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ABSTRACT

People browsing the web or reading a document may see
text passages that describe a topic of interest, and want to
know more about it by searching. Manually formulating a
query from that text can be difficult, however, and an effec-
tive search is not guaranteed. In this paper, to address this
scenario, we propose a learning-based approach which gener-
ates effective queries from the content of an arbitrary user-
selected text passage. Specifically, the approach extracts
and selects representative chunks (noun phrases or named
entities) from the content (a text passage) using a rich set
of features. We carry out experiments showing that the se-
lected chunks can be effectively used to generate queries both
in a TREC environment, where weights and query structure
can be directly incorporated, and with a “black-box” web
search engine, where query structure is more limited.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms

Algorithms, Performance, Experimentation

Keywords

Query generation, query representation, text segments

1. INTRODUCTION
Annotation, such as circling or underlining text passages,

is a common action that people do when reading documents.
Such annotations, which are becoming more common in var-
ious tablet applications, can help improve understanding [1,
22] and, more importantly for this study, can reveal the un-
derlying interests with respect to a specific document[10].
Golovchinsky et al [10] described how information seekers
use annotations to markup relevant passages, and their ex-
perimental results in [10] showed that queries constructed
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from the annotated texts can be very effective. Similarly,
when browsing web pages, people sometimes express their
interests in text passages by implicitly hovering the mouse or
explicitly selecting (highlighting) text, which could trigger
potential subsequent web searches. Specifically, according to
Cheng et al [9], a considerable portion (19.3%) of queries are
issued right after users have browsed web pages, and 66%
of such search requests come from the page content. This
observation indicates that, similar to the annotation behav-
ior described in [10], a user may find text passages of a web
page interesting or unclear, and formulate their own queries
based on such passages to do a deeper search after reading.

Manual query construction based on text passages is com-
mon; however, such formulation can involve considerable
effort for users and an effective search is not guaranteed.
To this end, Cheng et al [9] used search engine log his-
tory to rank possible queries issued after reading a web page
and suggested them to users. This query suggestion-based
method benefits from the diversity of crowd knowledge, but
can be less focused on the content of the current page. An-
other approach is to use relevance feedback [24, 28] or“more-
like-this” [26] techniques to expand the original query with
significant words from the entire page. As suggested by [10],
this approach can select expansion terms that, although sta-
tistically representative of the document, do not accurately
reflect specific passages of interest in many cases.

In this paper, we propose techniques for generating queries
from user-selected or annotated text passages. More pre-
cisely, we assume that the selected content of the document
or web page is made up of a consecutive sequence of words
(i.e., a text segment). A user can select any arbitrary text
segment of interest while browsing, and we then automat-
ically generate queries based on that text segment. This
approach provides an alternative query mode that could po-
tentially alleviate some of the burden of query construction.
For example, Lee et al [21] showed that the average time
spent by the subjects to formulate one query for a short
piece of news segment is about 34.4 seconds, compared to
2.0 seconds required by the query generation algorithm pro-
posed in [21]. Moreover, the nature of annotations such
as selecting passages requires little effort from the users. In
this paper, we describe a detailed study of machine learning-
based retrieval techniques for both TREC and web search
environments, rather than the more ad-hoc techniques used
in [10].

To generate effective queries, we propose to identify im-
portant noun phrases and named entities, called “chunks”
in this paper, within the selected text segment as the ba-





3.1 Frequency-based approach
As suggested by [6], we statistically measure the effec-

tiveness of chunks based on simple frequency counting. We
submit each chunk to a web search API and record the corre-
sponding number of returned results as N = {n1, n2, ..., nn}.
Intuitively, as the web encompasses a huge amount of data,
ci is considered more important than cj if ni < nj , follow-
ing the common belief in the effectiveness of term inverse
document frequency. Based on the number of returned re-
sults, we select the top k most infrequent chunks as the set
of effective chunks Ce, and denote those as WeightC(k).
In Section 5.3, we show the impact of different numbers of
chunks selected.

