
Light-Weight Tool Support for Staged Product Derivation

Christoph Elsner
Siemens Corporate Research and Technologies, Erlangen, Germany

christoph.elsner@siemens.com

ABSTRACT
Tool support that checks for configuration errors and gen-
erates product parts from configurations can significantly
improve on product derivation in product line engineering.
Up to now, however, derivation tools commonly disregard the
staged derivation process. They do not restrict configuration
consistency checks to process entities such as configuration
stages, stakeholders, or build tasks. As a result, constraints
that are only valid for certain process entities must either be
checked permanently, leading to false positive errors, or one
must refrain from defining them at all.

This paper contributes a light-weight approach to provide
tailored tool support for staged product derivation. Com-
pared to previous approaches, it is not tied to a single configu-
ration mechanism (e.g., feature modeling), and also accounts
for the stakeholders involved and the build tasks that gener-
ate product parts. First, the product line engineer describes
the derivation process in a concise model. Then, based on
constraint checks on the configuration (e.g., a feature model
configuration) that are linked to the modeled entities, compre-
hensive tool support can be provided: Configuration actions
can be guided and restricted depending on the configuring
stakeholder in a fine-grained manner, and constraints at-
tached to a build task will only be checked if it actually shall
be executed. Finally, in combination with previous work,
the paper provides evidence that the approach is applicable
to legacy product lines in a light-weight manner and that it
technically scales to thousands of constraint checks.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Software Architectures—
Reusable Software

General Terms
Design, Languages

Keywords
Product Line, Staged Product Derivation, Tool Support

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC ’12, September 02 - 07, 2012, Salvador, Brazil
Copyright 2012 ACM 978-1-4503-1094-9/12/09 ...$15.00.

1. INTRODUCTION
Software product line engineering aims at reducing soft-

ware development cost by systematic reuse from early on
when developing similar products. One promising product
line technique is the automation of application engineering,
also often called automated product derivation. Its core is
the automated mapping of a declarative configuration to a
specifically tailored product using product generators, such as
preprocessors or code generator templates. Two facets of au-
tomated tool support need to be considered: automated con-
figuration support, such as configuration consistency checks
and automated fixes, and automated generation of products
from the configuration, via such generative technologies.

Despite the great potential of automation in product deriva-
tion for reducing development cost, reports point out the
immense manual effort and difficulty of industrial product
derivation [6, 9, 21, 24]. Why is this the case? Figure 1
illustrates the derivation process of the software product
line of a magnetic resonance tomograph. Its staged product
derivation process, which involves multiple different, hetero-
geneous entities, considerably complicates the provision of
comprehensive automated support.

Product Specification Stage

<task ...
 >
</task>...

Product
Specification

Salesman
Product
ExpertsCustomer

Development Stage

Medical
ExpertsDeveloper Administrator Customer

On-Site Configuration Stage

Contract Customized
Software Running

System

#

#

......

...

Descriptor
Files

Spreadsheets Domain-Specific
Models C Header

Files XML Files

Configuration
Configuration

Configuration

Build Tasks
Build Tasks

Build Tasks

Dependencies
Dependencies

Figure 1: Staged product derivation from a mag-
netic resonance tomography product line.

The derivation process in Figure 1 has three stages, product
specification, development, and on-site configuration stage.
In each of them, different stakeholders adapt configuration ar-
tifacts such as spreadsheets, domain-specific models, or XML

ACM, (2012). This is the authors version of the work. It is posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in Proceedings of the 16th International Software Product Line Conference
(SPLC 2012) – Volume 1. http://doi.acm.org/10.1145/2362536.2362557

http://doi.acm.org/10.1145/2362536.2362557

files. Build tasks take them as input and produce product
artifacts, ranging from textual documents to software.

Basic automated support for staged derivation should at
least describe which of the configuration options needs to
be set at which stage. However, there is further automation
potential that has been vastly overlooked up to now:

a) Stakeholder Guidance. Each stage involves different stake-
holders, such as salesmen, product experts, or administrators.
Each of them needs individual process guidance. The sales-
man, for example, has less experience than the product ex-
pert; he or she requires more configuration hints and guidance
to assess the side effects of configuration decisions. Some cru-
cial decision might even require an expert’s knowledge—and
a salesman should be actively hindered from taking them.

b) Build Task Integration. In each stage, build tasks need
to be invoked to generate product parts, for example, docu-
ment or code generators, preprocessors, or installation scripts.
Stakeholders would greatly benefit from their explicit integra-
tion into the derivation process. They need to know which
build tasks are mandatory or optional at which stage. They
need to manage the execution dependencies among build
tasks, which possibly are based on different build tools (e.g.,
make, ant, or binary executables). Finally, each build task
requires distinct configuration options to be set—tailored
support should inform a stakeholder as soon as the execution
prerequisites for a particular build task are fulfilled.

Additionally, a staged derivation approach should not be
limited to a certain configuration mechanism, such as feature
modeling, and should be applicable in a light-weight manner.

To address these issues, this paper presents a light-weight
approach for staged derivation tool support. Compared to
previous approaches (cf. Section 8), it can provide guidance
to individual derivation stakeholders and ensures correctly-
configured execution of build tasks in each stage. Further-
more the approach is not tied to a certain configuration
mechanism. After a motivation for more comprehensive tool
support via three concrete challenges (Section 2), this paper
contributes the following:

1. A light-weight approach for staged derivation tool support.
It can be used with any product line configuration mecha-
nisms that support accessing the configuration model from a
separate language in which constraints (necessary conditions
for a consistent product) can be defined. In the simplest
case, this might be plain Java. (Section 3)

2. A concise staged derivation modeling language.
The language comprises the expressiveness of most existing
approaches while it facilitates the tool support. (Section 4)

3. Comprehensive tool support based on constraint checks.
The developed tooling integrates with the development envi-
ronment used for configuration, for example, Eclipse. Con-
straint checks attached to the modeled elements serve as
input to the tooling to provide staged derivation support
including stakeholder guidance and build task integration,
as motivated above in a) and b). (Section 5)

In combination with previous work on extraction of config-
uration data from legacy product lines [10, 12], Section 6 can
provide evidence that the approach is applicable to legacy
product lines in a light-weight manner and that it technically
scales to thousands of constraints checks. Finally, Section 7
discusses the approach, Section 8 addresses related work, and
Section 9 concludes the paper.

2. MOTIVATION AND EXAMPLES
This section introduces the staged derivation process of

the product line demonstrator SmartHome, on which more
details can be disclosed. Based on this product line, three
concrete staging challenges are illustrated, which will be
addressed in the remainder of this paper.

