
Epistemic Strategies and Games on Concurrent
Processes

Konstantinos Chatzikokolakis1, Sophia Knight2, and Prakash Panangaden2

1 Computing Laboratory, Oxford University and LIX, École Polytechnique
2 School of Computer Science McGill University

Abstract. We develop a game semantics for process algebra with two
interacting agents. The purpose of our semantics is to make manifest the
role of knowledge and information flow in the interactions between agents
and to control the information available to interacting agents. We define
games and strategies on process algebras, so that two agents interacting
according to their strategies determine the execution of the process, re-
placing the traditional scheduler. We show that different restrictions on
strategies represent different amounts of information being available to
a scheduler. We also show that a certain class of strategies corresponds
to the syntactic schedulers of Chatzikokolakis and Palamidessi, which
were developed to overcome problems with traditional schedulers mod-
elling interaction. The restrictions on these strategies have an explicit
epistemic flavour.

1 Introduction

Concurrent processes are a natural and widely used model of interacting agents.
Process algebra combines an operational semantics for processes with equational
laws of process behaviour. The most commonly used equivalence is bisimula-
tion. There is also a modal logic which exactly characterizes bisimulation. This
combination of algebraic and logical principles is powerful for reasoning about
concurrency.

However, process algebra - as traditionally presented - has no explicit epis-
temic concepts, making it difficult to discuss what agents know and what has
been successfully concealed. Epistemic concepts and indeed modal logics cap-
turing “group knowledge” have proven very powerful in distributed systems [1,
2]. Strangely, it has taken a long time for these ideas to surface in the process
algebra community.

Epistemic concepts play a striking role in the resolution of nondeterministic
choices. Typically one introduces a scheduler (or adversary) to resolve nonde-
terminism. This scheduler represents a single global entity that resolves all the
choices. Furthermore, traditional schedulers are effectively omniscient: they may
use the entire past history as well as all other information in order to resolve the
choices. This is reasonable when one is reasoning about correctness in the face of

an unknown environment. In this case one wants a quantification over all possible
schedulers in order to deliver strong guarantees about process behaviour.

In security, however, one comes across situations where omniscient schedulers are
unreasonably powerful and create a situation where one cannot establish security
properties. The situation is as follows. One wants to set up protocols that conceal
some action(s) from outside observers. If the scheduler is allowed to see these
actions and reveal them through diabolical scheduling decisions there is no hope
for designing a protocol that conceals the desired information. For example,
randomness is often used as a way of concealing information; if the scheduler is
allowed to see the results of random choices and code these outcomes through
scheduling policies then randomness has no power to obfuscate data.

Consider for instance a voting system which collects people’s votes for candidate
a or b, and outputs in some arbitrary order the list of people who have voted (for
example to check whether everyone has voted). Among the possible schedulers,
there is the one which lists first all the people who voted for a. Clearly, this
scheduler completely violates the desired anonymity property. Usually when we
want a correctness property to hold for a nondeterministic system we require
that it holds for all choices of the scheduler: there is no way such universally
quantified statements will be true if we permit such omniscient schedulers.

How then, does one traditionally treat security issues using process algebra? In
fact a scrutiny reveals that they do not have a completely demonic scheduler
all the time. For example, Schneider and Sidiropoulos [3] argue that a system is
anonymous if the set of (observable) traces produced by one user is the same as
the set of traces produced by another user. This is, in fact, an extremely angelic
view of the scheduler. A perverse scheduler can most definitely leak informa-
tion in this case by ensuring that certain traces never appear in one case even
though the operational semantics permits them. Even a probabilistic (hence not
overtly demonic) scheduler can leak information as discussed by Bhargava and
Palamidessi3[4]. Anonymity is a problem where these issues manifest themselves
particularly sharply.

Even bisimulation, a notion often used in the analysis of security properties,
doesn’t treat non-determinism in a purely demonic way. If one looks at its def-
inition, there is an alternation of quantifiers: s is bisimilar to t is for every s
a−−→ s′ there exists t′ such that t a−−→ t′ ... This definition implies that the sched-

uler that chooses the a transition for s is demonic whereas the scheduler that
chooses the corresponding transition for t is angelic.

One approach to solve the problem of reasoning about anonymity in the presence
of demonic schedulers has been suggested in [5]: the interplay between the secret
choices of the process and the choices of the scheduler is expressed by introducing
two independent schedulers and a framework that allows one to switch between
them.
3 They do not explicitly talk about schedulers in their paper but the import is the

same.

The ideas of demonic versus angelic schedulers, the idea of independent agents
and the presence of epistemic concepts all suggest that games are a unifying
theme. In this paper we propose a game-based semantic restriction on the in-
formation flow in a concurrent process. We introduce a turn-based game that
is played between two agents and define strategies for the agents. The game is
played with the process as the “playing field” and the players’ moves roughly
representing the process executing an action. The information to which a player
does not have access appears as a restriction on its allowed strategies. This is
in the spirit of game semantics [6–8] where restrictions on strategies are used
to describe limits on what can be computed. The restrictions we discuss have
an epistemic character which we model using Kripke-style indistinguishability
relations.

We show that there is a particular epistemic restriction on strategies that exactly
captures the syntactic restrictions developed by Chatzikokolakis and Palamidessi.
It should be noted that this correspondence is significant since it only works with
one precise restriction on the strategies, which characterizes the knowledge of
the schedulers. This restriction is an important achievement because although
Chatzikokolakis and Palamidessi showed that these schedulers solve certain secu-
rity problems, this is the first time that the epistemic qualities of these schedulers
have been made explicit.