3.2 Learning-based approach
Alternatively, we use a learning-based approach for Ce

construction. We use CRF models to identify important
chunks in C, and construct Ce based on a number of different
strategies and variants of CRF. In the following, we first
describe the CRF models adopted. The construction of Ce

is detailed in the next step, and finally, the set of features is
described.

3.2.1 CRF-perf models

To identify important chunks in C, we regard the task as
a labeling problem where each chunk ci ∈ C is assigned
a label of “keep” or “don’t keep”. A labeling configura-
tion L = {l1, l2, ..., ln} then decides a corresponding chunk
combination, where li = 1 and li = 0 means “keep” and
“don’t keep” respectively. In this paper, we adopt the novel
CRF model (CRF-perf) proposed by Xue et al [29] to solve
the labeling problem. CRF-perf provides a formally well-
founded framework to model the distribution of label se-
quences. More importantly, CRF-perf has the advantage
of directly optimizing the expected retrieval performance
rather than the labeling accuracy. Based on CRF-perf, the
probability of being effective is predicted for all chunk combi-
nations, including the special case where only a single chunk
is labeled “keep”.

Based on CRF-perf, the problem of identifying important
chunks can be tackled using a training set containing in-
stances {C, {L, m(L)}}, where C denotes the set of chunks
extracted from a text segment and {L, m(L)} represents
the corresponding set of labeling configurations. Specifically,
{L, m(L)} contains all possible chunk combinations for C,
and m(L) denotes the retrieval performance measured by
function m(.) for L.

Given the chunks C observed, the probability of a specific
labeling configuration P (L|C) is calculated in Equations 1
and 2, where fj associated with weight λj denotes a feature
extracted from C and L. Z(C) represents a normalizer over
all labeling configurations for a specific C.

P (L|C) =
exp(

∑J
j=1 λjfj(L,C))

Z(C)
(1)

Z(C) =
∑

L

exp(
J∑

j=1

λjfj(L,C)) (2)

In the training phase, the model parameters θ = {λj} are
learned based on the objective function in Equation 3, where∑

L
P (L|C)m(L) is the expected retrieval performance over

the labeling configurations for a give C. As shown in Equa-
tion 3, the objective function directly optimizes the expected
retrieval performance for each C in the training set. The
corresponding log-likelihood expression of Equation 3 is cal-
culated in Equation 4, where R =

∑
j
λ2
j/2δ

2 represents a
regularizer avoiding unbounded parameter values. To com-
pute the final value of parameter λj that maximizes retrieval
performance of the training set, one needs to take partial
derivatives on Equation 4 with respect to each λj ; the de-
tails of computation can be referenced in [29].

Obj(θ) =
∏

C

∑

L

P (L|C)m(L) (3)

l(θ) =
∑

C

log
∑

L

exp(
∑

j

λjfj(L,C))m(L)−
∑

C

logZ(C)−R (4)

We use the CRF-perf framework in two different ways.
First, the training set includes all possible chunk combina-
tions for a given C as described previously. In the test-
ing phase, the probability distribution over the set of chunk
combinations is predicted as P (L′|C′, θ), given C′ extracted
from an unseen text segment TS′. The probability P (L′|C′, θ),
as a result, tells how likely the corresponding chunk combi-
nation is to be effective and yields good retrieval perfor-
mance.

Another way of using the CRF-perf framework is to di-
rectly estimate the probability distribution for every single
chunk ci ∈ C. This implementation is straightforward in
that only labeling configurations with exactly one li = 1 are
considered for training. This approach is motivated by effi-
ciency concerns as using single chunks could potentially save
a significant amount of computation relative to the previous
model. Therefore, in the testing phase, the probability dis-
tribution P (L′|C′, θ) directly estimates the effectiveness of
a single chunk.

