ψl

i,k.
(2) Negative aggregate link quality: fLQ(x,y) = −

∑p

j=1(
∑

l,k,i y
l
i,k · LQ(ψl

i,k))j
(3) Cost of the shared links:

fSL(x,y) =

p
∑

j=1

∑

1≤i≤t≤m
li,lt, k∈Sj∪Aj

ylii,k · y
lt
t,k · SH(ψli

i,k, ψ
lt
t,k),

where SH(ψli
i,k, ψ

lt
t,k) is a number of links shared between paths ψli

i,k and ψlt
t,k.

Therefore, the assignment problem can be formulated as a binary integer pro-
gramming optimization problem and solved using some of the well-known techniques
(branch and bound) [Schrijver 1998]. One caveat is in order. Since the problem for-
mulation has a large number of decision variables, even for a small network it can be
computationally expensive to solve the problem. Thus, we translated the problem into
the satisfiability problem, by transforming each constraint into conjunctive normal
form (CNF) (for details see [Pajic and Mangharam 2009]). The satisfiability problem
is then solved using zChaff [Fu et al. 2004], a very efficient satisfiability solver. This
allows us to solve the previous problem in real-time even for large scale networks.

5.2. Problem Relaxation

When only one node in the VC can transmit in each time slot, the number of slots
needed to send a message from node v1 to node v2 is equal to the distance between the
nodes. This is used for the relaxed problem formulation, as it eliminates the need to
include communication and computation decision variables used in the general formu-
lation and, therefore, significantly reduces complexity of the optimization problem. In
addition, the collision-free communication requirement, which is the most complex set
of constraints from the general formulation, becomes redundant. The requirement is
inherently fulfilled with the policy that allows a single transmission per time slot for
the whole VC.

As the first step for the problem formulation, two maximum node-disjoint paths r1i,ac

r2i,ac
are determined for each node vi and each actuator ac. The existence of two node

disjoint paths from a node to all sensors and actuators can be checked using Menger’s
theorem [Böhme et al. 2001] (for details see [Pajic and Mangharam 2009]). When two
node-disjoint paths exist for the node, using a polynomial time algorithm (MIN-SUM
2-paths [Yang et al. 2005]) paths r1i,ac

r2i,ac
with the minimal total length can be deter-

mined. Otherwise, path r1i,ac
is computed in polynomial time as the shortest path to
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the actuator. Path r2i,ac
is calculated as the shortest path to the actuator after remov-

ing nodes from path r1i,ac
, while preserving connectivity. Using a similar approach, for

each node vi and all its neighbors vi1 , ..., vini
(ni is a degree of node vi), a set of ni + 1

paths is created between each sensor s and the nodes. We denote these distances as
(di,s, di1,s, ..., dini

,s).
To extract the relaxed problem’s formulation we used only 2mp binary assignment

variables xai,j and xbi,j defined as in the general problem formulation. This allows us to
formulate the problem as follows:

minw1 · fLN(x) + w2 · fLQ(x),

with the respect to x ∈ {0, 1}
2mp, which contains the aforementioned decision vari-

ables. The feasible set is described with the following set of constrains:

m
∑

i=1

xai,j = 1,

m
∑

i=1

xbi,j = R, xai,j + xbi,j ≤ 1,
∑

k∈Ni

xbk,j ≥ R · xai,j , ∀j ∈ J, ∀i ∈ V,

∑

i∈V
j∈{1,...,p}

{
∑

s∈Sj

(xai,j · di,s +
∑

k∈Ni

xbk,j · x
a
i,jdik,s) +

∑

a∈Aj

xai,j ·
(

d(r1i,a) + d(r2i,a)
)

}+ 1 ≤ Fs

The last constraint requires that all communication is done within one frame and
therefore, meets the timing requirements necessary for the system’s stability. This
constraint is the only one that depends on the number of VTs and utilized data rout-
ing. Thus, a suboptimal, yet feasible solution can be obtained (if and only if a feasible
solution exists) using compositional analysis. In this case each control loop, operating
across the same physical set of controllers is considered separately. Optimizing only for
the cost function fLN and for each loop separately provides an optimal assignment for
each loop that uses the minimal number of communication slots (details see in [Pajic
and Mangharam 2009]). Note that if w1/w2 >> 1, the approach provides the optimal
solution for the relaxed assignment problem in general. Also, for a sufficiently high
link quality threshold (while deriving graphGT ) the impact of function fLQ is reduced.
This enables use of the compositional design, which significantly simplifies the system
analysis and schedule extraction. Since the EVM is focused on networks with less than
20 nodes, we are able to run the optimization algorithm on all nodes in a VC, as the
VT Assignment Procedure.