The advantage to thinking in terms of strategies is that it is quite easy to cap-
ture restrictions on the knowledge of the agents as restrictions on the allowed
strategies. For example, if one were to try to introduce some entirely new re-
striction on what schedulers “know” one would have to rethink the syntax and
the operational semantics of the process calculus with schedulers and work to
convince oneself that the correct concept was being captured. With strategies,
one can easily add such restrictions and it is clear that the restrictions capture
the intended epistemic concept. For instance, our notion of introspection makes
completely manifest what the agents know since it is couched as an explicit
statement of what the moves can depend on. Indeed, previously one only had an
intuitive notion of what the schedulers of [5] “knew” and it required some careful
design to come up with the right rules to capture this in the operational seman-
tics. Thus, strategies and restrictions are a beneficial way to model interaction
and independence in process algebra.

Related work There are many kinds of games used in mathematics, logic and
computer science. Even within logic there is a remarkable variety of games. The
logical games most related to our games are Lorenzen games. Lorenzen games are
dialogues that follow certain rules about the patterns of questions and answers.
There is a notion of winning and the main results concern the correspondence
between winning strategies and the existence of constructive proofs. The idea of
dialogue games appears in programming language semantics culminating with
the deep and fundamental results of Abramsky, Jagadeesan, Malacaria [8] and
Hyland and Ong [7] on full abstraction for PCF. These games do not have the

notion of winning. Rather the games simply delineate sets of possible plays and
strategies are used to model programs. This has been a very fruitful paradigm
and many researchers - far too many to enumerate - have contributed to this
flourishing paradigm. It has emerged that games of this kind form a semantic
universe where many kinds of language features coexist. Different features are
simply modelled by different condition on the strategies.

The games that we describe are most similar to these kinds of games in spirit
but there are crucial differences. Our games are not dialogue games and there is
no notion of question and answer, as a result conditions like bracketing have no
meaning in our setting. There is no notion of winning in our games either. Our
games are specifically intended to model multiple agents working in a concurrent
language. While there have been some connections drawn between concurrent
languages like the π-calculus and dialogue games [7] these are results that say
that π-calculus can be used to describe dialogue games, not that dialogue games
can be used to model π-calculus. The latter remains a fundamental challenge
and one that promises to lead to a semantic understanding of mobility.

A very important concept that pervades game semantics is “innocence” [7, 9].
This is a very particular restriction on what the players know. In order to de-
fine innocence much more complex structures come into play; one needs special
indicators of dependence (called “justification pointers”) that are used to for-
malize a concept called the “view” of each process. In the end innocence, like
introspection, is a statement about what knowledge the agents have. Our games
have much less complicated structure because there are no issues with higher
types and the introspection notion is relatively simple to define.

2 Background

We begin by introducing a process calculus with labelled actions and a protection
operator. The labels on actions allow us to control what is visible about an action;
if two actions have the same label then they are indistinguishable to an agent
controlling the execution of the process. The protection operator, represented
by curly brackets, indicates that the top-level action in the protected subprocess
must be chosen independently from unprotected actions.

We let l and k represent labels, a and b actions, ā and b̄ co-actions, τ the silent
action, and α and β generic actions, co-actions, or silent action. The syntax for
a process is as follows:

P,Q ::= l : α.P | P |Q | P +Q | (νa)P | l : {P} | 0

The operational semantics for this process calculus is shown in Fig. 1. There
are corresponding right rules for + and |; these operators are both associative
and commutative. There is an additional condition that no derivation tree for
a transition may contain more than one occurrence of the SWITCH rule. The

ACT
l : α.P

α−−→ P
RES

P
α−−→ P ′ α 6= a, ā

(νa)P
α−−→ (νa)P ′ SUM1 P

α−−→ P ′

P +Q
α−−→ P ′

PAR1 P
α−−→ P ′

P |Q α−−→ P ′|Q
COM

P
a−−→ P ′ Q

ā−−→ Q′

P |Q τ−−→ P ′|Q′ SWITCH P
τ−−→ P ′

l : {P} τ−−→ P ′

Fig. 1. Operational semantics

reason for this condition is explained below. All of the rules are analogous to
those of traditional process algebra, except for the rule SWITCH, which requires
that protected processes do a silent action. The reason for these two restrictions
on the SWITCH operator is that this operator is intended to represent choices
made independently from the other choices in the process. For example in the
process (l1 : a + l2 : b) | l3 : {k1 : τ . l4 : a + k2 : τ . l4 : b}, the left and
right choices are represented as independent. This means that whatever agent
controls whether the left part of the process performs an a or b action does not
control how the choice on the right side of the process is resolved. This choice
is resolved by an entity independent from the traditional scheduler. Therefore,
we require that the protected subprocess do a silent action, because any other
action would be observable to the outside world, and therefore observable to the
scheduler, allowing it to base its decisions on the outcome of the protected choice,
which would make this choice dependent on other choices. This independence is
not a part of the operational semantics; rather, it represents the idea that the
protected subprocess makes decisions independently from the main process. Only
one occurrence of the SWITCH rule is allowed in a derivation tree because we
only require one level of independence; this is sufficient to capture independence
of choices.

The set tl(P) of top level labels of P is defined as tl(l : α.P) = tl(l : {P}) = {l},
tl(P |Q) = tl(P +Q) = tl(P) ∪ tl(Q), tl((νa)P) = tl(P), and tl(0) = ∅.

Definition 1. A process P is deterministically labelled if for every process P ′

that can be reached by any series of zero or more transitions from P , each label
occurs at most once in the top level labels for P ′.