2.1 SmartHome Staged Derivation Process
SmartHome [29] is a product line demonstrator which

aims at construction experts such as architects and interior
designers. It enables them to model a building and its
electrical interior devices. The models serve as input to
generate the software for controlling the building’s devices.

In order to illustrate the challenges and solutions for staged
derivation, a staged derivation process was devised for the
SmartHome demonstrator. The first two stages resemble the
industrial experience of the author [25]; the latter two deriva-
tion stages follow the characteristics of the house automation
software and its derivation mechanisms (cf. Figure 2).

Pr
od

uc
t

Pa
rt

s
St

ag
es

B
ui

ld
 T

as
ks

C
on

fig
.

Fi
le

s
St

ak
eh

ol
de

r

Initial Contact

Sales Architect Senior Architect

Contract
Negotiation

Developer Administrator

Development

G
en

er
at

e
P

ro
du

ct

S
pe

ci
fic

at
io

n

FM OSGi
Prop

DSM

Setup

G
en

er
at

e
C

om
-

m
er

ci
al

 C
on

di
tio

ns

C
al

cu
la

te
 E

ne
rg

y
S

av
in

g
R

O
I

C
re

at
e

3D

S
im

ul
at

io
n

G
en

er
at

e
C

on
tra

ct

D
oc

um
en

t

M
od

el

Tr
an

sf
or

m
at

io
n

C
od

e
G

en
er

at
io

n

C
om

pi
la

tio
n

S
ta

rtu
p...

Figure 2: SmartHome’s staged derivation process.

The derivation process comprises four configuration stages:
initial contact, contract negotiation, development, and setup.
In each stage, one or several stakeholders, adapt configura-
tion files in order to execute build tasks that produce product
parts. The four stages have the following characteristics:

1. Initial Contact. During initial contact, the sales ar-
chitect, or, in more complex cases, the senior architect,
consults the customer and adapts the feature model config-
uration according to his or her wishes. Three build tasks—
generate product specification, generate commercial condi-
tions, and calculate energy saving return-on-invest (ROI)—
take the feature model configuration as input to create
product-related documents. Each build task requires a dis-
tinct set of features to be set for proper execution.

2. Contract Negotiation. During contract negotiation,
the sales or the senior architect refine the feature model
configuration and create the domain-specific house model
according to customer data. Exemplary build tasks are
create 3D simulation and generate contract document.
3. Development. During development, the developer re-
fines the feature model configuration and the domain-specific
house model. Various build tasks related to development

(model transformations, code generation, compilation, test-
ing) need to be executed.

4. Setup. In the final setup stage, an administrator in-
stalls the devices at customer site, sets up the OSGi property
file, and triggers the startup of the SmartHome software.

Based on this staged derivation process, three challenges
for comprehensive tool support will be illustrated: basic
support, build task integration, and stakeholder guidance.

2.2 Challenge 1: Basic Support
Basic staged derivation support must check, during each

stage, whether all data has been gathered and is consistent
to proceed to the next stage. As an example, setting the
customer name attribute (CustomerName, constraint 1 in
Figure 3) is required for completing the initial contact stage.

2.3 Challenge 2: Build Task Integration
Additionally, build tasks should be integrated into the

staged derivation process. The detailed characteristics of
SmartHome’s InitialContact stage are depicted in Figure 3.
The configuration stage is considered completed when the
two mandatory build tasks generateProductSpecification and
generateCommercialConditions have been executed. In con-
trast, the build task calculateEnergySavingROI is optional;
it does not need to be invoked for completing the stage.

The mentioned build tasks take the SmartHome feature
model configuration as input. However, in order to execute
properly, each build task has different expectations for the
features and attributes to be set.

For example, let us assume the customer wants a calcula-
tion of the ROI of the energy saving feature. For this build
task, the number of inhabitants feature attribute (NoInhab-
itants, constraint 2 in Figure 3) must be set. If, in turn, a
customer does not want this calculation, no error message
should be shown if the attribute is not set. So, the configura-
tion is not incomplete in an absolute sense—the consistency
of the configuration depends on a build-task–specific configu-
ration constraint.

A further example for build-task–specific constraints can
be found during development. If the developer only wants to
generate source code for analysis (e.g., worst-case execution
time), the compilation or packaging build tasks do not need
to be properly configured yet. As well, build tasks such as
component, sandbox, or system tests may not necessarily
need to be correctly configured to proceed to the next stage
(although their execution may be advisable).

Finally, in Figure 3, build tasks are based on various gener-
ation mechanisms, such as ant, make, and binary executables,
whereas build tasks may have dependencies among one an-
other. For providing product generation support, means are
necessary to execute such build tasks and manage their de-
pendencies, even if they are not based on the same generation
mechanism. Note that the implementation of such generators
is out of scope of this paper: The individual build tasks are
considered as black boxes, which however can have depen-
dencies among another and which have certain requirements
on the configuration in order to execute successfully.

2.4 Challenge 3: Stakeholder Guidance
The involved stakeholders should receive detailed informa-

tion, warnings, and should even be actively hindered from
performing certain actions, depending on their stakeholder
role in each stage. Commonly, the individual stakeholders

have differing permissions and restrictions in each stage and
they need a different extent and quality of process guidance.

Let us consider the three stakeholders roles SalesArchitect,
SeniorArchitect, and Developer. Whereas the sales architect
markets SmartHome products based on a limited amount
of training, the senior architect also has an understanding
of product internals. Therefore, the former needs more
process guidance and more restrictions than the latter. The
Developer, in turn, is only involved at later stages, during
creation of the actual product software.

Figure 4 shows an excerpt of the permissions, restrictions,
and the required process guidance of the three roles in the first
three stages of SmartHome’s derivation process. In the initial
contact stage, both the sales and the senior architect should
focus on editing the feature model. Editing the domain-
specific house model in this stage is discouraged. The sales
architect should receive derivation process guidance and
should be notified to execute the ROI calculation build task
if he or she selects the energy saving feature. The senior
architect, in contrast, does not need such detailed derivation
hints and would conceive them as disrupting. The developer,
finally, is not involved in the initial contact stage.

In the contract negotiation stage, sales and senior archi-
tect may edit both the feature model configuration and the
domain-specific model. However, the sales architect may not
edit any features or model elements regarding burglar alarm
and alarm devices—due to their relevance to security. Again,
the developer is not supposed to edit any configuration file.

Finally, after entering the development stage, the handover
of configuration files to the developer is completed, who is
now exclusively in charge of adapting them.

3. APPROACH OVERVIEW
The previous section has motivated three major challenges

of staged derivation tool support: basic support, build task
integration, and stakeholder guidance. This section outlines
an approach that can provide such tool support in a light-
weight manner. The approach is not limited to a certain
configuration mechanism (e.g., feature modeling)—its only
requirement is that an external language has access to the
configuration data in order to define constraint checks on it.