We denote the two ways of applying CRF-perf as models
CRFCombC and CRFSingleC . For succinct presentation, we
simplify the notations by denoting the probability distribu-
tion P (L′|C′, θ) as Pc(.) for the model CRFCombC , and Ps(.)
for the model CRFSingleC .

3.2.2 Selecting the set of effective chunks

In the following, we introduce several ways to construct
the final chunk set Ce, including CombC, CombC+TopC(2)
and TopC(k).

Based on the model CRFCombC , we directly select the
best chunk combination CombC (i.e. the chunk combination
with the highest Pc) to construct Ce. In addition, we are
interested in testing if incorporating other top-performing
chunk combinations could make Ce more effective for search.
In particular, we select the two single chunks with the high-
est probabilities Pc as the two top-performing chunk com-
binations. Such a selection, denoted as CombC+TopC(2),
is adopted in [5] where the best results showed that “2” is a
reasonable choice.

Ce construction based on CRFSingleC may require a more
sophisticated algorithm due to the possibly degraded effec-
tiveness of CRFSingleC (a large portion of chunk combina-
tions are ignored in CRFSingleC). Specifically, we propose
Algorithm 1 to construct Ce which contains the top k ef-
fective chunks for each query topic. One of the merits of
Algorithm 1 is that the parameter k is automatically op-
timized and determined for each topic. In Section 5, it is



Table 2: Features used in this paper.
Source Feature Description

Text Segment tf Term frequency for concept e in the text segment

Document
ptf Term frequency for concept e in the page
pdf Paragraph frequency for concept e in the page

TREC Gov2
cf Term frequency for concept e in TREC-gov2
df Document frequency for concept e in TREC-gov2

Google ngram gf ngram count of concept e in Google ngram

MS Web N-Gram
jp-ch, jp-co Joint probability of chunks and concepts

cp-ch, cp-co Conditional probability of chunks and concepts

MSN Query Log
ql-exact Count of exact matches of a concept e and a query in the log
ql-exist Count of times concept e occurs within a query in the log

Wiki Title
wiki-exact Count of exact matches of a concept as a Wikipedia title

wiki-exist Count of times concept e occurs within a Wikipedia title

Other

length Total number of words a chunk contains

ni Number of results returned from search engine API given a chunk

cnt-ch Number of chunks in a chunk combination

Algorithm 1 Chunk selection

Input: the set of chunks C = {c1, c2, . . . , cn}.
Output: the set of effective chunks Ce.

find ck ∈ C such that Ps(ck) = max{Ps(ci) | ci ∈ C}
Ce ← {ck}
C ← C − {ck}
while C 6= ∅ do

find ck ∈ C such that Ps(ck) = max{Ps(ci) | ci ∈ C}
if mincj∈Ce{Ps(ck)/Ps(cj)} > TH then

Ce ← Ce ∪ {ck}
C ← C − {ck}

else
C ← ∅

end if
end while
return Ce

shown that the automatic k determination has a significant
positive impact on retrieval performance. We now describe
in detail the chunk selection algorithm. In the beginning, we
keep an empty set of Ce and add the most effective chunk
ck (i.e., max Ps(ck)), meaning that Ce at least contains one
single chunk. The general idea of Algorithm 1 is consider-
ing whether to include the next most effective chunk or not,
based on how much effectiveness could be gained by inclu-
sion of that chunk. For example, for ck with the second high-
est Ps(ck), we shall include it as part of Ce if its relative ef-
fectiveness gain ratio is greater than a threshold. Mathemat-
ically, the inclusion takes place if Ps(c(2))/Ps(c(1)) > TH2;
otherwise, we discard all chunks with probabilities less than
or equal to Ps(c(2)). The algorithm traverses all chunks in
C and terminates either when all chunks are visited or when
the criteria of effectiveness gain ratio is break at some point.