6. EVM RUNTIME OPERATION: VIRTUAL TASK EXECUTION

Given the task migration mechanisms and the algorithms to (re)assign tasks, we now
describe the relationship between primary and backup nodes for planned and un-
planned scenarios. More specifically, we consider the criterion for triggering task mi-
gration and the node and network schedulability analysis that must be conducted prior
to migration. To completely address the issues in wireless networked control systems,
we must consider (a) the mechanisms for runtime adaptation, (b) the algorithms for
runtime task (re)assignment to physical nodes and (c) the fault tolerance policy. In this
paper we focus on the first two aspects and apply them to simple network models with
non-Byzantine single node and link failures. As the fault tolerance policy is dependent
on the control application and fault/failure model is a function of the specific environ-
ment, we do not consider specific policies here. We aim to address Byzantine errors
such as software errors in future work.
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6.1. Adaptation to Planned and Unplanned Network Changes

Planned adjustments occur in situations when a Primary node is informed of changes
in VC state (e.g., when a node detects that its battery level is below some threshold).
To determine a Backup node to migrate its task, the Primary node has to execute com-
putation and communication schedulability analyses in k = 1-hop neighborhood and
select a Backup node that maximizes the communication slack value while maintain-
ing computation schedulability.
For unplanned changes caused by potential failures we consider the following cases:

— The Primary nodes dies: Computation and communication schedulability analysis
in k = 1-hop neighborhood is initiated. Since state data of the Primary node is
maintained at Backup nodes, a new Primary node continues VT execution.

— A Backup node dies: The Primary node detects the Backup has died and selects a
new Backup from one of its neighbors.

— A forwarding node dies or a link’s quality goes below some criterion: The detection
of a forwarding node failure is performed by its predecessor/successor on the rout-
ing path. Again, a communication schedulability analysis is performed (only for the
affected sensor and actuator) to determine a new routing scheme.

To decrease response time for the schedulability analyses, each node uses its idle
computation time to calculate in advance the optimal reaction to a set of potential
failures. Besides decreasing the response time, this approach enables triggering the
execution of the Assignment Procedure if it is determined that for some failures there
is no adjustments that can meet all of the constraints. Also, if the procedure can not
derive a feasible assignment, an alarm is raised notifying system operators to add
more nodes in the network to prevent a potential failure.

6.2. Communication Schedulability Analysis

The goal of communication schedulability is to determine whether we can incremen-
tally reassign the available communication slots due to the change in the task assign-
ment, without executing a global reassignment of communication slots. To accomplish
this we determine the current communication slack and evaluate if it is sufficient for
the incremental slot reassignment. When a VT is to be migrated from a node vi to a
node vj , we define sets SV T and AV T of all sensors and actuators respectively, related
to the VT. Also, for each s ∈ SV T we denote as vki,s a node that is k-hops away from node
vi on the route from sensor s to node vi. Similarly, for each a ∈ AV T , vki,a denotes a node
that is k-hops away from node vi on the route to the actuator a. In addition, we denote
as N i

u the number of unused time slots in the time interval between the first slot in
which all nodes vki,s were suppose to receive values from sensors in SV T and a first slot
in the frame in which at least one node vki,a was scheduled to receive information from
the node vi. The parameter k determines the set of candidate backup nodes to which
the task may be reassigned.

More specifically, the goal of communication schedulability is to determine whether
we can reassign (with the respect to the current communication schedule) the available
communication slots and slots used to send data in the k-hop neighborhood of a node
vi. The re-assignment should re-route all sensor and actuator data from these nodes to
node vj . A new feasible communication schedule can be generated if ∆ ≥ 0, where ∆
denotes communication slack value defined as:

∆ =
∑

s∈SV T

d(vi, v
k
i,s) +

∑

a∈AV T

d(vi, v
k
i,a) +N i

u −
∑

s∈SV T

d(vj , v
k
j,s)−

∑

a∈AV T

d(vj , v
k
j,a),
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where d(vp, vq) is the distance between nodes vp and vq. If more than one task is mi-
grated from a node, similar analysis is performed with the previous equation adjusted
to contain sums of all sensors and actuators related to the tasks. In addition, if tasks
should be migrated from node vi to separate nodes, the schedulability test is performed
on a pairwise basis.

6.3. Computation Schedulability Analysis

For the computation schedulability analysis we use standard real-time response anal-
ysis [Liu 2000] and the mode-change protocol, presented in [Sha et al. 1989] and [Real
and Crespo 2004], adapted for the EVM. Consider a node vi that executes a task set
T = {Ti1 , ..., Tim , V Ti1 , ..., V Tin}, where tasks Tij are local, node specific tasks, while
tasks V Tij are VTs assigned to the node (in descending order of priority). We define
a set HP_V T (T ) as a set of all VTs with higher priority than local task T and, sim-
ilarly, a set HP_T (V T ) as a set of all node-specific tasks, with higher priority than
task V T . To allow an assignment of a new VT, a schedulability analysis is performed
where both active and inactive tasks are considered as active. Although this approach
is conservative, it eliminates the need for repeated schedulability analysis prior to
tasks activation. Each node-specific task is denoted as Tj = (pTj

, eTj
) and each VT as

V Tj = (pV Tj
, eV Tj

, φV Tj
, dV Tj

) (period, execution time, offset and deadline respectively).
Schedulability of a new task set is performed by checking only the schedulability of
each task with a lower priority than the new virtual task V Tk, using its time-demand
function w(t) [Liu 2000].