In the simplest case, the constraint language can be plain
Java and access can be realized via the Java API of the
configuration mechanism used. In previous work [12], we
have developed an approach that uses automatic converters
to map a variety of widespread configuration mechanisms1

used by product lines to metamodels and the correspond-
ing configuration files of the concrete products to respective
models. Therefore, in the following, without loss of gener-
icity, each product line will provide a set of configuration
metamodels. On product level, in turn, configuration takes
place via configuration models, which are instances of these
metamodels.

Figure 5 gives an overview of the approach, which involves
three types of roles: product line engineer, product engineer,
and derivation stakeholders.

In the beginning, the product line engineer creates a Stage-
Model for the product line (Figure 5, step 1). The StageModel

1In particular, pure::variants feature models, domain-specific
models based on Ecore, domain-specific textual languages
based on Xtext, XMLSchema XML, Java property files, Kcon-
fig files, and C header files with #defines (cf. [12]).

Stage: InitialContact

Feature attribute NoInhabitants must
be set to execute build task.

Build Task:
 Name: generateProductSpecification
 Type: make file target
 Kind: mandatory

Build Task:
 Name: generateCommercialConditions
 Type: ant target
 Kind: mandatory

Build Task:
 Name: calculateEnergySavingROI
 Type: binary executable
 Kind: optional

Feature attribute CustomerName must
be set to proceed to the next stage.

(2)

(1)

Figure 3: Build tasks during stage InitialContact.

defines the available configuration stages and the involved
stakeholder roles of the product line. Furthermore, for each
stage, the model describes its main build tasks implemented
in certain build files (e.g., generate offer document, make
test, or execute installer).

Constraints checks, which are implemented in separate
artifacts, can be assigned to those stages, build tasks, or
stakeholder roles in the StageModel for which they are valid.
Hereby, the implementation of each constraint will usually
refer to the configuration metamodel, as this defines the
configuration variables (e.g., features, decisions, or attributes)
which can be set to certain values in the configuration model.

On product level, the product engineer creates a Stage-
Instance model that basically only assigns the individual
derivation stakeholders to the stakeholder roles defined in
the StageModel (step 2). Based on this input, the deriva-
tion stakeholders start configuring the product according to
the staged configuration process defined in the StageModel
(step 3). The staged derivation tool checks the defined con-
straints according to the current stage and the prospected
build task and, if the constraint language also supports fix
actions (e.g., [10]), may also allow for automated configura-
tion fixing (step 4). In particular, configuration constraints
that are only relevant for the current stage do not cause dis-
traction in other stages, and constraints that are only valid
for certain build task are only evaluated if the build tasks
shall be executed. Furthermore, fine-grained management
of stakeholder-specific permissions and restrictions becomes
possible (step 5): A configuration constraint attached to a
stakeholder can warn or even prevent particular configuration
edits (e.g., forbid the junior engineer to set feature attribute
numberOfConnections to more than 10.000).

Finally, when all constraints attached to a build task—and
to all its dependent build tasks—are fulfilled, a stakeholder
may advise the build interpreter to execute it (step 6). The
interpreter forwards the actual execution of the build task
and each of its dependents to dedicated plug-ins. This way,
build management across build tools becomes possible.

4. STAGED DERIVATION MODELING
For applying the approach, the staged derivation process

needs to be modeled using StageModel and StageInstance
models. Although concise, the modeling language comprises
all information elements required to enable tool support for
such scenarios as described in Section 2. The three essential
model elements are ConfigurationStages, BuildTasks, and
StakeholderRoles (cf. Figure 6).

Each StageModel has a number of ConfigurationStages
assigned. The stages are ordered via followsOn associations.
Each of the stages may have an arbitrary number of BuildTask
elements. Such an element represents an actual build task
in the product line asset base by describing its file (e.g.,
src/Makefile), its type (e.g., GNU make), and its target name
(e.g., all). Each configuration stage has a defaultBuildTask
that denotes the final build task that needs to be successfully
executed in order to proceed to the next configuration stage.

Build task order dependencies can be modeled between
build tasks of different type (e.g., make, ant) with dependsOn
associations. In some cases, a modeled build task dependency
has an actual correspondence in the asset base managed by an
external tool. One particular example is GNU make, which
allows for defining prerequisite targets for a make target. This
fact can be modeled with managedDependsOn associations.
This way, the developed tooling knows about the build task
dependency, while it can leverage the optimization of the
external tool during product generation.

Each individual build task can have Validator elements
assigned. A validator denotes a set of build-task–specific
constraints that need to hold before the build task can be
executed. A validator element identifies a set of constraint
files to be checked by a constraint check plug-in.

In the simplest case, the plain Java plug-in can be used for
implementing constraints. Then, a constraint is implemented
as a simple Java method with boolean return value, and
its implementer is in charge of how the constraint accesses
the configuration data (e.g., via configuration-mechanism–
specific Java APIs, such as the pure::variants API [4]). A
further option is to use the approach in combination with pre-

Stage:
InitialContact

Stage:
Contract-
Negotiation

Stage:
Development

Stakeholder: SeniorArchitectStakeholder: SalesArchitect

+ May edit feature model configuration
 (-) except burglarAlarm feature
 (i) notify when selecting energy feature
 Should not edit house model

+ May edit feature model configuration
 (-) except burglarAlarm feature
+ May edit house model
 (-) except AlarmDevice elements

 Must not edit feature model
 configuration or house model

+ May edit feature model configuration

+ May edit house model

 Must not edit feature model
 configuration or house model

Stakeholder: Developer

 May edit feature model
 configuration or house model

+ May edit feature model configuration

 Should not edit house model

 Must not edit feature model
 configuration or house model

 Must not edit feature model
 configuration or house model

O O

Figure 4: The permissions of SalesArchitect, SeniorArchitect, and Developer.

Product Line

Product Line
Engineer

Product
Engineer

MM

Build Tasks in Build Files

(1)

MMMM
Build Plugins

StageModel, models Stages
and Stakeholder Roles

Build Interpreter useexecute
Staged Derivation Tool

references

BF

Configuration Metamodels

CS Constraint Checks

referTo

(6) build products using various build tools (make, ant,)

Product

MConfiguration Models

StageInstance, assigns
Stakeholders to Roles (2)

Derivation
Stakeholders

(3)

(4) enforce stage-specific and build-task-specific configuration constraints
(5) enforce stakeholder-specific configuration restrictions

(4), (5),
(6)

Figure 5: Application outline of the staged derivation automation approach.