3.2.3 Feature Set

In this section, we describe the features of a chunk, a un-
igram, and a bigram used in this paper. A unigram is a
single word of a chunk, while a bigram is a consecutive se-
quence of 2 words from a chunk. By considering the features
of unigrams and bigrams, we can capture the characteristics
of both independent query words and dependent word se-

2Ps(c(i)) represents Ps of the i-th effective chunk

quences contained in a chunk. We refer to both a unigram
or a bigram as a “concept” following [7]. Concerning the
design of the feature set, we consider various types of col-
lection sources from which useful statistical features can be
extracted. In the following, we detail each of the sources and
the features used, which are summarized in Table 2. Some
of the features are adopted from [7].

Conventional tf and df counts are shown to be effective
in designing features. Specifically, we compute tf and df

counts of a concept in sources available from the benchmark
collection. The sources include three aspects of different
granularity: the original text segment, the document from
which the text segment is selected, and the entire TREC
Gov2 collection.

In addition to the benchmark collection, we are interested
in using other large collections which may provide better
coverage of terms. Large collections could provide better
smoothing especially for sparse terms or phrases. Differ-
ent collections also provide different domain knowledge for
estimating term importance. In this work, we use 4 pub-
licly available large collections as extra sources, including the
Google n-grams corpus3, Microsoft Web N-Gram4, a sample
of an MSN query log5, and a snapshot of Wikipedia article
titles6.
The Google n-grams corpus, which contains the frequency

counts of English ngrams generated from approximately 1
trillion word tokens from publicly accessible web pages, is
used for estimating the frequency for a concept.

The Microsoft Web N-gram services provide access to real-
world web-scale data using a cloud-based platform. Specifi-
cally, we use the N-gram models, constructed based on a web
snapshot taken in April 2010, for estimating the conditional
and joint probabilities for a concept as well as a chunk.

A large sample of query logs may help identify the impor-
tance of a concept based on the crowd knowledge of search
engine users. The MSN Log, which consists around 15 mil-
lion queries, is adopted to count the number of times a con-
cept “appearing in” or “being exactly” a query in the log
history.

3Linguistic Data Consortium catalog
4http://web-ngram.research.microsoft.com/
5Available as a part of Microsoft 2006 RFP dataset
6http://download.wikimedia.org/enwiki/



The last additional collection is a snapshot of theWikipedia
article titles, which contains about 3 million English articles.
The features for this collection are the number of times a
concept “appears in” or “being exactly” an article title in
Wikipedia.

Finally, we use some statistical indicators to describe a
chunk. length simply records how many words there are in
a chunk. ni, as introduced in Section 3, represents the num-
ber of search results using a chunk as query. Note that all
the features described above are with respect to “a chunk”.
When it comes to the features of a chunk combination, the
feature values are summed together over the chunks in that
combination, and an extra cnt-ch feature will record how
many chunks the combination contains.

4. QUERY GENERATION
To test the generality of our approach, we propose two

different kinds of queries designed respectively for retrieval
tasks in the TREC and web environments. Weighted queries
Qw are generated for the TREC environment, as weights
and query structure can be directly incorporated into the
retrieval model used for this collection. Unweighted queries
Quw, on the other hand, are designed for the web search
engine environment as query structure is more limited under
a “black-box” framework.

4.1 Weighted query generation
In this step, 4 kinds of weighted queries are generated

based on the 4 kinds of Ce proposed previously. For an
original text segment TS, TSn denotes the corresponding
TS with no stopwords. The standard INQUERY stopword
list[3] which contains 418 stopwords is used for the removal
process.