Roughly, this means that two enabled actions never have the same label. For
example, P = l1 : a + l1 : {l2 : τ} is not deterministically labelled because l1
occurs twice in the top level labels for P , and no process with this as a subprocess
is deterministically labelled. However, l1 :a . l3 :c + l2 :b . l3 :c is deterministically
labelled even though l3 occurs twice.

3 Games and Strategies

In this section we define two player games on deterministically labelled processes.
One game is defined for each deterministically labelled process. The two players

are called X and Y . The moves in the game are labels and pairs of labels. Moves
represent an action being taken by the process. The player X controls all the
unprotected actions, and the player Y is in charge of all the top level actions
within the protected subprocesses. We define strategies for games. A strategy
is for one player and determines the moves the player will choose within the
game. Games and strategies are both made up of valid positions, which will be
discussed in the next section.

3.1 Valid Positions

Valid positions are defined on a process and represent valid plays for that process,
with player X moving first. Every valid position is a string of moves (labels on
the process), each of which is assigned to a player X or Y , with player X moving
first. The set of all valid positions for a process represents all possible executions
of the process, including partial, unfinished executions.

Definition 2. A valid position for a labelled process P is defined inductively:

1. ε is a valid position for any process P .

2. If P α−−→ P ′ and there is no occurrence of the SWITCH rule or the COM
rule in the derivation tree for this transition, and if s is a valid position for
P ′ and l is the label for the action α, then l.s is a valid position for P and
this occurrence of l is an X move.

3. If P τ−−→ P ′ and the COM rule occurs in the derivation tree for this transition
but the SWITCH rule does not occur anywhere, and if the synchronizing
actions a and ā are labelled l1 and l2 respectively, and s is a valid position
for P ′, then (l1, l2).s is a valid position for P and (l1, l2) is an X move.

4. If P τ−−→ P ′ and the SWITCH rule occurs in the derivation tree for this
transition but the COM rule does not, and the bracketed subprocess chosen
in the SWITCH rule is labelled l1 and the action chosen within the bracketed
subprocess is labelled l2, and s is a valid position for P ′, then l1 and l1.l2.s
are both valid positions for P , and l1 is an X move and l2 is a Y move.

5. If P τ−−→ P ′ and the SWITCH rule and COM rule both occur in the deriva-
tion tree for this transition, and if the bracketed subprocess in the SWITCH
rule is labelled l1 and the actions synchronized within the bracketed subprocess
are labelled l2 and l3, and s is a valid position for P ′, then l1 and l1.(l2, l3).s
are both valid positions for P and l1 is an X move and (l2, l3) is a Y move.

Note that the set of valid positions is prefix closed. The fourth clause of the
definition is necessary to ensure this, since the fifth and sixth clauses both add
two moves sequentially to the string.

Example 1. Consider the process

P = (νb)
(
l1 :{k1 :τ . l2 :a . l3 :b+ k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)

)
.

Here are two of the valid positions for P , with the Y moves in bold: l1.k1.l2.(l3, l4).l5
and l1.k2.l2.(l3, l4).l6.

3.2 Strategies

A strategy for a player is a subset of the valid positions, each valid position
ending with moves made by that player. The idea behind a strategy is that if,
for example, player X finds himself in position s and s.m is in his strategy, then
he will do move m.

Definition 3. Let Z stand for either X or Y . In the game for P , a strategy
for Z is a set S of valid positions such that ε is in S and if s.m ∈ S, then m is
a Z move and every prefix of s ending with a Z move is in S.

Example 2. For

P = (νb)
(
l1 :{k1 :τ . l2 :a . l3 :b+ k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)

)
,

one strategy for X is: {ε, l1, l1.k2.l2, l1.k2.l2.(l3, l4), l1.k2.l2.(l3, l4).l6}. Another
strategy forX is: {ε, l1, l1.k1.l2, l1.k2.l2}.One strategy for Y is: {ε, l1.k1, l1.k2}.

3.3 Execution of Processes According to Strategies

In this section we define the execution of a process with two strategies- one for
each player. However, not every pair of strategies define a unique execution of
a process. We define two simple restrictions on strategies, which together imply
that executions are unique.

Definition 4. A strategy S is deterministic if: s.m1 ∈ S, s.m2 ∈ S implies
m1 = m2.

The second restriction is called completeness; it means that a strategy prescribes
a move for the player whenever the player has a move available. In order to define
completeness, we start with two subsidiary definitions.

Definition 5. Let V denote the set of valid positions for P . For s a valid posi-
tion for P , define enabled(s) = {m|s.m ∈ V }. Define enabledX(s) = {m|s.m ∈
V and m is an X move} and define
enabledY (s) = {m|s.m ∈ V and m is a Y move}.

Note that a position can have X moves enabled or Y moves enabled, but not
both.

Definition 6. If s is a valid position for P , then X(s) is the string of the X
moves in s, and Y (s) is the string of the Y moves in s.

Definition 7. For a nonblocked process with valid positions V , a strategy S for
player Z is complete if for all s ∈ S, for every string s′ such that Z(s′) = ε and
s.s′ ∈ V and enabledZ(s.s′) 6= ∅, then s.s′.m ∈ S for some move m.

Completeness captures the idea that a player’s strategy always dictates a move
whenever it is that player’s turn to play and a move is available. Note that if a
deterministic strategy chooses a move m1 at a particular point and another move
m2 is available to it, there is no need for a complete strategy to specify what
happens after an m2 move, since this move will not be chosen. The condition
Z(s) = ε ensures that a strategy can take into account all the moves made by
the opponent but, of course, we do not want to quantify over moves made by
the strategy’s own player.