StageModel
+name : String
ConfigurationStage

+file : URI
+type : String
+target : String

BuildTask

+name : String
StakeholderRole

+pluginID : ID
+files : List<URI>

Validator

defaultBuildTask

+roles : List<StakeholderRole>
+configFiles : List<ConfigFileType>

Grant

+roles : List<StakeholderRole>
Restriction

followsOn dependsOn

parent

managed-
DependsOn

StageInstance

+name : String
Stakeholder

m
em

be
rO

f

*

*

Figure 6: The stage derivation model specifies the
configuration stages, build tasks, stakeholder roles,
and the constraints attached to them.

vious work from the author, the PLiC framework [12]. The
PLiC framework automatically extracts EMF [13] metamod-
els and models from the product lines and product involved.
This facilitates the use of the constraint check plug-ins for
the model-based languages Xpand Check [22] and OCL,
as presented in [12]. In the meantime, additional plug-ins
have been developed to access the generated EMF models
from constraints implemented in Xtend 2 [28] and in Java.
Therefore, the PLiC framework uses EMF functionality to
dynamically generate Java APIs from the previously gener-
ated metamodels. This way, comfortable access to the EMF
models generated from configuration files becomes possible,
for all the configuration file types mentioned in footnote 1.

Next to these build-tasks–specific constraints, it is also
possible to model stakeholder roles and their configuration
permissions and restrictions. Therefore, each StageModel
defines a set of StakeholderRoles. These roles inherit permis-
sions and restrictions from other roles via parent associations.
Grant and Restriction model elements, which are defined for
each configuration stage, reference the defined stakeholder
roles. A Grant element defines which roles are generally
allowed to access a certain configFile in the configuration
stage. All configuration files a product may provide are mod-
eled on product line level as so called ConfigFileType model
elements (not shown in Figure 6). The general allowance
to edit individual configuration files can be limited by Re-
striction elements. Each restriction assigns a set of roles
to a set of Validator elements. The constraints referenced
by those elements denote stakeholder-specific restrictions.
These can be used, for example, to warn or prevent inexperi-
enced stakeholders from editing configuration options with

unexpected side effects. Finally, a mechanism is provided to
model the single stakeholders (e.g., the sales architect Bob)
in a product derivation project. Therefore, each StageIn-
stance model can define Stakeholders that can be members
of multiple StakeholderRoles from which they inherit grants
and restrictions.

Creating the stage model and mining the constraints (e.g.,
build-task- or stakeholder-specific constraints) requires expert
domain knowledge, which can be gathered in workshops with
domain experts. While we have not collected comprehensive
data on the necessary information mining effort, our experi-
ence from previous work [12] is that it can be a rather straight
forward process for embedded software experts to learn a
constraint language and to define configuration constraints
themselves, in case the language came with comprehensive
editor support, as it is also the case for the tooling in this
paper.

5. TOOL SUPPORT VIA CONSTRAINTS
After the product line engineer has created the stage model

and has implemented the desired constraint checks, the de-
veloped tooling takes this information as input to provide
fine-grained and comprehensive staged derivation support.
For providing tool support, one further assumption is made:
The developed tooling is assumed to extend an IDE, such as
Eclipse, which is used for configuration.

Subsequently, this section formally models the examples
from Section 2 as stage models with constraints, and illus-
trates the tool support that can be provided, for basic support
and build task integration (Section 5.1) and stakeholder guid-
ance (Section 5.2).

5.1 Basic Support and Build Task Integration
Figure 7 depicts the model for the example presented in

Figure 3. It shows the InitialContact stage modeled in the
StageModel during domain engineering of SmartHome.

Figure 7 describes the available build tasks: generateProd-
uctSpecification, generateCommercialConditions, and calcu-
lateEnergySavingROI. The model unambiguously defines
these build tasks via denoting their file, their type, and,
if required, the name of their build target. To provide the
configuration stage with a single standard build task, an ad-
ditional, “virtual” build task model element has been added
(initDefaultTask). It does not represent an actual build task
in the product line asset base. If it is executed via the build
interpreter (cf. Figure 5), however, the two actual build tasks
it dependsOn are invoked: generateProductSpecification and
generateCommercialConditions. Finally, some of the build

// Example constraint. File: /SH/src/EnergyChk.java
...
@PLiCError ("To calculate the energy saving ROI, the " +
" > 0 in feature model config.")
public boolean checkNoInhabitants(){
 return getFmConf().getEnergySavingFeature().
 .getNoInhabitants() > 0;
} ...

file : URI = /SH/src/Makefile
type : String = "make"
target : String = "genspec"

generateProductSpecification : BuildTask

file : URI = /SH/src/build.xml
type : String = "ant"
target : String = "generateCC"

generateCommercialConditions : BuildTask

file : URI = /SH/src/energycalc
type : String = "system"
target : String = ""

calculateEnergySavingROI : BuildTask

InitialContact : ConfigurationStage

stageModel : StageModel

file : URI = none
type : String = "virtual"
target : String = ""

initDefaultTask : BuildTask

de
pe

nd
sO

n

de
fa

ul
tB

ui
ld

Ta
sk

pluginID : ID = java
files : List<URI> = {/SH/src/EnergyChk.java}

cacluclateEnergySavingROIVal : Validator

pluginID : ID = java
files : List<URI> = {/SH/src/Init.java}

initDefaultVal : Validator

Figure 7: Build tasks of stage InitialContact.

tasks have Validator elements attached, which link to imple-
mented constraint files. They are implemented in Java and
use PLiC framework functionality for conveniently accessing
the configuration data via EMF models.2

The constraint in Figure 7 defines that the NoInhabitants
attribute in the feature model configuration file must be set
to a value higher than zero in order to execute the calcu-
lateEnergySavingROI build task. Finally, constraints that
need to hold in order to complete the stage (“basic support”
according to Section 2) can simply be modeled by attaching
constraints to the default build task of the stage (initDefault-
Val Validator in Figure 7).

The model and the constraints serve as input for the devel-
oped tooling. It provides for build-task–specific consistency
checking and for execution of build tasks of arbitrary type,
as described subsequently.

5.1.1 Build-Task–Specific Consistency Checking
For product derivation, the configuring stakeholder first

selects the current stage and the prospected build task from
a GUI (see Figure 8, upper part). The prospected build
tasks are those that the stakeholder wishes to execute sub-
sequently. When selected, a background builder traverses
the StageModel and only evaluates those constraint that
are valid for the current stage and the prospected build
task, together with all constraints of dependent build tasks
(modeled via dependsOn and managedDependsOn associa-
tions). The inconsistencies are reported with the textual
messages attached to constraints in the Eclipse problems
view (cf. Figure 8, lower part).