TSn + WeightC(20): This type of query is constructed
based on the statistical approach, where each ci ∈ Ce is as-
sociated with the number of returned results ni from the
search API. We then weight each chunk in inversely propor-
tion to ni. Specifically, if we take the reciprocal of ni as
ri, the weight wi of chunk ci is computed as ri/

∑
i
ri. The

generated query is then constructed as,

Qw ← α(TSn) + (1− α)(
∑

i
wici)

TSn +CombC: The query is generated by combining the
best chunk combination (max Pc) with TSn, resulting in,

Qw ← α(TSn) + (1− α)(CombC)

TSn+CombC+TopCw(2): The kind of query is motivated
by incorporating two effective single chunks in TopC(2),
each of which is associated with a probability Pc(c(i)) es-
timated based on the CRFCombC model. We highlight the
importance of each single chunk with a weight wi, which is
equal to Pc(c(i))/

∑2
i=1 Pc(c(i)). We denote the two chunks∑2

i=1 wici as TopCw(2), and modify the query based on
TSn + CombC as follows,

Qw ← α(TSn) + β(CombC) + (1− α− β)(TopCw(2))

TSn + TopC(k): The final approach is to generate the
query using model CRFSingleC and Algorithm 1, and is used
in the form of,

Qw ← α(TSn) + (1− α)(TopC(k))

Table 3: Examples of 4 kinds of weighted queries
(#comb is short for #combine).

TSn + WeightC(20)

#weight(

0.8 #combine( TSn )

0.2 #weight(

.0021 #comb(treatment) .0161 #comb(normal activities)

.0097 #comb(knee) .0179 #comb(physical therapy)

.0026 #comb(medicine) .0747 #comb(osteoarthritis)

.0643 #comb(rheumatoid arthritis) .0072 #comb(meals)

.0445 #comb(Knee pain) .0892 #comb(Severe arthritis)

.0423 #comb(joint replacement) .0490 #comb(tumors)

.0272 #comb(bathing) .3248 #comb(household chores)

.0906 #comb(knee replacement) .0566 #comb(injections)

.0234 #comb(Inability) .0065 #comb(daily activities)

.0029 #comb(other treatment) .0445 #comb(knee pain)))

TSn+CombC

#weight(

0.8 #comb(TSn )

0.2 #comb(Knee pain household chores injections joint

replacement knee pain knee replacement

osteoarthritis rheumatoid arthritis tumors))

TSn + CombC + TopCw(2)

#weight(

0.8 #comb(TSn )

0.1 #comb(Knee pain household chores injections joint

replacement knee pain knee replacement

osteoarthritis rheumatoid arthritis tumors)

0.1 #weight(.7012#comb( knee replacement )

.2988#combine(joint replacement)))

TSn + Top(k)

#weight(

0.8 #comb(TSn )

0.2 #comb(knee pain knee replacement household chores

Knee pain joint replacement))

Table 4: Examples of 2 kinds of unweighted queries.
TopC(2)

knee replacement joint replacement

TopC(k)

knee pain knee replacement household chores Knee pain

joint replacement

To give a clear summary, Table 3 shows examples of the 4
types of queries generated, based on the text segment exam-
ple in Table 1. α ∈ [0, 1] and β ∈ [0, 1] are free parameters
specifying the importance for each model, and are usually
set to 0.8 and 0.1 according to [5, 23]. While α and β are
fixed in this paper, it suffices the purpose of comparing re-
sults between different query models. We consider exploring
different values of these parameters for maximizing perfor-
mance as future work.

4.2 Unweighted query generation
We propose 2 methods for generating unweighted queries.

Table 4 shows 2 corresponding query examples.
TopC(2): Based on the weighted query generated using

model CRFCombC , the unweighted query is generated with
the motivation of using the highest weighted chunks from
TSn+CombC+TopCw(2). A shorter query is also preferred
for its tendency to be more effective than a longer one. In-
terestingly, we find that the chunks appearing in TopC(2)
will also appear in CombC with no exception for all topics.
And, of course, all chunks in TopC(2) will also be included



in TSn. The unweighted query is then simply,

Quw ← TopC(2)

TopC(k): Using the same rationale, based on the model
CRFSingleC , we generate another type of unweighted query,

Quw ← TopC(k)

5. EXPERIMENTS

5.1 Experimental Setup
Experiments are conducted on the TREC Gov2 collection,

which contains 25,205,179 documents and 150 query topics
numbered from 701 to 850. Indexing is done using Indri7,
which supports term weighting schemes and flexible query
structure. The documents are stemmed with the Krovetz
stemmer[16] and there are no stopwords removed during the
indexing process.