Example 3. For P = (νb)
(
l1 :{k1 :τ . l2 :a . l3 :b+ k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)

)
the strategy forX given above, S = {ε, l1, l1.k2.l2, l1.k2.l2.(l3, l4), l1.k2.l2.(l3, l4).l6}
is not complete, because l1 ∈ S, l1.k1 ∈ V , enabledX(l1.k1) 6= ∅ and X(k1) = ε,
but l1.l2.m 6∈ S for any move m. Here is a complete strategy for X:

{ε, l1, l1.k1.l2, l1.k2.l2, l1.k1.l2.(l3, l4), l1.k2.l2.(l3, l4), l1.k1.l2.(l3, l4).l5, l1.k2.l2.(l3, l4).l6}.

Proposition 1. Consider a process P , S1 a deterministic, complete X strategy
for P , and S2 a deterministic, complete Y strategy for P . Let

S = {s ∈ S1 ∪ S2 | every prefix of s is in S1 ∪ S2}

Then the prefix ordering is a total order on S.

Now we define the execution of a process according to a valid position. If s is
a valid position for P , then we will say P s=⇒P ′ if starting from process P , the
labels in s can be chosen in order and the end result will be process P ′.

Definition 8. Let P be a deterministically labelled process.

1. P ε=⇒P .

2. P l=⇒P ′ if P α−−→ P ′, there is no occurrence of the SWITCH rule or the COM
rule in the derivation tree for this transition, and the action α is labelled l.

3. P
(l1,l2)
=⇒ P ′ if P τ−−→ P ′ and the COM rule occurs in the derivation tree for

this transition but the SWITCH rule does not, and the synchronizing actions
are labelled l1 and l2.

4. P l1.l2=⇒P ′ if P τ−−→ P ′ and the SWITCH rule occurs in the derivation tree for
this transition but the COM rule does not, and the bracketed subprocess in
the SWITCH rule is labelled l1 and the action chosen within the bracketed
subprocess is labelled l2.

5. P
l1.(l2,l3)

=⇒ P ′ if P τ−−→ P ′ and the SWITCH rule and COM rule both occur
in the derivation tree for this transition, and the bracketed subprocess in the
switch rule is labelled l1 while the synchronizing actions within the bracketed
subprocess are labelled l1 and l2.

6. P l.s=⇒P ′ if P l=⇒P ′′ and P ′′ s=⇒P ′.

7. P l1.l2.s=⇒ P ′ if P l1.l2=⇒P ′′ and P ′′ s=⇒P ′.

It is easy to see that P s=⇒P ′ for some P ′ if and only if s is a valid position for
P . Note that if s is a valid position for P , then P

s=⇒P ′ for exactly one process
P ′. The determinacy of P ’s labelling forces the process P ′ to be unique.

Define the execution of a deterministically labelled process P with deterministic,
complete X and Y strategies S1 and S2 as follows: Let s be the maximal element
in S = {s ∈ S1∪S2 | every prefix of s is in S1∪S2}. The execution of P according
to S1 and S2 is the sequence of processes P, P1...Pn such that

P
s1=⇒P1

s2=⇒P2
s3=⇒...sn−1=⇒Pn−1

sn=⇒Pn

and s = s1s2...sn and each si is either a single X move or an X move followed
by a Y move. This represents the sequence of moves that will be chosen and
processes that will be reached if labels are chosen according to the strategies S1

and S2.

3.4 Epistemic Restrictions on Strategies

Since certain strategies determine the execution of a process, we can use epis-
temic aspects of strategies to represent interacting agents’ restricted knowledge.
In general, we impose epistemic conditions on strategies first by determining
what knowledge is appropriate for each agent, that is, which sets of executions
should be indistinguishable for him. Once the correct notion of the agent’s knowl-
edge is determined, the condition on the strategy to enforce this knowledge is “if
valid positions s1 and s2 are indistinguishable for player Z (Z’s knowledge about
s1 and s2 is the same), then for any move m, s1.m is in the strategy if and only if
s2.m is in the strategy.” We call restrictions of this form epistemic restrictions.
For example, we could require that an agent only have knowledge of his own
past moves. The epistemic restriction for a strategy S to satisfy this property
is: if Z(s1) = Z(s2), then for all moves m, s1.m ∈ S if and only if s2.m ∈ S.
Similarly, we could require that an agent only know what moves are currently

available to him. The epistemic restriction expressing this for a strategy S is: if
enabledZ(s1) = enabledZ(s2) then s1.m ∈ S if and only if s2.m ∈ S.

We now single out a very important epistemic restriction, called introspection.
An introspective strategy allows a player to “remember” not only his own history
of moves, but also the moves that were available to him at every point in the
past, including the current step. Introspective strategies are important because
they exactly capture the intended independence requirement for the protection
operator.

Definition 9. For player Z, positions s1 and s2 are called Z indistinguishable
if they satisfy the following conditions:

1. Z(s1) = Z(s2)

2. Z has at least one move available at s1 and at least one move available at
s2.

3. For all prefixes s′1 and s′2 of s1 and s2 respectively, if Z has a move available
at both s′1 and s′2 and Z(s′1) = Z(s′2), then enabled(s′1) = enabled(s′2).

In this definition, we describe an indistinguishability relation on positions where
player Z has a move available. We define two positions as indistinguishable if
the player made the same series of moves to arrive at both positions, and at
any point in the past where he had made a certain series of moves in both
positions and had moves available, he had the same set of moves available in
both positions.

Definition 10. Given a process P , and S a strategy for player Z on P , S is
introspective if for every Z indistinguishable pair of valid positions s1 and s2,
s1.m ∈ S if and only if s2.m ∈ S.