The constraints are reevaluated in the background each
time a configuration artifact changes, or when the current
stage or the prospected build task are changed in the GUI.
By making the validity of the configuration dependent on the
current stage and the prospected build task, the constraint

2In Figure 7, for example, the Java class of the shown con-
straint inherits from a class generated by the PLiC frame-
work. It provides the method getFMConf(), which facilitates
convenient access to the EMF model of the feature model
configuration of SmartHome.

Figure 8: GUIs facilitate selecting the current con-
figuration stage and the prospected build task, or
display the currently relevant set of inconsistencies.

violations that the tool reports are minimized to the subset
that is actually necessary to accomplish the prospected build
tasks. This allows configuration stakeholders to strictly focus
on the actually relevant configuration constraints.

This is particularly useful for long-running stages in which,
most of the time, only intermediate build tasks are executed.
For example, if the stage Development of SmartHome requires
the implementation of additional modules, the developer will
most of the time only execute the build tasks for compiling
and testing the new module. Inconsistency messages regard-
ing later build tasks in the same development stage, such
as system tests, packaging, and installer configuration, only
would distract the developer from focusing on the actual
implementation task. Using the staged derivation tooling,
the developer simply can select the “module test” build task
as the prospected build task, and inconsistency messages
regarding later build tasks are masked.

5.1.2 Build Task Execution
By declaring the file, the type, and the target of a build

task in BuildTask model elements, the automated build task
execution across build tools becomes easily possible. During
product derivation, the stakeholder selects the build task to
execute from a further GUI. After a final check for build
task consistency, as described in the previous Section 5.1.1,
a topological order is calculated based on the dependsOn
links of build tasks and they are executed.3 Further builder
plug-ins can be added with little effort. Currently, builder
plug-ins for ant, make, the modeling workflow engine (MWE)
[20], and plain executables have been developed. See [11] for
more details on their implementation.

Executing build tasks of various build tools via a single
integrated GUI eases building product assets, while build task
dependencies across build tools become explicit in models
and are not hidden in any other kind of build script. Note
that this mechanism should not be a replacement of existing
build tools, such as ant or make. Rather, the build tasks
modeled can be seen as the “public interface” of those tools.
They ease product building for less experienced stakeholders
by making the most crucial build tasks explicit.

3Note, that build tasks that only depend on others via man-
agedDependsOn links can be ignored for actual build task
execution. The corresponding build tools (e.g., make) decide
whether to execute them.

5.2 Stakeholder Guidance
Figure 9 shows the StageModel of the motivating example

in Figure 4. It defines three stakeholder roles: SalesArchitect,
SeniorArchitect, and Developer.

SalesArchitect : StakeholderRole

InitialContact : ConfigurationStagestageModel : StageModel

pluginID : ID = chk
files : List<URI> = {/SH/src/salesInitRestr.chk}

salesInitialValidator : Validator

//From: /SH/src/salesNegRestr.chk

context PlicInstance ERROR " +
 :
this.houseConf().hasChangedByType(AlarmSensor);
...

SeniorArchitect : StakeholderRole

ContractNegotiation : ConfigurationStage

Development : ConfigurationStage

roles : List<> = {SalesArchitect, SeniorArchitect}
configFiles : List<> = {featureModel, houseModel}

salesSeniorNegotiationGrant : Grant

roles : List<> = {SalesArchitect, SeniorArchitect}
configFiles : List<> = {featureModel}

salesSeniorInitialGrant : Grant

Developer : StakeholderRole

roles : List<> = {Developer}
configFiles : List<> = {featureModel, houseModel}

developerDevelopmentGrant : Grant

roles : List<> = {SalesArchitect}
salesInitialRestriction : Restriction

pluginID : ID = chk
files : List<URI> = {/SH/src/salesNegRestr.chk}

salesNegotiationValidator : Validator

roles : List<> = {SalesArchitect}
salesNegotiationRestriction : Restriction

//From: /SH/src/salesInitRestr.chk
...
context PlicInstance WARNING " +
 . +
 . :
 this.fmConf().energySavingFeature.selected &&
 this.fmConf().energySavingFeature.hasChanged();
...

Figure 9: The permissions of the stakeholders of
SmartHome modeled as Grants and Restrictions.

Within the InitialContact configuration stage, both the
sales and the senior architect are granted access to the fea-
ture model only (salesSeniorInitialGrant). For the sales
architect role, a further restriction (salesInitialRestriction)
is defined. It contains one validator element (salesInitialVal-
idator) pointing to a constraint file implemented in Xpand
Check. It will remind the sales architect to execute the build
task for calculating the ROI of the energy feature as soon as
it is set from false to true.

Constraints that query whether a configuration option has
just been changed need to be implemented in a different way
than constraints for conventional consistency checks, as they
need to access the configuration data both before and after
the change. For this purpose, several convenience functions
have been implemented that provide access to the new state,
the old state, and the differences between the configurations.
In Figure 9, for example, the implemented constraint makes
use of the function hasChanged(), which evaluates whether
the selection state of the energy saving feature has been
altered during configuration.

In the second configuration stage ContractNegotiation,
both sales and senior architect are granted change permis-
sions to both the feature model and the domain-specific house
model. Again, the possible actions of the sales architect are
restricted. A further convenience function, hasChangedBy-
Type(), enables to query whether any model element of a
certain type in the whole subtree of a model has changed.
Note that the constraint uses the ERROR keyword of Xpand
Check (not the WARNING keyword as the previous one).
This indicates that the constraint strictly needs to hold, and

the sales architect should not have any measures to circum-
vent this. Finally, during Development, only the Developer
is allowed to change the configuration models (developerDe-
velopmentGrant). The following section explains the tool
support provided to stakeholders on the basis of this model.

5.2.1 Tool Support for Stakeholder Guidance
During product derivation, the actual configuring Stake-

holders (e.g., sales architect Bob), and their relation to Stake-
holderRoles (via the memberOf association), are defined in
the StageInstance model (cf. Figure 6). Currently imple-
mented via a login GUI, a user identifies as a certain stake-
holder. From this time on, the files the stakeholder opens
are monitored via the Eclipse infrastructure. When opening
one of the product’s configuration files, a lookup is started
whether the stakeholder is granted change rights during the
currently running configuration stage (Grant model element).
If this is not the case, the Eclipse infrastructure is instructed
to disable saving.4

In case the tool grants access, the stakeholder may freely
edit the configuration file until saving it. As the Eclipse
IDE enables hooking into the save functionality, it becomes
possible to execute a constraint on the new state of the con-
figuration file. If the API supports it (as the hasChanged()
function implemented for Xpand Check), constraint may also
access the differences to the old state of the configuration
model. In case all stakeholder-specific constraints hold, the
save action will be completed. Otherwise, the message at-
tached to the constraints is displayed, which will inform the
stakeholder which changes resulted in warnings or errors.