Algorithm 2 TS Set Selection

Input: Query topics QID, Relevance judgement RJ .
Output: Set T = {(qid, TS, Page)} and |T | = 50.

T ← ∅;
while |T | ≤ 50 do

randomly select qid ∈ QID;
get the relevant documents RJr

qid for qid;
select a document reldoc from RJr

qid;
select a text segment textseg from reldoc;
T ← T ∪ {(qid, textseg, reldoc)};
QID ← QID − {qid};

end while
return T ;

The query set used for evaluation is composed of 50 text
segments, which are selected as specified in Algorithm 2.
First we randomly choose 50 query topics (from the 150
topics) and locate their relevant documents in TREC Gov2
using the existing relevance judgments. Then for each topic,
we manually identify a text segment from a relevant docu-
ment, under the constraints that (1.) the text segment sat-
isfies the specifications in the TREC description queries and
(2.) the document is currently active on the web as a web
page. The 50 text segments, as a result, could be evaluated
on TREC Gov2 using the benchmark relevance judgments
since they are aligned with TREC topics. For retrieval pur-
poses, the set of text segments is stopped with a standard
INQUERY stopword list[3]. We also stop the documents
from which the text segments are extracted. The statistics
are shown in Table 5. Chunks are extracted from text seg-
ments using the parser from the Stanford NLP group[15]
before stopwords are removed. There are an average of 24.8
chunks per text segment after extraction.

To perform the web search task, we use the publicly avail-
able search API, Bing API version 2, which enables us to
programmatically submit queries and retrieve results from
the Bing Engine. For each of the queries generated based on
the corresponding text segments, the top 10 results returned
are collected for a three-level manual relevance judgment {0,
1, 2}. The three-level relevance respectively stands for “not

7http://www.lemurproject.org/indri/

Table 5: Average number of words in text segments
and documents before/after removing stopwords for
the selected 50 topics.

before after

Text Segment 99.54 57.7

Document 5555.02 3193.72

relevant”, “partially relevant” and “relevant”. These judge-
ments are done by a single judge and are guided by how the
returned results match statements of the narrative queries
given in the benchmark.

Results of standard performance measurements are re-
ported for various techniques under different environments.
Evaluation is done on the top 1000 documents retrieved us-
ing Indri (TREC Retrieval) and the top 10 results returned
from the Bing search engine (Web Retrieval). It should
be noted that both search engines occasionally return the
“source document” that the text segment comes from. These
source documents are discarded in order to avoid giving
biased evaluation results. Finally we adopt MAP as m(.)
and use 10-fold cross validation for training and testing the
CRF-perf models. Following Xue et al [29], we reduce the
exponential set of combinations for training CRFCombC by
keeping combinations with 3 to 6 chunks. The threshold
TH in Algorithm 1 is cross-validated in the collection and
is empirically set to 0.42.

5.2 Retrieval Performance on TREC Gov2
Table 6 shows the retrieval results for queries generated

based on the various proposed techniques. The baseline
method“TSoriginal”retrieves documents using the raw texts
in text segments, and we construct TSn by removing stop-
words from the raw texts. Additionally, we include the run
“AllChunks” that uses all the chunks extracted from a text
segment as a query. The rest of the approaches are based
on the core approaches proposed in Sections 3 and 4.