In other words, the player chooses the move he makes at each step based on
his past moves, the moves that are available to him, and the moves that were
available to him at each point in the past. If these things are all the same at
two positions, the player cannot distinguish them, so he makes the same move
at both positions.

Example 4. For P = (νb)
(
l1 :{k1 :τ . l2 :a . l3 :b+ k2 :τ . l2 :c . l3 :b} | l4 : b̄ . (l5 :d+ l6 :e)

)
the deterministic strategy given above for X, S = {ε, l1, l1.k1.l2, l1.k2.l2,
l1.k1.l2.(l3, l4), l1.k2.l2.(l3, l4), l1.k1.l2.(l3, l4).l5, l1.k2.l2.(l3, l4).l6} is not intro-
spective. This is because in order to satisfy the introspection condition, l1.k1.l2.(l3, l4)
and l1.k2.l2.(l3, l4) should have the same moves appended to them in S, since they
are X indistinguishable. However, l1.k1.l2.(l3, l4).l5 ∈ S and l1.k2.l2.(l3, l4).l5 6∈
S, and similarly, l1.k2.l2.(l3, l4).l6 ∈ S and l1.k2.l2.(l3, l4).l5 6∈ S.

An example of an introspective strategy for X is:

{ε, l1, l1.k1.l2, l1.k2.l2, l1.k1.l2.(l3, l4), l1.k2.l2.(l3, l4), l1.k1.l2.(l3, l4).l5, l1.k2.l2.(l3, l4).l5}.

Here is an example showing why the prefixes of the valid positions are discussed
in the definition of introspective.

Example 5. Consider P = l0 : {k1 : τ.(l1 : c.(l4 : f + l5 : g) + l2 : d) + k2 : τ.(l1 :
c.(l4 : f + l5 : g) + l3 : e)}. Let X’s strategy be S =

{ε, l0, l0.k1.l1, l0.k2.l1, l0.k1.l1.l4, l0.k2.l1.l5}.

This strategy is introspective. Even thoughX(l0.k1.l1) = X(l0.k2.l1) and enabledX(l0.k1.l1) =
enabledX(l0.k2.l1), it is acceptable that the two strings have different moves
appended to them, because enabledX(l0.k1) = {l1, l2} and enabledX(l0.k2) =
{l1, l3}. This can be thought of as X being able to distinguish between the two
positions l0.k1.l1 and l0.k2.l1 because he remembers what moves were available
to him earlier and is able to use this information to tell apart the two positions.

The essence of the introspection condition is that a player knows what moves it
has made in the past and knows what moves, if any, were available to it at each
point in the past, but cannot see any moves that its opponent has made. Thus,
each player must choose its moves based solely on its own past moves, the past
moves that were available to it, and the moves available to it now.

4 Correspondence between Strategies and
Schedulers

In this section, we first review the syntactic schedulers defined in [5] and then
prove that deterministic complete introspective strategies correspond exactly to
these schedulers. This result is important because these schedulers were defined
purely syntactically, without any explicit reference to knowledge or equivalence
between executions. Since the players’ knowledge is explicit in the definition of
introspective strategies, this equivalence explains the knowledge requirements
underlying the syntactic schedulers, which had not been discussed before.

4.1 Background on Schedulers

The new ingredient in the process calculus is explicit syntax for a pair of sched-
ulers. A complete process is an ordinary process augmented with a pair of sched-
ulers. The notations σ(l) and σ(l1, l2) are used to designate choices made by
the schedulers. The latter is used to indicate that the scheduler has chosen to
synchronize two processes.

ρ, η ::= σ(l).ρ | σ(l, k).ρ | if l then ρ else η | 0
CP ::= P ‖ ρ, η

The rules for the operational semantics of the process calculus with schedulers

ACT
l : α.P ‖σ(l).ρ, η

α−−→ P ‖ ρ, η
RES

P ‖ ρ, η α−−→ P ′ ‖ ρ′, η′ α 6= a, ā

(νa)P ‖ ρ, η α−−→ (νa)P ′ ‖ ρ′, η′

SUM1
P ‖ ρ, η α−−→ P ′ ‖ ρ′, η′

P +Q ‖ ρ, η α−−→ P ′ ‖ ρ′, η′ PAR1
P ‖ ρ, η α−−→ P ′ ‖ ρ′, η′

P |Q ‖ ρ, η α−−→ P ′|Q ‖ ρ′, η′

IF1
l ∈ tl(P) P ‖ ρ1, η

α−−→ P ′ ‖ ρ′
1, η

′

P ‖ if l then ρ1 else ρ2, η
α−−→ P ′ ‖ ρ′

1, η
′ IF2

l 6∈ tl(P) P ‖ ρ2, η
α−−→ P ′ ‖ ρ′

2, η
′

P ‖ if l then ρ1 else ρ2, η
α−−→ P ′ ‖ ρ′

2, η
′

SWITCH
P ‖ η, 0 τ−−→ P ′||η′, 0

l : {P} ‖σ(l).ρ, η
τ−−→ P ′ ‖ ρ, η′ COM

P ‖σ(l1).0, 0
a−−→ P ′ ‖ 0, 0 Q ‖σ(l2).0, 0

ā−−→ Q′ ‖ 0, 0

P |Q ‖σ(l1, l2).ρ, η
τ−−→ P ′|Q′ ‖ ρ, η

Fig. 2. Operational semantics for processes with schedulers

are in Fig. 2. Using the if then else construct (rules IF1, IF2), the scheduler
can check whether a move is available and choose what to do based on that
information. The SWITCH rule says that the curly brackets indicate a point
where the secondary scheduler makes the next choice. After making this choice,
control reverts to the primary scheduler. The choice made by the secondary
scheduler must result in a τ observation because the process is encapsulated
and cannot interact with the environment at this point. Of course, once control
reverts to the primary scheduler, interactions with the external environment can
indeed take place. The order in which the schedulers are written indicates which
one is to be regarded as primary.