As mentioned in Section 5, we currently consider the case where all VTs have the
same execution period. Since execution of a VT is triggered by the reception of sensed
signals and must be finished before its scheduled communication to actuators, its dead-
line is significantly lower than its period. Thus, from a VT’s activation till its deadline,
all other VTs can be active at most once, so for a task V Ti, i ≥ k:

wV Ti
(t) = eV Ti

+
∑

j∈HP _T (V Ti)

⌈

t

tTj

⌉

· eTj
+

i−1
∑

j=1

eV Tj

The equation is too conservative as it assumes that all VTs can be activated at the
same time. However, VTs are activated when a last radio message containing neces-
sary data is received. In addition, since all VT’s periods are multiples of TDMA slot
duration, when a communication schedule is known, all possible offset combinations
of a task activation can be easily calculated. Therefore, for a task V Ti, released at
time ti, for all possible combinations of release times tj of VTs with higher priority, the
time-demand function for t ≥ ti is defined as:

w
(t0,t1,...,ti−1)
V Ti

(t) =eV Ti
+

∑

k∈HP _T (V Ti)

⌈

t

tTk

⌉

· eTk
+

i−1
∑

j=1,
tj≤t≤ti+di

min(eV Tj
, t− tj) +

i−1
∑

j=1,
ti∈[tj,tj+dj ]

min(eV Tj
, tj + dj − ti)

Here the second term corresponds to the execution of all higher-priority native tasks;
the third term corresponds to the demand from higher-priority VTs which are acti-
vated after the ith task’s activation, but before its deadline. Finally, the last term de-
scribes the demand of the higher priority VTs when the ith task is activated between
the higher priority tasks’ activation and deadline. For schedulability we are interested
in time instances where w(t0,t1,...,ti−1)

V Ti
(t) = t. These points can be obtained using effi-
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(b) Module components

Fig. 10. FischerTechnik factory module with 22 sensors and actuators

cient recurrence procedure described in [Liu 2000]. The task is schedulable, if for all
combinations of activation times, the solution of recurrence procedure is less than the
task’s deadline (dV Ti

).
Although the previous equation seems complicated, in the case when all VTs are

executed once per frame there is only one combination of release times (t0, t1, ..., ti−1)
(i.e., only one set of task offsets as the TDMA schedule is fixed). Even in general case
there is no need to cover a large number of possible combinations since for most control
systems, all loops usually have the same sampling period or all sampling periods are
integer multiples of one of the periods.

A similar approach is used for schedulability analysis of a node-specific task Ti.

7. IMPLEMENTATION

To evaluate the EVM’s performance in a real setting with multiple coordinated con-
troller operations, we used a factory simulation module shown in Figure 10(a). The
FischerTechnik model factory consists of 22 sensors and actuators (Figure 10(b)) that
are to be controlled in a coordinated and timely manner. A block of wood is passed
through a conveyor, pushed by a rammer onto a turn table and operated upon by up to
three milling/cutting/pneumatic machines. The factory module was initially controlled
by wired programmable logic controllers (PLCs). We converted it to use wireless con-
trol with FireFly embedded wireless nodes [Mangharam et al. 2007] controlling all
sensors and actuators via a set of electrical relays. FireFly is a low-cost, low-power
platform based on Atmel ATmega1281 8-bit microcontroller with 8KB of RAM and
128KB of ROM along with a Chipcon CC2420 IEEE 802.15.4 standard-compliant ra-
dio transceiver. FireFly nodes support tight global hardware-based time synchroniza-
tion for real-time TDMA-based communication with the RT-Link protocol [Rowe et al.
2008]. The EVM also works on TI MSP430 architectures.

In our experiments we demonstrate:
1. On-line capacity expansion when a node joins the VC.
2. Redistribution of VTs when adding/removing nodes.
3. Planned VT migration triggered by the user.
4. Unplanned VT migration due to a node or a communication link failure.
5. Multiple coordinated work-flows.