Warnings can be used to explain unexpected side effects
or give hints how to proceed in the derivation process (e.g.,
execution of the ROI calculation build task). Errors result in
strictly prohibiting the saving of a configuration file. While
possible, strict prohibition may not always be the best option.
Sole warnings, together with useful warning messages, may
be as useful, but less incommoding to stakeholders.

6. APPLICATION EFFORT AND CHECK-
ING PERFORMANCE

The goal of this section is to provide evidence for two
central aspects concerning the practicability of the approach:
light-weight applicability and technical scalability. In order
to do so, two questions are crucial: Which effort is necessary
to apply the approach to a legacy product line, and what is
the performance of the tool regarding constraint checks?

6.1 Light-Weight Application
Enabling a product line for the approach requires identi-

fying the crucial stages, stakeholders, and build tasks and
modeling them. As the staged derivation process of Smart-
Home has been devised, no effort (e.g., in person hours) could
be collected. The time effort for required expert interviews,
however, should remain in reasonable boundaries.

The declaration effort for the stage model of SmartHome is
shown in Table 1. On average, three to four model elements
(classes, attributes, or references) are required to model one
entity (88 model elements to 26 entities in total). This ratio

4Disabling saving works for any configuration file type, as
long as files are opened with an editor that plugs into Eclipse.
For example, all seven configuration file types supported by
the PLiC framework [12] (cf. footnote 1) have such editors.

Table 1: Number of declared stage model elements.

Conf. Build Stakeholder Further Total Decl. Model
Stages Tasks Roles Entities Elements*

4 10 4 8 26 88

Conf.: Configuration | Decl.: Declared
* Including model classes, attributes, and references

is due to the fact that several entities require multiple data
elements for characterization. For example, for a single build
task, five model attributes need to be declared: an identifying
name, the build file location, the build target name, the build
tool (ant, make, etc.), and dependencies to other build tasks.
Still, the effort remains in reasonable boundaries so that the
required application effort can be considered light-weight.

The last step before applying the approach requires mining
and defining the derivation constraints. Note that mining
constraints is also required in other tool-supported config-
uration approaches that do not provide staged derivation
support. In practice, the mining effort for staged derivation
constraints can be measured in person hours spent in work-
shops with product line experts, which was not possible for
the SmartHome demonstrator example. As constraints can
be added incrementally, the effort spent in defining them can
be flexibly adapted to the resources available.

Finally, the difficulty of constraint definition depends on
the language and API used and cannot be generally assessed.
In this paper, the PLiC framework [12] is used to access the
configuration data. It facilitates constraints via several lan-
guages, such as Xpand Check, Xtend 2, and Java with EMF
model access. All these languages can provide intelligent
editors, which know about the type and name of available
configuration variables and can provide functionalities such
as tab completion and syntax checks, which should ease
constraint definition considerably.

As also argued in [12], the PLiC framework as well only
requires little application effort: For the seven configuration
mechanisms mentioned in footnote 1, it suffices to create
one model describing the configuration mechanisms used
by the product line and one that defines the locations of
the configuration files of the concrete product. For the
SmartHome case, 26 model elements are needed in total.
This information is sufficient for the PLiC framework to
automatically create corresponding configuration models in
EMF format of all configuration variables of the product line,
on which then constraints can be defined.

6.2 Scalability of Constraint Checking
The constraints effectively implement the automation of

product derivation. They provide for the tailored configura-
tion checks and implement fine-grained configuration permis-
sion rules. As constraints need to be reevaluated each time
a configuration artifact changes, a reasonable throughput of
constraint checks remains to be shown. Again, the achievable
performance depends on the used access mechanism to the
configuration data. Table 2 shows the performance of three
different constraint checking mechanisms, when choosing the
PLiC framework for configuration data access: Xpand Check,
Xtend 2, and Java with EMF model access.

All benchmarks were executed on a laptop with Core 2 Duo
2.4 GHz a hundred times in a newly started Eclipse instance.
The initial measurement shown in a separate column reveals
the additional execution time for just-in-time compilation.

Table 2: Constraint execution performance.
Performance Init. For 100 Executions (ms) Constr./

(ms)* Min Max Average second

Xpand Check, Eclipse 3.5

30 Constr.** 713 425 853 513 58

Xtend 2, Eclipse 3.7

30 Constr. 45 1 40 4 7915
1.000 Constr.*** 564 39 846 65 15274
10.000 Constr. 5012 483 1489 634 15765

Java, Eclipse 3.7

30 Constr. 81 1 66 4 7425
1.000 Constr. 580 29 298 41 24307
10.000 Constr. 2123 358 1033 428 23370

Init.: Initial execution | Constr.: Constraints
* Xtend 2 and Java require just-in-time compilation for initial execution.

Therefore, the first execution of constraints has been measured separately.
** The 30 constraints are actual product line constraints mined in expert

workshops. Each of these constraints accesses 5 model elements on average.
*** The 1000 and the 10000 constraints are generated synthetically. Each

constraint accesses 15 arbitrary configuration models elements, to also
incorporate cases where product line constraints become more complex.

The initially developed Xpand Check validation plug-in
(Eclipse 3.5) shows the general feasibility of the approach.
The 30 product line constraints mined in an workshop with
domain experts [12] were executed in about half a second
on average (513 ms). Due to the fact that the language is
interpreted textually, it was foreseeable that the language
would not scale well for a larger number of constraints.

In order to evaluate scalability, the PLiC framework was
ported to Eclipse 3.7 and a validation plug-in for the Xtend 2
language and for Java was developed. Xtend 2 constitutes
the successor of the Xpand Check language family and is
compiled to the Java Virtual Machine.

As can be seen, the performance of both Xtend 2 and
Java is around two orders of magnitude higher than for
Xpand Check. The 30 constraints mined in a workshop
were executed with a rate of 7.915 (Xtend 2) and 7.425
(Java) constraints per second. The initialization effort for
the startup of the respective validation plug-ins yet has a
strong influence on the results. Therefore, the constraint
execution rate improves when executing more constraints.
For executing the 1.000 or the 10.000 randomly created
synthetic constraints, the impact of plug-in initialization
becomes irrelevant. Then, the throughput of the plug-ins is
approximately 15.000 constraints per second for Xtend 2 and
24.000 constraints per second for Java.