A process is blocked if no transition is possible with any schedulers. Roughly
speaking, a single primary or secondary scheduler for a process is nonblocking if
it can be paired with any nonblocking secondary or primary scheduler (respec-
tively) and not cause the process to be blocked4.

4.2 Correspondence Theorem

The main correspondence theorem can now be stated.

Theorem 1. Given a deterministically labelled process P , a nonblocking pri-
mary scheduler ρ for P , and a nonblocking secondary scheduler η for P , there is
a deterministic, complete, introspective X strategy S depending only on P and
ρ, and a deterministic, complete, introspective Y strategy T depending only on
P and η, such that the execution of P ‖ ρ, η is identical to the execution of P
with S and T .

4 Obviously, this would be a circular definition, so in the full paper we define nonblock-
ing first inductively for a secondary scheduler, and then for a primary scheduler, with
reference to nonblocking secondary schedulers.

Furthermore, given a deterministically labelled process P , a deterministic, com-
plete, introspective X strategy S for P , and a deterministic, complete, introspec-
tive Y strategy T for P , there is a nonblocking primary scheduler ρ depending
only on S and P and a nonblocking secondary scheduler η depending only on T
and P such that the execution of P with S and T is identical to the execution of
P ‖ ρ, η.

Before we discuss the proof we make some observations on the quantifier struc-
ture of the statement of the theorem. One could imagine stating the first part
as follows:

∀P, ρ∃S s.t. ∀η∃T . . .

This is apparently stronger and certainly clearer than the original version which
uses the clumsy phrase “depending only on...” However, this is not the case;
it is actually weaker. The “new improved” version allows T to depend on ρ,
which the version stated in the theorem does not allow. There is in fact a formal
logic called “Independence Friendly” (IF) logic which allows quantifiers to be
introduced with independence statements; this is just what the version in the
statement of the theorem does, without, of course, dragging in all the formal
apparatus of IF logic. In fact, it can be proved that there are statements of IF
logic than cannot be rendered in ordinary first-order logic; the statement of the
theorem is an example.

The proof is in the appendix. We begin by stating a procedure to construct a
strategy from a scheduler, then we prove that the strategy constructed by this
procedure always leads to the same choice of action in the process as the corre-
sponding scheduler. Next we prove that these strategies are always deterministic,
complete, and introspective. To prove the other part of the theorem, we give a
procedure to translate a deterministic, complete, introspective strategy into a
syntactic scheduler.

5 Conclusions

In this paper we have given a semantic treatment of a process algebra with
two kinds of choice in terms of games and strategies. This gives a semantic
understanding of the “knowledge” possessed by schedulers when they resolve
choices. This epistemic aspect is captured by restrictions on what the schedulers
can see when they execute their strategies. In this short version we have not
discussed the probabilistic case; we have, however, developed the theory for that
case as well and have proved the correspondence theorem.

As far as we know there has been no work on a game semantics for process
algebras with the notion of multiple schedulers. This work is a first step toward
a systematic game semantic exploration of concurrency. First of all, we would like
to develop a new paradigm for process algebra which is more naturally adapted

to games. This will lead to richer notions of interactions between agents than
synchronization and value or name passing.

Second, we would like to enrich the epistemic aspects of the subject. In particular,
we would like to move toward an explicit combination of modal process logic and
epistemic logic so that we can describe in a compositional process-algebraic way
how agents learn and exchange knowledge.

Third, we would like to explore more subtle notions of transfer of control between
the agents. Thus, for example, there could be a protracted dialogue between the
agents before they decide on a process move. This could conceivably be fruitful
for incorporating higher-order or mobile processes.

Finally, we would like to combine the epistemic and probabilistic notions using
ideas from information theory [10]. We have used these information theoretic
ideas for an analysis of anonymity [11], indeed it was that investigation that
sparked the research reported in [5] and which ultimately led to the present work.
As far as we know, the only paper looking at epistemic logic and probability
is by Krasucki, Ndjatou and Parikh [12] where they quantify the amount of
information shared when agents possess common knowledge.

Acknowledgments We would like to thank Samson Abramsky, Yannick Delbecque
and especially Catuscia Palamidessi for many helpful discussions.

References

1. Halpern, J.Y., Moses, Y.: Knowledge and common knowledge in a distributed
environment. In: Proc. of Principles of Distributed Computing. (1984) 50–61

2. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press (1995)

3. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Proc. of ESORICS.
Volume 1146 of LNCS., Springer (1996) 198–218

4. Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Proc. of CONCUR.
Volume 3653 of LNCS., Springer (2005) 171–185

5. Chatzikokolakis, K., Palamidessi, C.: Making random choices invisible to the sched-
uler. In: CONCUR. LNCS 4703 (2007) 42–58

6. Abramsky, S., Jagadeesan, R.: Games and full completeness for multiplicative
linear logic. J. Symbolic Logic 59 (1994) 543–574

7. Hyland, J.M.E., Ong, C.H.L.: On full abstraction for PCF. Information and
Computation 163 (2000) 285–408

8. Abramsky, S., Jagadeesan, R., Malacaria, P.: Full abstraction for PCF. Information
and Computation 163 (2000) 409–470

9. Danos, V., Harmer, R.: The anatomy of innocence. Lecture Notes in Computer
Science 2142 (2001) 188–202

10. Shannon, C.: A mathematical theory of communication. Bell System Technical
Journal 27 (1948) 379–423,623–656

11. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as
noisy channels. In: Proc. of TGC. Number 4661 in LNCS (2006) 281–300

12. Krasucki, P., Ndjatou, G., Parikh, R.: Probabilistic knowledge and probabilistic
common knowledge. In: ISMIS 90, North Holland (1990) 1–8

A Proofs

Definition 11. Given a process P , a valid position s and a strategy S, define
S/s = {s′|s.s′ ∈ S}.