We also compare the performance with several existing
approaches. Pseudo relevance feedback (PRF)[28] has been
shown to be effective for retrieval. A typical version of PRF
assumes that the top k ranked documents are relevant and
expands original query with top 20-30 terms from these doc-
uments using tf-idf weights. Following PRF, we extract the
top 10 and 20 tf-idf weighted terms from TSn as well as
Pagen (i.e., the document without stopwords) to form the
queries. Since there is no“original benchmark queries” in our
scenario, we search directly using the feedback terms such
as TFIDF10(TSn). To be comparable to our approaches, we
also issue queries using a combination of TSn and the set of
expanded terms such as TSn+TFIDF10(TSn).

Moreover, we explore the feasibility of applying FindSim-
ilar[26] proposed by Smucker and Allan to our problem.
FindSimilar, a feedback-like search tool, improves retrieval
performance by finding similar documents to users’ rele-
vance feedback documents and re-organizing retrieval re-
sults. A number of details are addressed in [26]; however,
here we only focus on the document-to-document similar-
ity as it most resembles our problem. Based on FindSimi-
lar, we rank documents using Kullback-Leibler divergence of
the query model MQ and the document model MD, where
both MQ and MD are language models for a document.
Specifically, we compute a MQ for each document in the
set T = {(qid, TS, Page)}, and compare the MQ to all other



Table 6: Retrieval performance of the proposed and related approaches on TREC Gov2. Paired t-tests are
performed between each technique and the basic methods (original and no-stopwords) . o or n is respectively
marked if p-value < 0.05 compared to TSoriginal or TSn.

Approach Query MAP Prec@5 Prec@10 nDCG@5 nDCG@10

Text segment

AllChunks 0.1488 0.4480 0.4500 0.2944 0.3077
TSoriginal 0.1402 0.4520 0.4360 0.2941 0.3063
TSn 0.1558o 0.4679 0.4379 0.3048 0.3074
TSn +WeightC(20) 0.1581o 0.4640 0.4619 0.3129 0.3251
TSn + CombC 0.1592on 0.4600 0.4540 0.3058 0.3169

TSn + CombC + TopCw(2) 0.1675on 0.4680 0.4560 0.2961 0.3091

TSn + TopC(k) 0.1677on 0.4800 0.4939on 0.3189 0.3401on

PRF-like

TFIDF10(TSn) 0.1339 0.4600 0.4460 0.3114 0.3211

TFIDF20(TSn) 0.1393 0.4760 0.4479 0.3058 0.3109

TFIDF10(Pagen) 0.0936 0.2920 0.2740 0.1811 0.1906
TFIDF20(Pagen) 0.0946 0.2880 0.3020 0.1800 0.2047
TSn+TFIDF10(TSn) 0.1599 0.4598 0.4591 0.3101 0.3154

TSn+TFIDF20(TSn) 0.1589 0.4440 0.4459 0.2980 0.3096
TSn+TFIDF10(Pagen) 0.1586 0.4540 0.4559 0.2877 0.3176
TSn+TFIDF20(Pagen) 0.1560 0.4280 0.4219 0.2638 0.2877

FindSimilar
DKL(MQ||MD) regular 0.0100 0.1240 0.1020 0.0213 0.0878
DKL(MQ||MD) biased 0.0107 0.1360 0.1060 0.0318 0.0913

Table 7: Retrieval performance for 4 kinds of queries
of topic number 812.

Query MAP p@5 n@5

TSn +WeightC(20) 0.1024 0.6 0.4468
TSn + CombC 0.1098 0.6 0.4468

TSn + CombC + TopCw(2) 0.1776 0.8 0.6608
TSn + TopC(k) 0.2077 1.0 1.0000

documents (each is aMD) in the Gov2 corpus. As mentioned
in FindSimilar, there are two types of similarity: regular
and query-biased. The main difference between the two is
that regular constructs MQ using all words in a particular
document, whereas query-biased builds MQ by collecting
all words within a certain distance W to all query terms in
the document. Again, we have no “standard query” in our
problem domain, but still we try to imitate query-biased by
regarding the TS as query.