We tested the setup with a batch of 10 input blocks consisting of 3 different types
which require different processing procedure. This is an example of the logical bene-
fits of the EVM as it enables a more agile form of manufacturing. Details about the
experiments, along with the videos can be seen in [evm 2009].
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8. CASE STUDY

As this is an early effort to describe the main functionalities of the EVM, we limit our
case study to a simple simulated control network. We simulated the performance of the
EVM for the case when a wireless networks is used for control in the Shell Problem,
a well-known problem from process control theory concerning control of a heavy oil
fractionator [Lewin 2009], [Prett and Morari 1986]. The controlled variables (outputs)
are differences of the top product end point (Y 1) and the bottom reflux temperature
(Y 2) from predefined (reference) values. Figure 11(a) presents a Simulink framework
used for the simulation, where Controller (shown in Figure 6) and Plant are similar to
models from [Lewin 2009]. The major difference is that Plant’s dynamics was sped up
to be able to test system’s performance.

The functional description of the VT, shown in Figure 7, is derived as described in
Section 3. Since all continuous outputs of the Plant have to be sampled before pro-
cessed with a discrete-time controller, the sampling period defined in SampleAndHold
blocks in the Simulink model is used to extract the period of each VT.

Figure 11(b) presents the initial topology of the VC along with the Primary and the
Backup node. To be able to address the effects of message drops, we assigned each link
in the network a Packet Delivery Ratio (PDR) that is less than 1 (i.e., 100%). A TDMA
protocol with 32 slots per frame is used for communication between nodes, where 24
slots were used for transfer of data related to the control problem, while 8 remaining
slots per frame were used to exchange messages about VC’s status. The system re-
sponse to a series of different step inputs (a new one was set to arrive every 60s) for
the initial topology is presented in Figure 11(d). Also, a scenario was simulated where
the initial topology changes after some of the links fail (as shown in Figure 11(c)). Fig-
ure 11(e) presents the response of the system without the EVM, where only re-routing
algorithms are used without changing positions of the Primary and Backup nodes. This
results in a system response that rapidly deteriorates. The system becomes unstable,
due to increase in end-to-end communication time from all sensors to the Primary node
to all actuators.

Figure 11(f) shows how the EVM’s adaptation to unplanned changes in link quality
keeps the system’s response similar to that in the initial topology. For the case pre-
sented in Figure 11(f), we simulated the system when at time t = 60s the network
topology changes to that presented in Figure 11(c). Due to the task re-assignment, one
execution of the control algorithm is omitted, but as it can be seen, without significant
influence to the overall system performance. This was expected since, from the per-
spective of the Plant, this case is equivalent to packet drops, which already occurs due
to the fact that PDR is less than 100%.

9. LIMITATIONS FOR THE EVM APPROACH

• Complexity of Consensus: The complexity of reaching consensus forces our cur-
rent implementation to maintain a substantial amount of state information with a rel-
atively high update frequency. This limits the scalability of the current EVM approach
to small networks with ≤20 nodes. While this is ‘good enough’ for a large number
of small embedded wireless control applications such as natural gas processing with
slowly varying operating parameters, it is essential to explore distributed algorithms
to maintain state across the virtual component.
• Centralized Approach: The centralized algorithm has been used to solve the as-
signment problem. This limitation motivated us to explore a distributed solution for
incremental strategies for control-loop implementation. Using the entire node popula-
tion within a virtual component as a distributed controller would remove the need for
the virtual task’s assignment procedure.
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(c) Topology after link failures
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(d) System response for initial configuration,
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(e) System response when EVM is not used
(when only re-routing is used), Y1 (top) and
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Fig. 11. Simulation of EVM behavior when used for ’Shell problem’ control; Nodes: green - actuators, red -
sensors, blue circle - the Primary node, orange circle - the Backup node.
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More recently, we have developed a set of distributed extensions to the EVM. In [Pa-
jic et al. 2011], a new concept of the Wireless Control Network has been introduced,
where the network (i.e., VC) acts as the controller itself. This approach for control, (a)
does not require continuous task assignment calculation, (b) does not require complex
scheduling protocols, (c) is simple in implementation and (d) enables a compositional
system design.

10. CONCLUSION

This paper presents an initial stab at a problem that unravels series of difficulties
at the heart of networked Cyber-Physical Systems. We have investigated several fun-
damental challenges with the use of wireless networks for time-critical closed-loop
control problems. Our approach was to build the networking infrastructure to main-
tain state across physical node boundaries, allowing tasks to be decoupled from the
underlying unreliable physical substrate. We present a modular architecture used for
control applications in wireless sensor/actuator/controller networks that allows compo-
nent integration and system reconfiguration at runtime, without any negative effects
on the execution of already assigned functionalities. The EVM enables a simple tran-
sition from the controller design in widely used simulation tools to the actual, physical
‘plug-and-play’ deployment for wireless networks.

To show system’s capabilities we present an IP formulation of the runtime task as-
signment problem and show that it is possible to compute task assignment efficiently
and in a composable manner across concurrent control problems. We implemented an
early version of the EVM infrastructure on commodity embedded nodes and demon-
strated the capability in an all-wireless factory across 22 sensors/actuators.
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