Definition 12. A move (l) in process P is called a switch move if it chooses a
label of the form l : {P ′} in P . Otherwise, it is called an ordinary move.

The following is Prop. 1.

Proposition 2. Consider a process P , S1 a deterministic, complete X strategy
for P , and S2 a deterministic, complete Y strategy for P . Let

S = {s ∈ S1 ∪ S2 | every prefix of s is in S1 ∪ S2}

Then the prefix ordering is a total order on S.

Proof. First, we prove that S is prefix closed. If s ∈ S, then every prefix of s is
in S1 ∪ S2 by definition of S. Consider s′ an arbitrary prefix of s. Every prefix
of s′ is also a prefix of s, so every prefix of s′ is in S1 ∪ S2. Therefore s′ ∈ S and
S is prefix closed.

Now, we prove by induction that S has at most one element of any length, and
that S is nonempty.

Base Case: length=0. Since every strategy contains ε, and the only prefix of ε is
ε, ε ∈ S and ε is the only position of length 0, so S has exactly one position of
length 0.

Induction Hypothesis: If there is a position in S of length n, then there is at
most one position of each length up to and including n in S.

Induction Step: Case 1: there is no position in S of length n+ 1. Then the IH is
vacuously true.

Case 2: there is some position s.m of length n+ 1 in S. Since S is prefix closed,
s ∈ S. Since the length of s is n, the IH applies, so s is the only element of S of
length n.

Now assume there is some element t.m′ of length n + 1 in S. Since S is prefix
closed, t ∈ S, but s is the only element of S of length n, therefore s = t. Since
a position cannot have both X and Y moves enabled, either s.m, t.m′ ∈ S1, or
s.m, t.m′ ∈ S2. In either case, since s = t, m = m′ by the determinacy of that
strategy. Therefore, s.m is the only element of S with length n + 1, and every
prefix of s.m is in S, and these are the only elements of S of length less than
n+ 1.

Thus, the induction step is verified in both cases.

The following is the proof of the main theorem Thm. 1 of Section 4.2.

Theorem 2. Given a deterministically labelled process P , a nonblocking pri-
mary scheduler ρ for P , and a nonblocking secondary scheduler η for P , there is
a deterministic, complete, introspective X strategy S depending only on P and
ρ, and a deterministic, complete, introspective Y strategy T depending only on
P and η, such that the execution of P ‖ ρ, η is identical to the execution of P
with S and T .

Furthermore, given a deterministically labelled process P , a deterministic, com-
plete, introspective X strategy S for P , and a deterministic, complete, introspec-
tive Y strategy T for P , there is a nonblocking primary scheduler ρ depending
only on S and P and a nonblocking secondary scheduler η depending only on T
and P such that the execution of P with S and T is identical to the execution of
P ‖ ρ, η.

Proof. The first step is to construct a strategy from a scheduler. Consider a
deterministically labelled process P and let the scheduler be ρ. Z stands for
either player X or Y . Let V be the set of valid positions for P . Strat(ρ, V) gives
the corresponding strategy. It is defined inductively.

Case 1 : Strat(σ(m).ρ′, V) = {ε} ∪ {s ∈ V |s = s1.m.s2, Z(s1) = ε, and s2 ∈
Strat(ρ′, V/s1.m)}.

Case 2 : Strat(if l then ρ1 else ρ2, V) = {ε}∪{s ∈ V |s = s1.s2, Z(s1) = ε, l ∈
enabledZ(s1), and s2 ∈ Strat(ρ1, V/s1)} ∪ {s ∈ V |s = s1.s2, Z(s1) = ε, l 6∈
enabled(s1), enabledZ(s1) 6= ∅, and s2 ∈ Strat(ρ2, V/s1)}.

Case 3 : Strat(0, V) = {ε}.

It is easy to see that this is correct by induction on the structure of the scheduler.
The first case is correct because it chooses every instance of the move specified by
the scheduler where that move is the first one available to the appropriate player.
The second case is correct because if Z(s1) = ε and l ∈ enabled(s1), then it is
possible for the opposite scheduler to choose the string of labels s1 and then when
control reverts to the scheduler we are considering, since l ∈ enabled(s1), the la-
bels will be chosen according subscheduler ρ1, which corresponds to the strategy
Strat(ρ1, V/s1) by the induction hypothesis. On the other hand, if Z(s1) = ε
and l 6∈ enabled(s1), then the situation is similar, except that the labels will
be chosen according to subscheduler ρ2, by the semantics of the “if then else”
construct. The third case is correct because the scheduler 0 does not choose any
transition, and the strategy ε does not tell its player to make any move.

Next, we prove that Strat always defines deterministic strategies. The first case
only adds strings ending in a single move m and strings from a recursive call to
Strat. Assuming that the recursive call produces a deterministic strategy, the
strings ending in m can’t violate determinacy since they all end in the same
move. The second case does not violate determinism because it adds strings
of one of two forms: either s1.s2 where l ∈ enabled(s1) and s2 comes from a

recursive call to Strat or s1.s2 where l 6∈ enabled(s1), enabledZ(s1) 6= ∅ and s2

is again from a recursive call to Strat. So assuming that recursive calls to Strat
do not violate determinacy, the whole strategy will be deterministic because it
is clear that the two cases for s1 are mutually exclusive, so only one strategy can
be concatenated to each string s1, and the whole strategy will be deterministic.