An average waiting time of less than a second (634 ms
and 428 ms) for 10.000 constraint checks is still acceptable,
and incorporates many practical cases, such as, for example,
the complete number of cross-tree constraints in the Linux
Kernel [17]. Finally, although there is a certain variance in
the performance figures (indicated as minimal and maximal
values of execution times, presumably caused by the Java
garbage collector and other interfering IDE and operating
system tasks), it is within reasonable boundaries. In total,
this shows that the constraint checking performance scales
reasonably well to thousands of constraint checks per second.

7. DISCUSSION
This section discusses the appropriateness of stage model

of the SmartHome product line, the expressiveness of the
stage modeling language, and reliable figures on product
derivation improvement.

The SmartHome stage model was devised by the author
of this paper. Three measures were taken to foster the
description of a realistic scenario. Early stages, such as
the initial contact stage, are based on industrial experience

of the author, as published in [25]. Later stages, such as
development and installation, are closely related to the actual
code base of SmartHome, which has not been developed by
the author. Finally, the fact that the stages are derived
from industrial experience is a common practice in staged
configuration research (e.g., [8, 18, 7, 14, 5, 3], cf. Section 8).

As there is little publicly available data on industrial-scale
staged derivation, a stage modeling language (cf. Section 4)
cannot be shown to be “sufficient” for real-world scenarios,
yet. Still, as all involved participants (stages, build tasks,
stakeholders), are first class modeling elements, and arbitrary
complex constraints can be implemented in languages such as
Java, the current language is in this regard more expressive
than all previous approaches (cf. also Section 8). Finally, if
there is the need for further modeling constructs (e.g., stage
models with branch conditions, synchronization barriers, or
loops), the stage modeling language may be adapted—there
is currently no restriction except that the resulting language
can be formulated as a metamodel.

With basically all other product line approaches that sup-
port automated product derivation [4, 16, 23, 27, 2], the
PLiC approach shares the assumption that ensuring configu-
ration validity not only improves on product quality due to
avoidance of derivation errors, but also has a positive impact
on derivation time. Reliable quantitative results on deriva-
tion time improvement, however, have not been produced up
to now. In this regard, the paper argues with two particular
features of the approach: It is applicable in a light-weight
manner and it can scale to thousands of constraint checks.
This creates an environment where introduction risk is small
and potential benefits due to time and quality improvements
are high, so that the approach gains high attractiveness for
its application in practice, where reliable quantitative data
can be gathered.

8. RELATED WORK
The presented approach is unique in explicitly integrating

stakeholder roles and build tasks into the staged derivation
process and in providing corresponding tool support. Fur-
thermore, it is not tied to a certain configuration mechanism
as previous work, which often also has only limited means
for modeling the actual stages.

Previous automated concepts for basic staged derivation
support, as defined in Section 2.2, are mostly limited to fea-
ture models as configuration mechanism. In [8], Czarnecki et
al. propose two solutions for arranging configuration choices:
specialization and multi-level feature modeling. Specializa-
tion denotes the step-wise selection of features one after
another. It does not provide a notion similar to a “stage”,
which groups multiple related configuration choices.

In multi-level feature modeling [8], each stage or level
must be modeled in a dedicated, separate feature model. As
soon as one stage is completely configured, the model at the
lower level is preconfigured according to the previously made
configuration choices. A dedicated model of stages is missing,
so that the configuration mechanism and the implicit stage
model are highly tangled.

Classen et al. have developed a formalization semantics
for multi-level feature modeling [7] in order to point out am-
biguities and suggest improvements for the original concept.
Mendonca at al. [18] extend basic feature modeling with
decision sets, which partition the features of a feature model.
According to priorities attached to each decision set, and to

the configuration constraints defined in the feature model,
a partial order is calculated for the decision sets. Based on
this input, the sequence of stages is automatically calculated,
instead of explicitly defined, as in other approaches.

Rabiser at al. [26] present the only instance of a staged
configuration approach that is based on decision modeling.
They use distinct views to assign decisions to three different
stages (called levels in [26]). As they allow decisions to
appear in more than one view, they are more flexible than the
previously mentioned approaches, for which the assignment
of features to stages is fixed. Although the authors only
present their approach in context of a concrete product line
project, there seems to be potential for generalization to
various other kinds of staged configuration processes.

Hubaux et al. [1, 14], a feature modeling extension for
explicit modeling of configuration stages with a so called
“configuration workflow”. Each stage in the workflow is
assigned a set of configuration options (a “view” on the
feature model) and a condition that needs to be fulfilled in
order to proceed to the next stage. This enables more flexible
definition of configuration stages as in previous feature-model–
based approaches. In particular, it is not necessary that each
configuration stage is modeled as a separate feature model.

Currently, Hubaux et al. provide the most advanced ap-
proach up to date by decoupling configuration stages and
the configuration options. Still, the approach only concerns
feature modeling and does not integrate build tasks or can
provide fine-grained stakeholder derivation process guidance.
In providing such capabilities, and in being independent of
the used configuration mechanism, the approach presented
in this paper adds to previous work both from a functional
and from a generalization perspective.

9. CONCLUSION
This paper has presented a light-weight approach for staged

derivation tool support. For application, it requires only little
derivation process modeling and the implementation of the
constraint checks. Its basic application prerequisites are a
constraint language with access to the configuration data
and an extensible configuration IDE to add the tool support.

The approach comprises a concise stage modeling language,
which explicitly distinguishes stages, stakeholders, and build
tasks to which constraints can be attached. This facilitates
more comprehensive tool support than previous approaches:
Next to basic staged derivation support, it provides stake-
holders with guidance via showing individual configuration
hints, or by even hindering some stakeholders to do specific
actions in certain stages. Additionally, the tooling integrates
build-task–specific consistency checking and actual product
building into the staged derivation process.

The effort for initially applying the approach to the Smart-
Home product line has been little—it basically only required
creation of the stage model comprising 88 model classes, at-
tributes, and references. Finally, also the technical scalability
of the approach to ten thousands of constraint checks per
second could be proven.

What remains to be shown is the practical scalability: Will
the number of defined constraints still be manageable for
industrial scale scenarios? Or is it necessary to sacrifice
on the expressiveness of the stage model or the constraint
language in order to facilitate formal analysis? As the tooling
can be applied in a light-weight manner and as it reveals
scalability regarding the number of constraint checks, the

necessary prerequisites to gather these insights via practical
application of the approach are there.

10. ACKNOWLEDGEMENTS
I would like to thank Paul Grünbacher for his valuable

comments on an earlier version of this paper.

11. REFERENCES
[1] E. K. Abbasi, A. Hubaux, and P. Heymans. A toolset for

feature-based configuration workflows. In 15th Software
Product Line Conf. (SPLC ’11), Washington, DC, USA,
Aug. 2011. IEEE Computer Society.