Though we compare our approach with PRF and Find-
Similar, it is important to clarify the intrinsic difference
between our problem and these approaches. Our problem
simulates the scenario where a user finds a piece of text in
a document interesting and intends to find more informa-
tion about it. The text segment itself plays the role of the
query. Most previous work attempts to improve the perfor-
mance of existing benchmark queries by incorporating more
information from related documents.

We address several important points in Table 6: (1.) All
the techniques proposed can significantly improve baseline
performance in terms of MAP. From the run of“AllChunks”,
it is implied that using only chunks for search can leave
out some important words resulting in limited improvement.
(2.) It is noted that “TSn +WeightC(20)” significantly im-
proves the MAP performance of the “TSoriginal” run but
not for TSn. The result is not all that surprising as we
can see the chunks are nearly equally weighted using the
frequency-based approach (see Table 3 for example), which
means that effective chunks are difficult to distinguish from
others. (3.) The improvements based on “TSn + CombC”
are moderate. Though the MAP score can be significantly

improved, the rest of measurements cannot be effectively
enhanced. One possible reason can be that the features
designed in the experiments did not take into account the
global dependencies between chunks within a chunk combi-
nation. Modeling the underlying relationships could be po-
tentially helpful for better estimation as suggested by [29].
(4.) The “TSn + CombC + TopCw(2)” is motivated by
[5] that takes advantages of stressing the important single
chunks in addition to the best chunk combination“CombC”.
The results show that “TSn +CombC+TopCw(2)” can fur-
ther outperform the run of “TSn + CombC”. (5.) Finally,
the “TSn + TopC(k)” method consistently outperforms the
heuristic methods such as “TSoriginal” and “TSn” using dif-
ferent types of measurements. We believe the effectiveness
of generating queries based on “TSn+TopC(k)” comes from
the automatic determination of k for each topic. This means
that each topic is not limited to a fixed size of selected
chunks, but includes as many chunks as needed according
to their characteristics.

A concrete example showing the relative retrieval effec-
tiveness can be found in Table 7, where the queries in Ta-
ble 3 are directly used for retrieval. The result again shows
that “TSn + TopC(k)” outperforms all other techniques.

Moreover, compared to the related work in Table 6, all
our approaches perform significantly better than the PRF-
like(using only the feedback terms as query) and Findsimilar
methods (p-value < 0.05). Moreover, the PRF-like(using
combination with TSn) is comparable to our approaches
such as TSn+WeightC(20) and TSn+CombC. We can also
observe that using a text segment consistently outperforms
using a whole document for expanded terms, showing that
the use of text segments is more appropriate and precise.
FindSimilar does not perform well, although our results for
FindSimilar are consistent with [26] in that query-biased
outperforms regular since query-biased captures more pre-
cise vocabulary distributions with its window W.

5.3 Parameter setting on TREC Gov2
In this section, we show the impact of different values

of parameters used in the experiments. Figure 2 shows







environments.
We propose several learning-based approaches to selecting

effective chunks from the text segments. In the experiments,
we show that our techniques can generate effective queries
for both an open retrieval system (Indri search engine), and
a black-box retrieval system (commercial search engine). In
particular, we find that the technique TopC(k) which has the
advantage of automatic determination of k can significantly
improve retrieval performance. Meanwhile, TopC(k) is more
efficient than other types of learning-based approaches since
the training instances are composed of simple single chunks.

For future work, it would be helpful to take into account
globally dependent features for chunk combinations, which
may better capture the underlying relationships between the
chunks inside the combination. In addition, we find that
several segmentation problems occur during the process of
chunk extraction. Examples include the mis-chunking of
“type II diabetes” since “II” cannot be automatically identi-
fied as “2”. We hope to alleviate the problem by providing
a more robust way to do the segmentation.

Constructing applications on tablets or browsers could
help collect feedback from real users. While we have demon-
strated that the generated queries are effective across differ-
ent collections, incorporating the generation algorithm into
interactive user interfaces should be done in future work.
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