It is easy to see that Strat(ρ, V) is a complete strategy as long as ρ is non-
blocking. From the argument that the strategy corresponds to the scheduler,
the completeness of the strategy follows directly. Since the scheduler is assumed
to be nonblocking, the strategy must give its player a response to every situa-
tion arising from any sequence of the other player’s moves, meaning that it is
complete.

Now we show that Strat(ρ, V) is always introspective. The intuition behind this
proof is that all decisions about what strings to include in the strategy are based
on the moves available to Z, so the strategy must be introspective.

We begin by proving that if ρ is of the form σ(m1).σ(m2)....σ(mn).0, with no
occurrences of the “if then else” construct, then Strat(ρ, V) is an introspective
strategy. We prove this by induction on the length of ρ.

Base Case: ρ = 0. Then Strat(ρ, V) = {ε}, which is an introspective strategy.

Induction Step: ρ = σ(m1).σ(m2)...σ(mn).0. Let s1.m
′ and s2.m

′′ be in Strat(ρ, V),
and s1 and s2 be Z indistinguishable.

If Z(s1) = ε, then from the description of Strat, m′ = m, and since s1 and
s2 are Z indistinguishable, Z(s2) = ε, so m′′ = m as well, and this case
cannot violate the introspective condition.

If Z(s1) 6= ε, then from the definition of Strat, it is clear that Z(s1) =
m1.m2...mi for some i < n and it is also clear that m′ = mi+1. Since s1

and s2 are assumed to be Z indistinguishable, Z(s2) = m1.m2....mi also,
and so from the definition of Strat, m′′ = mi+1. Therefore, the introspective
condition is not violated.

Now we outline the proof for the case of a scheduler that uses the “if then
else” construct an arbitrary number of times. To be completely formal one
needs a structural induction on the scheduler, and nested inside it an induction
on the length of the string. However, this would be notationally obscure and
uninsightful to write out in complete detail. The argument as we have given it
should be clear.

Suppose that s1.m
′ and s2.m

′′ are in Strat(ρ, V) and that s1 and s2 are Z in-
distinguishable. Since s1 and s2 are Z indistinguishable, for any pair of prefixes
s′1 and s′2 of s1 and s2 respectively, if both prefixes have Z moves available, then
both prefixes have exactly the same moves available. Thus, any time a subsched-
uler of the form if l then ρ1 else ρ2 is encountered by the algorithm Strat,
either l will be in enabled(s′1) and in enabled(s′2) or it will not be in either set.
Thus, if s1 = s′1.s

′′
1 and s2 = s′2.s

′′
2 , then either s′′1 is in Strat(ρ1, V/s

′
1) and s′′2

is in Strat(ρ1, V/s
′
2), or s′′1 is in Strat(ρ2, V/s

′
1) and s′′2 is in Strat(ρ2, V/s

′
2).

This is true no matter how many nested “if then else” statements occur, and
eventually a scheduler of the form σ(m).ρ′ must be reached. At this point, the
argument that m′ = m′′ is the same as the argument in the case of a sched-
uler without “if then else” statements, proving that the strategies are indeed
introspective.

Now we give a procedure to get a scheduler corresponding to a deterministic,
complete, introspective strategy. Let P be a deterministically labelled process,
S a strategy for player Z, and V the set of valid positions for P .

First, consider all positions in S of the form s.m for some s where Z(s) = ε. We
will group these positions together by their Z indistinguishability: write the set
of all such positions in the strategy as

{s1,1.m1, s1,2.m1, ..., s1,n1 .m1,
s2,1.m2, s2,2.m2, ..., s2,n2 .m2, ...
sn,1.mn, sn,2.mn, ..., sn,nr

.mn}

such that enabled(si,j) = enabled(si,k) for all i, j, k. This means that si,j and
si,k are Z indistinguishable, since Z(si,j) = Z(si,k) = ε. So we know that they
must be followed by the same move in the strategy, namely mi.

If n = 1, that is if all positions where Z(s) = ε are Z indistinguishable, then
there is only one first move m that Z can choose. In this case, the scheduler is
σ(m).ρ′, where ρ′ is the scheduler constructed recursively from the strategy⋃

j

S/s1,j .m

and the set of valid positions ⋃
j

V/s1,j .m.

If n > 1, we proceed as follows. First consider the special case where for some
i ∈ {1, ..., n}, there is some move m∗i such that m∗i ∈ enabled(si,j) and m∗i 6∈
enabled(sl,k) for l 6= i. In this case, our scheduler will be if m∗i then σ(mi).ρi else ρ′

where ρi is a scheduler recursively constructed from the strategy
⋃ni

j=1 S/si,j .mi

and the set of valid positions
⋃ni

j=1 V/si,j .mi, and ρ′ is the scheduler constructed
from the strategy S with all the positions beginning with si,j .mi removed and
the set of valid positions with the same strings removed.

Of course, it may not be true that there is a single move like m∗i . However, the
set of moves available after si,j is unique for each i. If we were to extend the
scheduler syntax to allow us to say if l1 ∧ l2 ∧ . . . ∧ lk then ρ1 else ρ2 it would
be easy to define the requisite scheduler. However, this syntactic extension can
easily be coded up as

if l1 then
if l2 then

...
if lk then ρ1

else ρ2

...
else ρ2

else ρ2

Since we can use this construction to distinguish any set of available moves, we
can construct the correct scheduler the same way as in the previous case.