[2] T. Asikainen, T. Männistö, and T. Soininen. Kumbang:
A domain ontology for modelling variability in soft-
ware product families. Advanced Engineering Informat-
ics, 21:23–40, January 2007.

[3] E. Bagheri, T. D. Noia, D. Gasevic, and A. Ragone.
Formalizing interactive staged feature model configura-
tion. Journal of Software Maintenance and Evolution:
Research and Practice, 23, 2011.

[4] D. Beuche. Variant management with pure::variants.
Technical report, pure-systems GmbH, 2006.
http://www.pure-systems.com/fileadmin/
downloads/pv-whitepaper-en-04.pdf, visited
2011-11-12.

[5] M. Boskovic, E. Bagheri, D. Gasevic, B. Mohabbati,
N. Kaviani, and M. Hatala. Automated staged config-
uration with semantic web technologies. International
Journal of Software Engineering and Knowledge Engi-
neering, 20:459–484, 2010.

[6] G. Chastek, P. Donohoe, and J. McGregor. A study of
product production in software product lines. Technical
Report CMU/SEI-2004-TN-012, Carnegie Mellon Uni-
versity, Software Engineering Institute, Pittsburgh, PA,
USA, Mar. 2004.

[7] A. Classen, A. Hubaux, and P. Heymans. A formal
semantics for multi-level staged configuration. In 3th Int.
W’shop on Variability Modelling of Software-intensive
Systems (VAMOS ’09), pages 51–60, 2009.

[8] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged
configuration through specialization and multilevel con-
figuration of feature models. Software Process: Improve-
ment and Practice, 10(2):143–169, 2005.

[9] S. Deelstra, M. Sinnema, and J. Bosch. Product deriva-
tion in software product families: a case study. Journal
of Systems and Software, 74(2):173–194, Jan. 2005.

[10] C. Elsner, D. Lohmann, and W. Schröder-Preikschat.
Fixing configuration inconsistencies across file type
boundaries. In 37th EUROMICRO Conf. on Software
Engineering and Advanced Applications (SEAA ’11),
pages 116–123. IEEE, Aug. 2011.

[11] C. Elsner, D. Lohmann, and W. Schröder-Preikschat.
An infrastructure for composing build systems of soft-
ware product lines. In 15th Software Product Line Conf.
(SPLC ’11), Volume 2, pages 18:1–18:8, New York, NY,
USA, Aug. 2011. ACM. (MAPLE/SCALE ’11 Proceed-
ings).

[12] C. Elsner, P. Ulbrich, D. Lohmann, and W. Schröder-
Preikschat. Consistent product line configuration across
file type and product line boundaries. In Kang [15],
pages 181–195.

[13] Eclipse Modeling Framework Homepage. http://www.
eclipse.org/emf/, visited 2011-11-12.

[14] A. Hubaux, A. Classen, and P. Heymans. Formal mod-
elling of feature configuration workflows. In Muthig and
McGregor [19], pages 221–230.

[15] K. Kang, editor. 14th Software Product Line Conf.
(SPLC ’10), volume 6287 of LNCS, Heidelberg, Ger-
many, Sept. 2010. Springer.

[16] C. W. Krueger. BigLever software Gears and the 3-tiered
SPL methodology. In Companion to the 22nd ACM
SIGPLAN Conference on Object-Oriented Programming
Systems and Applications (OOPSLA ’07), pages 844–
845, New York, NY, USA, 2007. ACM.

[17] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wa-
sowski. Evolution of the Linux kernel variability model.
In Kang [15], pages 136–150.

[18] M. Mendonca, D. Cowan, and T. Oliveira. A process-
centric approach for coordinating product configuration
decisions. In 40th Hawaii International Conference on
System Sciences (HICSS ’07). IEEE, 2007.

[19] D. Muthig and J. D. McGregor, editors. 13th Software
Product Line Conf. (SPLC ’09), Pittsburgh, PA, USA,
2009. Carnegie Mellon University.

[20] Eclipse Modeling Framework Technology (EMFT) -
Modeling Workflow Engine (MWE). http://www.
eclipse.org/modeling/emft/?project=mwe,
visited 2011-11-12.

[21] P. O’Leary, R. Rabiser, I. Richardson, and S. Thiel.
Important issues and key activities in product derivation:
Experiences from two independent research projects. In
Muthig and McGregor [19], pages 121–130.

[22] Eclipse Xpand Homepage. http://www.eclipse.
org/modeling/m2t/?project=xpand, visited 2011-
11-12.

[23] R. Rabiser, P. Grünbacher, and D. Dhungana. Support-
ing product derivation by adapting and augmenting
variability models. In 11th Software Product Line Conf.
(SPLC ’07), pages 141–150, Washington, DC, USA,
2007. IEEE Computer Society.

[24] R. Rabiser, P. Grünbacher, and D. Dhungana. Require-
ments for product derivation support: Results from a
systematic literature review and an expert survey. In-
formation and Software Technology, 52:324–346, March
2010.

[25] R. Rabiser, W. Heider, C. Elsner, P. Grünbacher, and
C. Schwanninger. A flexible approach for generating
product-specific documents in product lines. In Kang
[15], pages 47–61.

[26] R. Rabiser, R. Wolfinger, and P. Grünbacher. Three-
level customization of software products using a product
line approach. In 42nd Hawaii Int. Conf. on System
Sciences (HICSS ’09), pages 1–10, Washington, DC,
USA, 2009. IEEE Computer Society.

[27] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COV-
AMOF: A framework for modeling variability in software
product families. In 11th Software Product Line Conf.
(SPLC ’07), Heidelberg, Germany, 2007. Springer.

[28] Eclipse Xtext Homepage. http://www.eclipse.
org/Xtext/, visited 2011-11-12.

[29] M. Völter and I. Groher. Product line implementation
using aspect-oriented and model-driven software devel-
opment. 11th Software Product Line Conf. (SPLC ’07),
pages 233–242, 2007.

http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf
http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
http://www.eclipse.org/modeling/emft/?project=mwe
http://www.eclipse.org/modeling/emft/?project=mwe
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/Xtext/
http://www.eclipse.org/Xtext/

	Introduction
	Motivation and Examples
	SmartHome Staged Derivation Process
	Challenge 1: Basic Support
	Challenge 2: Build Task Integration
	Challenge 3: Stakeholder Guidance

	Approach Overview
	Staged Derivation Modeling
	Tool Support Via Constraints
	Basic Support and Build Task Integration
	Build-Task–Specific Consistency Checking
	Build Task Execution

	Stakeholder Guidance
	Tool Support for Stakeholder Guidance

	Application Effort and Checking Performance
	Light-Weight Application
	Scalability of Constraint Checking

	Discussion
	Related Work
	Conclusion
	Acknowledgements
	References

